
Poster: Evaluating Cascading-VPN Performance
Sebastian Pahl∗, Florian Adamsky∗, Daniel Kaiser†, and Thomas Engel†

∗Institute of Information Systems (iisys), Hof University of Applied Sciences, Germany
{name.surname}@hof-university.de
†University of Luxembourg, Luxembourg

{name.surname}@uni.lu

Abstract—Virtual Private Network (VPN) protocols provide
means for establishing secure inter-network links. However, they
do not provide anonymity. VPN providers can monitor both ends
of the connection. On the other hand, Onion Routing offers very
good anonymity properties but offers significantly less throughput
than typical VPN setups.

An interesting compromise is using several VPN servers
connected in series (cascading VPN). This paper evaluates the
throughput of two VPN protocols, WireGuard and OpenVPN, in
a cascading environment.

I. INTRODUCTION

Virtual Private Network (VPN) protocols such as OPEN-
VPN 1 and WIREGUARD [4] provide a secure tunnel to other
networks. When not fully controlling a VPN server, the VPN
provider and the data centre where the server is located have
to be trusted. Commercial VPN providers typically promise
not to record any user activity, however, this is often not the
case [1], [11]. Onion Routing [6] offers high anonymity, but
at the cost of a significant performance loss.

A compromise between performance and anonymity is
using several VPN servers in series, shown in Figure 1, which
we refer to as cascading VPN. Traffic is then routed through
multiple VPN servers. If the VPN servers are located in
separate jurisdictions, attacks against anonymity become even
more challenging to execute, limiting an attacker to more
sophisticated attacks such as timing attacks. A series of VPNs
also helps to bypass censorship infrastructure.

The contributions of this paper are (1) a preliminary eval-
uation of the performance of WIREGUARD and OPENVPN
when used in a cascading setup, and (2) a fair performance
comparison of these VPN protocols on modern hardware
featuring extensions such as Advanced Encryption Standard
New Instructions (AES-NI), confirming results of [9].

II. EXPERIMENTAL SETUP

For our experiments, we established the three-hop VPN
setup shown in Figure 1 using Linux network namespaces.
It comprises five namespaces, two for the endpoints (R1 and
R2) and three for the nodes (VPN1–VPN3). Each of the
four connections features a VPN tunnel. All virtual Ethernet
interfaces are limited to a maximum throughput of 1 Gbit/s.

We introduce realistic latency and packet loss correspond-
ing to intra-European 1 Gbit/s Internet connections based on
guarantees from Verizon [10]: 30 ms latency and a packet loss

1https://openvpn.net/

R1
VPN1 VPN2 VPN3

R2

µ µ µ µ

Fig. 1. Architecture of our virtualised experimental cascading VPN setup. All
green connections are encrypted network tunnels. All nodes are in separate
network namespaces.

of 0.5 %. Further, we introduce 1 ms of jitter. Latency values
are chosen from a normal distribution with a 25 % correlation,
accounting for the fact that latency is not entirely random. We
will refer to these settings as Internet conditions.

We ran our experiments on a desktop computer with an
AMD Ryzen 7 3700X 8-Core Processor, 16 GB of RAM, and
Kernel 5.10.7-3-MANJARO. Our experiments did neither fully
utilize the cores nor the memory, so we are neither processor
nor memory limited. We tested WIREGUARD v1.0.20200827
and OPENVPN 2.5.0, with local and Internet conditions,
respectively. We did not evaluate Internet Protocol Security
(IPsec) since it has a bad reputation based on its complex-
ity [5].

We use OPENVPN in Transport Layer Security (TLS)
mode, with cipher AES-256-GCM and UDP as transport
protocol. To measure throughput we use iperf3 3.9, which
runs in client mode on R1 and server mode on R2. Besides our
cascading setup, we also tested a simple single-hop (2 tunnels)
setup for comparison. Our scripts are available on GitLab2 and
allow reenacting our experiments.

III. EXPERIMENTAL RESULTS

The results of our experiments with local and Internet con-
ditions, respectively, are shown in Figure 2. The experiments
ran for 10 min. We took intermediate values for every second.

The results are as follows: WIREGUARD performs 39.6 %
better than OPENVPN with TCP, partly because WIRE-
GUARD runs in the Kernel while OPENVPN has a user space
TUN/TAP implementation, and partly because they handle
replay windows differently. Generally, UDP performs better
than TCP under Internet conditions, which is expected as
UDP is not effected by latency. The higher variance of the
throughput of TCP can be explained by the randomness in
latency and packet loss leading to variance in the occurrence
of out-of-order packets and retransmits. The variance is es-
pecially high if TCP and the VPN protocols’ replay windows

2https://gitlab.com/spahl/eval-serial-vpn

LDU LWU LOU LDT LWT LOT IDU IWU IOU IDT IWT IOT
0

100

200

300

400

500

600

700

800

900

1000
M

b
it
/
s

(D)irect

(W)ireGuard

(O)penVPN

(U)DP

(T)CP

Fig. 2. Three hop: Throughput results where data was sent from R1 to R2. The
first letter stands for (I)nternet conditions or (L)ocal conditions. The second
letter describes the protocol: (D)irect, (W)ireGuard, or (O)penVPN. The third
letter stands for (U)DP or (T)CP.

