
Detecting Node.js prototype pollution vulnerabilities via

object lookup analysis

Abstract

Prototype pollution is a type of vulnerability specific to prototype-based languages, such as
JavaScript, which allows an adversary to pollute a base object’s property, leading to a further
consequence such as Denial of Service (DoS), arbitrary code execution, and session fixation.
On one hand, the only prior work in detecting prototype pollution adopts dynamic analysis
to fuzz package inputs, which inevitably has code coverage issues in triggering some deeply
embedded vulnerabilities. On the other hand, it is challenging to apply state-of-the-art static
analysis in detecting prototype pollution because of the involvement of prototype chains and
fine-grained object relations including built-in ones.

In this paper, we propose a flow-, context-, and branch-sensitive static taint analysis tool,
called ObjLupAnsys, to detect prototype pollution vulnerabilities. The key of ObjLupAnsys
is a so-called object lookup analysis, which gradually expands the source and sink objects into
big clusters with a complex inner structure by performing targeted object lookups in both
clusters so that a system built-in function can be redefined. Specifically, at the source cluster,
ObjLupAnsys proactively creates new object properties based on how the target program uses
the initial source object; at the sink cluster, ObjLupAnsys assigns property values in object
lookups to decrease the number of object lookups to reach a system built-in function.

We implemented an open-source tool and applied it for the detection of prototype pol-
lution among Node.js packages. Our evaluation shows that ObjLupAnsys finds 61 zero-day,
previously-unknown, exploitable vulnerabilities as opposed to 18 by the state-of-the-art dy-
namic fuzzing tool and three by a state-of-the-art static analysis tool that is modified to detect
prototype pollution. To date, 11 vulnerable Node.js packages are assigned with CVE numbers
and five have already been patched by their developers. In addition, ObjLupAnsys also discov-
ered seven applications or packages including a real-world, online website, which are indirectly
vulnerable due to the inclusion of vulnerable packages found by ObjLupAnsys.

Bibliography

Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. Detecting node.js prototype pollution
vulnerabilities via object lookup analysis. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2021, page 268–279, New York, NY, USA, 2021. Association for Computing
Machinery.

Link and DOI

Link: https://dl.acm.org/doi/10.1145/3468264.3468542
DOI: 10.5281/zenodo.5092777

1

Detecting Node.js Prototype Pollution Vulnerabilities via
Object Lookup Analysis

Song Li, Mingqing Kang, Jianwei Hou, Yinzhi Cao
Johns Hopkins University | Whiting School of Engineering | Baltimore, MD

We design and develop a flow-, context-, and
branch-sensitive static taint analysis tool, called
ObjLupAnsys, to detect prototype pollution
vulnerabilities in Node.JS packages

Our contributions
1) We design a novel object lookup analysis and

proposed a graph structure, called Object
Property Graph (OPG), to support such an
analysis in detecting prototype pollution
vulnerabilities

2) We implement an open-source framework, called
ObjLupAnsys, to generate OPG, perform object
lookup analysis, and detect prototype pollutions

3) ObjLupAnsys found 61 exploitable zero-day
vulnerabilities and also detected seven indirectly-
vulnerable ones due to inclusion of vulnerable
packages (11 of them being assigned with CVE
identifiers so far).

Introduction

Motivating Example

ResultsMethods Results

AST

Object Property
Graph (OPG)

Vuln

node

OPG node/
edges constraints

next AST Node following control-flow

Step 1: AST Node
Interpretation

Abstract
Interpretation

…

Taint Propagation

Constraint Solver

Step 2: Taint analysis

Source cluster
expansion

Step 3: Object lookup
analysis

Sink cluster
expansion

edges
constraints

built-in
redefined

Name
Real-world NPM Packages Legacy CVE Packages

(52 packages in total)
TP FP TP FN

PPFuzzer 18 0 32 20
PPNodest 3 3 6 46
ObjLupAnsys
(branch-insensitive)

38 14 28 24

ObjLupAnsys
(branch-sensitive)

61 (confirmed)
(11 CVEs)

20 40 12

TP/FP/FN of ObjLupAnsys and the existing tools

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 fi

ni
sh

ed
 p

ac
ka

ge
s

[%
]

Time [s]

Branch-sensitive ObjLupAnsys
Branch-insensitive ObjLupAnsys

PPNodest

Performance

 0

 10

 20

 30

 40

 50

 60

 70

0
0-1

0
10

-20
20

-30
30

-40
40

-50
50

-60
60

-70
70

-80
80

-90

90
-10

0

P
er

ce
nt

ag
e

of
 P

ac
ka

ge
s[

%
]

Coverage[%]

PPFuzzer
ObjLupAnsys

PPNodest

Code Coverage

False Positive Rate: 20 / (61 + 20) = 24.6%
False Negative Rate: 12 / 52 = 23.0%

Indirectly-vulnerable Applications/Packages
Vulnerable Package Indirectly-vulnerable Applications/Packages

undefsafe http://jsonbin.org

dset design-system-utils (1.5.0), weoptions (0.0.11), quaff (4.2.0)

just-safe-set magasin (0.2.2)

object-set node-architect (0.0.15)

simple-odata-server the default server for the package

Finishing 90%/85% (branch-insensitive/-sensitive) of the packages in 30s
Median code coverage: 71.9%. (28.0% for PPFuzzer and 19.0% for PPNodest)

Flowchart for Object Lookup Analysis

A selective list of zero-day vulnerabilities found by ObjLupAnsys

Vulnerable Package Weekly Download Vulnerable Package Weekly Download

undefsafe 2,532,740 dot-object 109,419

append-field 1,301,874 fastest-validator 28,811

graphql-anywhere 386,530 eivindfjeldstad-dot 11,511

aws-xray-sdk-core 187,901 mathjax-full 4,621

cli-table-redemption 178,822 paypal-adaptive 1,890

Simplified Object Property Graph for the Motivating Example

����	�����	��
�

��������� ���������

��������

�
�

���������

��������	

���������

��������
��
�������
��

����
��

�	����

�����������������

������������

��
����������������

������������������
��������
�����
�����
��
������������������
��������
�����
�����
��

�
����������
������
�
�������������	�
�

�����
���

��
����

����������
��
�������������������

�

�

�
��

	�
��
��
���

�

��	���������
� �

�������	�������������������������

��������������
������

�
���
���
�
�������	��

�����
�
�������	��

�����

������
��������
�����
�

�

�

System Architecture

The paper was published to ESEC/FSE 2021

