Poster: OS-Aware Vulnerability Prioritization via Differential
Severity Analysis

PUBLISHED PAPER

Title: OS-Aware Vulnerability Prioritization via Differential Severity Analysis
Authors:Qiushi Wu, Yue Xiao, Kangjie Lu

Email: {xiaoyue}@indiana.edu, {wu000273 kjlu} @umn.edu

Date: August 10-12, 2022

Venue: Proceedings of the 2022 USENIX Security Symposium(USENIX’22)

ABSTRACT

The Linux kernel is quickly evolving and extensively customized. This results in thousands of versions and
derivatives. Unfortunately, the Linux kernel is quite vulnerable. Each year, thousands of bugs are reported, and
hundreds of them are severe vulnerabilities. Given the limited resources, the kernel maintainers have to prioritize
patching the more severe vulnerabilities. In practice, the Common Vulnerability Scoring System (CVSS) [1] has
become the standard for characterizing vulnerability severity. However, a fundamental problem exists when CVSS
meets Linux—it is used in a “one for all” manner. The severity of a Linux vulnerability is assessed for only the
mainstream Linux, and all affected versions and derivatives will simply honor and reuse the CVSS score. Such an
undistinguished CVSS usage results in underestimation or overestimation of severity, which further results in
delayed and ignored patching or wastes of the precious resources. In this paper, we propose OS-aware vulnerability
prioritization (namelyDIFFCVSS), which employs differential severity analysis for vulnerabilities. Specifically,
given a severity-assessed vulnerability, as well as the mainstream version and a target version of Linux, DIFFCVSS
employs multiple new techniques based on static program analysis and natural lan-guage processing to differentially
identify whether the vulnerability manifests a higher or lower severity in the target version. A unique strength of
this approach is that it transforms the challenging and laborious CVSS calculation into automatable differential
analysis. We implement DIFFCVSS and apply it to the mainstream Linux and downstream Android systems. The
evaluation and user-study results show that DIFFCVSS is able to precisely perform the differential severity analysis,
and offers a precise and effective way to identify vulnerabilities that deserve a severity reevaluation.

w

"INDIANA UNIVERSITY

AR

Poster: OS-Aware Vulnerability Prioritization via Differential

Severity Analysis

Qiushi Wu*2, Yue Xiao*!, Kangjie Lu2
(* co-first authors)

2
UNIVERSITY OF MINNESOTA

Abstract

The severity of a Linux vulnerability is assessed for only the mainstream Linux, and most affected versions and derivatives will
simply honor and reuse the CVSS score. Such an undistinguished CVSS usage results in underestimation or overestimation of
severity, which further results in delayed and ignored patching or wastes of the precious resources. In this paper, we propose
OS-aware vulnerability prioritization (hamely DIFFCVSS), which employs differential severity analysis for vulnerabilities.

Introduction

A fundamental problem arises when CVSS meets Linux — it is used in an “one for all” manner. When a bug reporter requests a
CVE for a vulnerability, the CVE maintainers assign a (single) CVSS score for it, typically based on the mainstream Linux. All
affected versions and some derivatives will then simply honor the assigned CVSS score for prioritizing their patches. This is
understandable because assigning the CVSS score is quite laborious and requires expertise. Maintainers of small derivatives may
not afford the reevaluation for all of their system. However, this results in both severity overestimation which wastes maintenance
resources and severity underestimation which delays the patching of critical vulnerabilities and incurs critical threats.

To address it, we present DIFFCVSS, a system that can automatically and precisely determine if a vulnerability will have a higher
or lower severity in a different OS. DIFFCVSS incorporates multiple new techniques, such as automatically identifying the call-
chain for a vulnerability and mapping kernel functions to CVSS metrics, to ensure precision and effectiveness.

3. Attention
Layer

Methodology

2.BILSTM
Layer

o Mapping Metrics to Functions
o Recognize Vulnerability Artifact
o Identify Vulnerability Call-Chain e
o Differential Severity Analysis

Evaluation

Q1: How efficient is DIFFCVSS in re

Q2: How accurate is DIFFCVSS in re-evaluating vulnerability?
Q3: How usable is DIFFCVSS in practice?

[-]] [}

s P e I

4. softmax Layer

\®
o s [o N e I oo

Figure 3: BILSTM+Attention model

ducing maintainer workload?

o
2
2

Effectiveness Precision

Necessity

Satisfaction

H Using DffCVSS to
i| Training process Sufomaticaly.ve-
H * evaluate 4

H vulnerabilities

procedure
Student

Post Questionaire &
Interview

3

Post Questionaire &
Interview

: Using DiffCVSS to
2% | Manually re-evaluate automatically re-
2:| 2 vulnerabilities evaluate 2
@ vulnerabilities

o DIFFCVSS can save 91.98% of time, reduce 76.7% of workload

e DIFFCVSS achieves an accuracy of
90.6% in Severity-level on average.

89.53% in Metric-level and

M S A
Manual re-evaluation time =>4l WA 4.5h
(M=8)
Evaluation time with help of tool 21.7m 23.8m 23.1m
Reduced workload with help of tool 75.1% 78.3% 76.7%
Metric-level Accuracy 88.75% | 90.31% | 89.53%
Severity-level Accuracy 90% 91.2% 90.6%

Table 9: User study evaluation results. M=maintainer, S=student,

A=average

4 Differential Severity Analysis % Patch prioitzation

*Vunerabilty-path difference '—-{n.«evem exploitability Metrics!
(Vnerablly parh diforence |

differential analysis

1 Metric2function Mapping
—

Model |[Functions to metrics mapping
Function descriptions —

x

Vulnerability-rel; fune n I -
uinerability-related functions __Lf; - "\ 1nerability call-chain|-Similrity caculatiom>{Android vulnerability call-chain)
x

Fiter

Vulnerable component-related info: | =
—Vulnerable component-related info [6 atg inux call-chains Generate Android call-chains
' x

Call raph anaiysis

Compile Android kernel

i — Call graph analysis
[PV dhsaNcR ok Compilation-related info !
»{ " Compile Linux kernel

3 Vulnerability Call-Chain Identification

2 Vulnerability artifact Recognition

Figure 1: An overview of DIFFCVSS.

Findings

e 110 vulnerabilities that have different severity across
Android and Linux.

e 18 of them have a higher severity and should be
reevaluated per OS to avoid delayed patching.

vulnerabilities
AV [AC | PR | UI
More severe in Android 13 11 35 2
More severe in Linux 63 57 36 75
Similar severe in Linux and Android 51 59 56 50

Table 7: Cross-OS vulnerability exploitability metric difference
between Linux and Android.

Conclusions

® The “one for all” strategy results in both severity
overestimation and severity underestimation.

e We purpose a system that can automatically and precisely
determine if a vulnerability will have a higher or lower
severity in a different OS.

