Poster: A Pilot Study on Real-Time Fingerprinting
for Tor Onion Services

Young-Ho Kim Loc Ho

Won-gyum Kim

Donghoon Kim Doosung Hwang

Dankook University Arkansas State University AiDeep Arkansas State University =~ Dankook University
Yongin-si, South Korea Jonesboro, AR, USA Seoul, South Korea Jonesboro, AR, USA Yongin-si, South Korea
dudgh1002@naver.com loc.ho@smail.astate.edu wgkim@aideep.ai dhkim @astate.edu dshwang @dankook.ac.kr

Abstract—Website fingerprinting attacks have exposed a vul-
nerability in Tor network. Although fingerprinting attacks have
shown high success rates, their reality in the real world is still
uncertain due to several reasons. To find out the possibility of fin-
gerprinting attacks in real-world environments, we implemented
a framework by referring to previous studies. The experimental
results show that there is not as much accuracy as expected
in classifying many websites, but there is enough accuracy in
classifying fewer websites. This pilot study shows the real-time
fingerprinting attacks are possible in real world scenarios if a
few challenges are addressed.

I. INTRODUCTION

The Tor (The Onion Router) is a Firefox-based anony-
mous network web service, with more than 1 million users
worldwide via secure connection. Tor browser can access both
general (non-hidden) websites and onion (hidden) services [[1].
The onion services are services that can only be accessed
over Tor. Using a Tor browser to access onion services
follows a different protocol than accessing general websites.
Tor browsers do not receive messages directly from the onion
service, but meet at the rendezvous point selected by Tor
browser and exchange data [2]. This process requires many
steps and involves a lot of data. Such data plays an important
role in classifying onion services and general websites. Website
fingerprinting attacks using machine learning have exposed a
vulnerability in Tor network. The fingerprinting attacks studied
earlier show their validity and availability in terms of feature
representation, detection rate, capturing large-scale traffic data,
and machine learning, but their reality remains uncertain for
the real-world practice [3]], [4].

This pilot study tries to verify the potentials of Tor website
fingerprinting in the real-world. The contributions of this study
are as following: (1) We have bulit a framework that can collect
network traffic and refine the collected traffic to consist only
of Tor-related traffic. (2) We discuss why classifying general
websites is more accurate than classifying onion services
using the same features. (3) We experiment in a real-time
environment provided by the framework.

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021

ISBN 1-891562-66-5

https://dx.doi.org/10.14722/ndss.2021.23xxx
www.ndss-symposium.org

II. RELATED WORK

Kwon er al. [3] proposed two attack models using the
weakness of the hidden service in Tor network. They explained
that the number of incoming and outgoing cells and duration
of activity can be used as important features to distinguish
circuit types. Based on their experiments with 97% accuray,
they suggested future possible defenses based on the special
properties of the circuits used for hidden service activities.
Panchenko er al. [3] studied the practical limits of website
fingerprinting at Internet scale with more than 300,000 web-
pages. They used both single webpages (e.g., index.html) and
complete websites within realistic internet traffic for the open-
world scenario. Their features are the cumulative sum of
packets sizes, direction, and ordering. k-NN and CUMUL were
used for the classifier. To increase the chances of a successful
website fingerprinting in the open world, the authors suggested
that an attacker would have to crawl many different pages of
the site and many instances per page. Although fingerprinting
attacks show high detection rates in both closed and open
world settings, much research is still needed on whether they
can detect in real-time [3]], [4].

III. RESEARCH APPROACH
A. Threat Model

Tor Network

Fig. 1: The Threat Model

An adversary is able to observe the network traffic from
a client to the entry Tor router (entry guard) and the traffic
from the exit Tor router to a destination client to de-anonymize
the connection. Examples of adversaries may be a Tor router
owner, ISP (Internet Service Provider), or local network admin-
istrator. In this paper, we assume that an adversary monitors the
network traffic in the broadcast domain which is between the
client and the entry guard (i.e., the first router) as in Figure

B. Data Collection

We developed the network traffic collection system. The
system can work in the virtual environment (e.g., XEN Server

XGBoost

Decision Tree

Random Forest

Tasks
Accuracy

Training Time

Accuracy

Training Time

Accuracy

Training Time

Binary classification between general and onion 0.9681

2.2474

0.9180

1.032

0.9423

0.4544

All data 0.5682

159.8719

0.4359

2.1927

0.5362

1.2283

50 general websites 0.6841

27.7722

0.5272

0.7746

0.6591

0.4561

38 onion services 0.5135

18.3250

0.3928

0.5466

0.4598

0.3198

8 onion services 0.8914

0.9759

0.8434

0.0452

0.9040

0.0391

TABLE I: Website fingerprinting comparison (Training Time (sec))

and Google Cloud Compute) to minimize network noise and
has various features, such as traffic collection scenarios and
GUI. The system has several options to collect the most
suitable data for the real work environment. For example, the
system can determine whether a site should continue to collect
traffic and move to the next website, or collecting the sites
on the lists once and then repeating them to multiple times.
Because the contents of websites can change over time, the
performance of the classification may vary depending on how
they are collected [6]. Thus, it is important to collect the data
that is best suited to the actual environment.