LDU LWU LOU LDT LWT LOT IDU IWU IOU IDT IWT IOT
0

100

200

300

400

500

600

700

800

900

1000

M
b
it
/
s

(D)irect

(W)ireGuard

(O)penVPN

(U)DP

(T)CP

Fig. 3. Single hop: Throughput results where data was sent from R1 to
R2. The first letter stands for (I)nternet conditions or (L)ocal conditions. The
second letter describes the protocol: (D)irect, (W)ireGuard, or (O)penVPN.
The third letter stands for (U)DP or (T)CP.

are used together. Local conditions perform better than Internet
conditions, which is expected as packet loss and latency reduce
throughput for all TCP connections. Further, under local con-
ditions, OPENVPN slightly outperforms WIREGUARD, which
is likely an artefact of the optimal conditions.

Comparing the median throughput of the three and the sin-
gle hop experiments under Internet conditions, only the OPEN-
VPN throughput increases significantly. Otherwise, there is no
significant change in throughput as shown in Figure 3.

IV. RELATED WORK

We are not aware of related work covering modern VPN
performance tests used in a cascading configuration to the
best of our knowledge. Our experimental setup described in
Section II is close to the two-hop SOCKS5 implementation by
Mullvad [7], which means providers offer such a solution off
the shelf. Mullvad also offers a two-hop WIREGUARD setup
were packets are end-to-end encrypted [8].

Donenfeld [4] evaluated the performance of OPENVPN
versus WIREGUARD in a single VPN setup. His results show

a 4-times performance gain of WIREGUARD over OPENVPN.
A possible explanation for OPENVPN’s poor performance in
Donenfeld’s evaluation is not utilizing the AES-NI extensions
in conjunction with the worse performing AES-CBC mode
of operation. We consider our results more practical relevant,
since modern CISC-CPUs support AES-NI. The results of
Osswald et al. [9] match ours in this respect; the added
contribution of our paper is the investigation of a cascading
setup.

Tor [3], the most widely used anonymity network, provides
much stronger anonymity properties compared to our setup.
However, Tor suffers from poor performance, an issue that
has been researched extensively [2].

V. FUTURE WORK AND CONCLUSION

In this paper, we compared the performance of WIRE-
GUARD and OPENVPN, and evaluated both protocols in a
cascading environment. We measured the percentage change
of the median throughput of WIREGUARD against OPENVPN
with UDP and TCP in a single and three hop configuration
under Internet conditions. Our preliminary results show that
WIREGUARD outperforms OPENVPN in cascading environ-
ments.

In future work, we would like to test these protocols in real
Internet conditions. Additionally, we would like to integrate
Onion Routing capabilities into VPN protocols, which we be-
lieve to result in the best compromise between anonymity and
network performance. This will improve censorship resistance,
security, and privacy.

REFERENCES

[1] Report: No-Log VPNs Reveal Users’ Personal Data and Logs. [Online].
Available: https://www.vpnmentor.com/blog/report-free-vpns-leak/

[2] M. AlSabah and I. Goldberg, “Performance and security improvements
for tor: A survey,” ACM Computing Surveys (CSUR), vol. 49, no. 2, pp.
1–36, 2016.

[3] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
Generation Onion Router:,” Defense Technical Information Center, Tech.
Rep., 2004. [Online]. Available: http://www.dtic.mil/docs/citations/
ADA465464

[4] J. A. Donenfeld, “WireGuard: Next generation kernel network
tunnel,” in Proceedings 2017 Network and Distributed System
Security Symposium. Internet Society, 2017. [Online]. Available:
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
wireguard-next-generation-kernel-network-tunnel/

[5] N. Ferguson and B. Schneier, “A Cryptographic Evaluation of IPsec,”
p. 28, 1999.

[6] D. Goldschlag, M. Reed, and P. Syverson, “Onion Routing for Anony-
mous and Private Internet Connections,” Communications of the ACM,
vol. 42, pp. 39–41, 1999.