Data were collected from 38 onion services out of 50
candidates that are compiled in ahmia.fi [7]. In addition,
50 general websites were collected for comparison with onion
services. Each service has 150 instances and the collection
time was set to 120 seconds to fully load the websites. We
had the list of 50 onion services in February 2020. However,
twelve onion (24%) services have been already disappeared
in December 2020. The onion services do not provide stable
services due to their nature of website contents so some
services interrupt or change a URL which is a public key of
the onion service.

C. Feature vectors

This work uses two previous works as feature vectors. The
first is CUMUL with 104 features which has good results in
general website classification as long as the website does not
change dynamically [3]] . The second is our previous work with
125 features [6]. Originally, the number of features was 103,
but 22 were added to this experiment.

IV. ANALYSIS

The classification was conducted with XGBoost, Decision
Tree, and Random Forest. Table [I] shows the results with
several classification experiments with 125 features [6]]. Binary
classification shows high accuracy with 96.81%. The other
classifications do not produce good results. We also experi-
mented with CUMUL, but the results were not good. Onion
services classification using XGBoost was 42%.

We observed that the classification of onion services is
worse than that of general websites despite the same exper-
imental environment (e.g., data collection). We found that
the initial common data differs between general websites and
onion services. In detail, in onion services’ case, the path from
the client to the server follows more complex protocols [1].
The onion service requires more data to connect between the
client and the server. According to our analysis, the size of
the initial common data in the classification of onion services
was larger than the size of the initial common data of general
websites. We found that such differences led to differences in
accuracy in classification.

We still face the challenge of low classification accuracy
since Kwon et al. [5] showed that the classification accuracy

for onion services was more than 98% with 50 onion services.
So we analyzed the data to find errors in the process of col-
lecting or analyzing it. Referring to the visualized fingerprints
with two popular websites in CUMUL [3]], we also used the
data we collected to extract CUMUL features and visualized
it. Only 8 data were found to follow a similar pattern. The
multiple classification was experimented with 8 onion services
in a closed-world setting. The accuracy using Random Forest is
90.40% with . Furthermore, experiments were also conducted
in open-world scenario. After training the data with less than
1 sec training time, a client accesses onion services in real-
time and tried to classify it. The experimental results of the
classification accuracy were almost the same as in previous
experimental environment (i.e., a closed-world setting). These
results indicate that we have the potential to classify onion
services in real-time. We still have the difficulty of improving
accuracy in many ways, such as eliminating the noise that
occurs when data is collected, initial common data, extracting
important features, finding the starting and ending points in
real-time, etc.

V. CONCLUSION

This pilot study showed whether real-time fingerprinting
attacks are possible in real-time scenarios. The experimental
results indicated that real-time fingerprinting attacks are prac-
tically possible if a few challenges are resolved. We are now
experimenting to classify more websites in real-time, and we
will show this result in future work.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Award No. OIA-1946391.

REFERENCES

[1] Philipp Winter, Anne Edmundson, Laura M Roberts, Agnieszka
Dutkowska-Zuk, Marshini Chetty, and Nick Feamster. How do tor users
interact with onion services? In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 411-428, 2018.

[2] How do onion services work? https://community.torproject.org/|
onion-services/overview/, Accessed on January 8, 2021.

[3] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, An-
dreas Zinnen, Martin Henze, and Klaus Wehrle. Website fingerprinting
at internet scale. In NDSS, 2016.

[4] Rebekah Overdorf, Mark Juarez, Gunes Acar, Rachel Greenstadt, and
Claudia Diaz. How unique is your. onion? an analysis of the fingerprint-
ability of tor onion services. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 2021—
2036, 2017.

[5] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas
Devadas. Circuit fingerprinting attacks: Passive deanonymization of tor
hidden services. In 24th {USENIX} Security Symposium ({USENIX}
Security 15), pages 287-302, 2015.

[6] Hyungseok Oh, Donghoon Kim, Won-gyum Kim, and Doosung Hwang.
Performance analysis of tor website fingerprinting over time using tree
ensemble models. In 2020 International Conference on Computational
Science and Computational Intelligence (CSCI 2020), 2020.

[7] Tor hidden service search. https://ahmia.fi. Accessed on January 8, 2021.

https://community.torproject.org/onion-services/overview/
https://community.torproject.org/onion-services/overview/
https://ahmia.fi

Poster: A Pilot Study on Real-Time Fingerprintin
for Tor Onion Services

Young-Ho Kim*, Loc Ho3, Won-gyum Kim2, Donghoon Kim3, Doosung Hwang'
Dankook University, 2AiDeep, 3Arkansas State University

ation

Website fingerprinting attacks has exposed a vulnerability in Tor
Network. Although fingerprinting attacks have shown high
success rates, their reality in the real world is still uncertain due
to several reasons:
U There are too many websites in the world.
U It is not an easy task to find the start point and the end point
of a specific traffic in real-time.
U Accessing onion services and general websites is different
due to the protocol.

An example of onion service

Threat Model

An adversary is able to observe the network traffic from a client
to the entry Tor router (entry guard) and the traffic from the exit
Tor router to a destination client to de-anonymize the connection.
Examples of adversaries may be Tor router owners, ISPs, and
local network administrators. We assume that an adversary
monitors the network traffic in the broadcast domain which is
between the client and the first router as in the figure below.

Tor Network

o

zzz.onion

XXX.onion

yyy.onion

Adversary

Data & Features

U 38 onion services and 50 general services
U Each service has 150 instances.
U Extracted features

Studied
CUMUL [8]

Feature No.
Cumulative packet size 104
Packet general information (44)
Cell sequence length (4)
Packet inter arrival time (27)
Burst information (24)
Cell ordering (18)
Concentration (8)

TABLE I: Feature Vectors

Oh et al. [6] 125

SYMPOSIUM

Approach

To find out the possibility of fingerprinting attacks in a real-time
environment, we implemented a framework.
U The framework can collect network traffic.
U The framework can filter the collected traffic to consist only
of Tor-related traffic.
U The frame can monitor the network traffic in real-time.

Time Source Destinaton Protocol
195 2.705596969 192.168.160.200 178.132.78.148 TCP
196 2.725418272 178.132.78.148 192.168.160.200 TLSv1.2
197 2.725463138 192.168.160.200 178.132.78.148 TLSv1.2
198 2.725548958 178.132.78.148 192.168.160.200 TCP
199 2.725592451 178.132.78.148 192.168.160.200 TLSv1.2

Time Source Destination Protocol
5813 51.131829546 192.168.160.200 8.8.8.8 ons.
5814 51.171641957 192.168.160.200 192.168.160.18 TCP
5815 51.189854784 8.8.8.8 192.168.160.200 DS
5816 51.198460397 8.8.8.8 192.168.160.200 DS
5817 51.199056944 192.168.160.200 211.231.99.17 TCP
5818 51.199125315 192.168.160.200 192.168.160.18 SSH
5819 51.199464286 192.168.160.10 192.168.160.200 TCP
5820 51.201063026 211.231.99.17 192.168.160.200 TCP
5821 51.201131629 192.168.160.200 211.231.99.17 TCP
5822 51.201310710 192.168.160.200 211.231.99.17 HTTP

200 2.725609157 192.168.160.200 178.132.78.148 TCP
201 2.725756735 178.132.78.148 192.168.160.200 TCP
202 2.725821897 178.132.78.148 192.168.160.200 TCP
203 2.725839488 192.168.160.200 178.132.78.148 TCP
204 2.726127931 178.132.78.148 192.168.160.200 TLSv1.2
205 2.726165653 192.168.160.200 178.132.78.148 TCP
206 2.726274939 178.132.78.148 192.168.160.200 TCP
207 2.726348282 178.132.78.148 192.168.160.200 TLSv1.2

Traffic filtering

5823 51.201472881 192.168.160.200 192.168.160.18 SSH
5824 51.201799223 192.168.160.10 192.168.160.200 TCP
5825 51.203301811 211.231.99.17 192.168.160.200 TCP
5826 51.203419444 211.231.99.17 192.168.160.200 HTTP
5827 51.203460518 192.168.160.200 211.231.99.17 TCP

208 2.726368751 192.168.160.200 178.132.78.148 TCP
209 2.726500047 178.132.78.148 192.168.160.200 TCP
210 2.726566635 178.132.78.148 192.168.160.200 TLSv1.2

Tor Traffic data

Raw traffic data

" s
vin ws2esise w o

—}w u 55 15 n
prescepscoon w0 o cttrode piracyepiicos 43)
e @ s emmia s P

oo @ S s s o)

Tor Node List (csv)

Crawling

Tor Node List

A part of the framework for filtering Tor traffic

The classification was conducted with XGBoost, Decision Tree,
and Random Forest with CUMUL and Oh et al.’s features
U The binary classification shows good accuracy with 96.81%.
U The 8 onion services have 90.40% accuracy.

Classification XGBoost Decision Tree Random Forest
Accuracy TT Accuracy Accuracy | TT
Binary classification for all data 0.9681 22474 0.9180 1.032 0.9423 | 04544
Label classification for 50 general websites 0.6841 27.7722 0.5272 | 0.7746 0.6591 | 0.4561
Label classification for 38 onion services 05135 18.3250 0.3928 | 0.5466 0.4598 | 0.3198
Label classification for all data 0.5682 | 159.8719 04359 | 2.1927 0.5362 | 1.2283
Label classification for 8 onion services 0.8914 0.9759 0.8434 | 0.0452 0.9040 | 0.0391

TABLE II: Classification Results (TT: Training Time (sec))

Onion Service URLs
bitstorej4kn3rw3.onion
brohoodahjzxriv7.onion
2ogmrlfzdthnwkez.onion
market7ow7cuw2hz.onion
blackmarthw3vp7a.onion
hupx37mjmbzzw3ja.onion
chemradvzlfageqc.onion
poisonj7bdow2nw7.onion

TABLE III: 8 Onion Services

Conclusion

U This pilot study showed that the real-time fingerprinting attacks
are practically possible if a few challenges are resolved.

U We are now experimenting to classify more websites in real-
time, and we will show this result in future work.