[7] Mullvad. (2021) Different entry/exit node using WireGuard and
SOCKS5 proxy. [Online]. Available: https://mullvad.net/en/help/
different-entryexit-node-using-wireguard-and-socks5-proxy

[8] ——. (2021) Multihop with WireGuard. [Online]. Available: https:
//mullvad.net/de/help/multihop-wireguard

[9] L. Osswald, M. Haeberle, and M. Menth, “Performance Comparison of
VPN Solutions,” in Proceedings of the 1st ITG Workshop on IT Security
(ITSec). Universitätsbibliothek Tübingen, 2020.

[10] verizon. (2021) Monthly IP Latency Data — Verizon Enterprise
Solutions. [Online]. Available: https://enterprise.verizon.com/terms/
latency

[11] J. Youngren. Hidden VPN Owners Unveiled: 101 VPNs Run
by 23 Companies. [Online]. Available: https://vpnpro.com/blog/
hidden-vpn-owners-unveiled-97-vpns-23-companies/

2

Evaluating Cascading-VPN Performance

Abstract

Virtual Private Network (VPN) protocols provide means for establishing secure inter-network links. However, they do not provide anonymity. VPN providers
can monitor both ends of the connection. On the other hand, Onion Routing offers very good anonymity properties but offers significantly less throughput than
typical VPN setups.
An interesting compromise is using several VPN servers connected in series (cascading VPN). This paper evaluates the throughput of two VPN protocols,
WireGuard and OpenVPN, in a cascading environment.

Motivation
Onion-Routing offers very good anonymity at the cost of performance
Cascading VPN servers provide a good compromise between anonymity
and performance

Cascading VPN
Interesting compromise between anonymity and performance
If VPN servers are located in separate jurisdictions, attacks against
anonymity become even more difficult to execute

Architecture

R1
VPN1 VPN2 VPN3

R2

   

Figure 1: Architecture of our virtualised experimental setup. All green connections are
encrypted network tunnels. All nodes are in separate network namespaces.

Experimental Setup
Figure 1 contains five Linux network namespaces including two
endpoints (R1 and R2) and three VPN nodes (VPN1–VPN3)
All virtual Ethernet interfaces are limited to a maximum throughput of
1 Gbit/s
Evaluated WireGuard v1.0.20200827 and OpenVPN 2.5.0 in
AES-256-GCM mode with local and Internet conditions, respectively
Simulate Internet conditions with 30 ms latency with a jitter of 1 ms
and a packet loss of 0.5 %

Preliminary Results for Single-Hop

LDU LWU LOU LDT LWT LOT IDU IWU IOU IDT IWT IOT
0

100

200

300

400

500

600

700

800

900

1000

M
b
it
/s

(D)irect

(W)ireGuard

(O)penVPN

(U)DP

(T)CP

Figure 2: Single hop: Throughput results where data was sent from R1 to R2. The first
letter stands for (I)nternet conditions or (L)ocal conditions. The second letter describes
the protocol: (D)irect, (W)ireGuard, or (O)penVPN. The third letter stands for (U)DP or
(T)CP.

Preliminary Results for Three-Hop

LDU LWU LOU LDT LWT LOT IDU IWU IOU IDT IWT IOT
0

100

200

300

400

500

600

700

800

900

1000

M
b
it
/
s

(D)irect

(W)ireGuard

(O)penVPN

(U)DP

(T)CP

Figure 3: Three hop: Throughput results where data was sent from R1 to R2. The first
letter stands for (I)nternet conditions or (L)ocal conditions. The second letter describes
the protocol: (D)irect, (W)ireGuard, or (O)penVPN. The third letter stands for (U)DP or
(T)CP.

Experimental Results
Experiments run for 10 min and we took intermediate values for every
second
UDP is more performant than TCP under Internet conditions
Wireguard performs 39.6 % better than OpenVPN, with TCP under
Internet conditions

WireGuard runs in the Linux Kernel
OpenVPN runs as a TUN/TAP device in user-space
OpenVPN and WireGuard handle replay windows differently

Local conditions perform better than Internet conditions

Conclusion
Performance evaluation of WireGuard and OpenVPN in a cascading
environment
Wireguard performs 39.6 % better than OpenVPN in our preliminary
results

Future Work
Integrate Onion Routing in WireGuard
Evaluate VPN protocols in real Internet conditions and compare it with
the virtualised experiments

Sebastian Pahl1, Florian Adamsky1, Daniel Kaiser2, and Thomas Engel2 | 1{name.surname}@hof-university.de, 2{name.surname}@.uni.lu | 21–25 February 2021 | https://www.iisys.de/en/

Evaluating Cascading-VPN Performance
Sebastian Pahl1, Florian Adamsky1, Daniel Kaiser2, and Thomas Engel2
1Institute of Information Systems (iisys), Hof University of Applied Sciences, Germany
2Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Luxembourg

