
Poster: Comparing Neural Network Solutions in
Cryptographic API Completion

Ya Xiao⇤, Salman Ahmed⇤, Wenjia Song⇤, Bimal Viswanath⇤, Na Meng⇤, Patrick McDaniel†,
Xinyang Ge‡, and Danfeng (Daphne) Yao⇤

Department of Computer Science, Virginia Tech, Blacksburg, VA⇤

Department of Computer Science and Engineering, Penn State University, State College, PA†

Microsoft Research, Redmond, WA‡

{yax99,ahmedms,wenjia7,vbimal,nm8247,danfeng}@vt.edu, mcdaniel@cse.psu.edu, aegiryy@gmail.com

Abstract—With the strong interest in neural network based
software engineering approaches and a plethora of proposed
solutions, we point out the need for measurement studies in
this space. Focusing on a specific application scenario, Java
cryptographic API code completion, we outline several potential
measurement problems, ranging from embedding design and
evaluation, to methodology development of models, and to metrics
and benchmarks.

I. INTRODUCTION

The attractive vision of automatic code engineering, e.g.,
repair [5], [8] and generation [11], [1], has motivated a line
of neural networks based machine learning solutions [4], [6].
Given the tremendous success in natural language processing,
it is conceivable that deep learning has the potential to revo-
lutionize how code is generalized, transformed, and patched.

In this project, we focus on a specific application sce-
nario, Cryptographic API completion. Cryptographic APIs
are reported to be error-prone and result in many security
vulnerabilities that seriously threaten software security [10].
We systematically measured the accuracy impacts of the state-
of-the-art neural network solutions for cryptographic API
completion [12]. The neural network solutions include two
key steps, representing programs as numeric vectors, and
training a neural network on these vectors. Therefore, our
experiments compare different choices for the vectorization,
aka code embedding, and the neural networks. We further
performed in-depth manual analysis to uncover the unreported
challenges from programming language-specific properties.
Comparisons of program analysis guided embeddings. For
neural network based approaches, programs need to be first
represented as vectors to feed into neural networks. Code em-
bedding refers to the process of automatically learning the low-
dimensional vector representations of program elements [2],
[7]. Intuitively, it is about how to meaningfully express code in
vectors. This transformation is important, as subsequent tasks
are performed on the embeddings of code.

Despite recent progress [2], [7], [4], there has not been any
systematic investigation of various code embedding designs
or comprehensive evaluation in terms of their security and
accuracy capabilities. Such side-by-side comparisons would
help better design neural network based methodologies and
harness their power for code embedding approaches.

We conducted a comprehensive comparison to learn the
impacts of program analysis guidance on the quality of
code embedding. By applying program analysis preprocessing,
the code sequence can be transformed into more structural
representations. These structural representations can provide
more meaningful context information for code embedding. As
shown in Fig. 1, (a) shows the API sequences extracted from
byte code while (b) and (c) display API sequences of program
slices and API dependence graphs that are obtained by pro-
gram analysis, respectively. We apply skip-gram embedding
model [9] on the byte code, slices, and dependence paths
extracted from the API dependence graphs, respectively, to
produce three types of API embeddings, byte2vec, slice2vec,
and dep2vec. These embeddings, as well as a basic one-hot
vector baseline, are used as the inputs when training LSTM
based models for cryptographic API completion tasks.

TABLE I: Accuracy of next API Recommendation.

LSTM
Units

Byte Code Slices Dependence Paths
1-hot byte2vec 1-hot slice2vec 1-hot dep2vec

64 49.78% 48.31% 66.39% 78.91% 86.00% 86.33%
128 53.01% 53.52% 68.51% 80.57% 84.81% 87.75%
256 54.91% 54.59% 70.35% 82.26% 84.57% 91.07%
512 55.80% 55.96% 71.78% 83.35% 86.34 % 92.04%

Table I shows the accuracy of the cryptographic API
completion task trained with different embedding settings
and LSTM models. We have three comparison groups. First,
we compare three types of embeddings, byte2vec, slice2vec,
and dep2vec, which are trained on different program analy-
sis preprocessed corpora, byte code, slices, and dependence
paths, respectively. Second, we also compare the embedding
option with its one-hot baseline on each type of code corpus.
Moreover, we compare different sizes of LSTM models in this
task. An important observation is that program analysis brings
significant benefits, improving the accuracy of cryptographic
API completion from 55.96% (with byte2vec) to 92.04% (with
dep2vec). We also found that embedding options, slice2vec and
dep2vec significantly improve the accuracies by 12% and 6%,
compared with their one-hot baselines.

Analysis on programming language-specific challenges. Be-
sides program analysis guided embedding, the neural network
design is another important aspect of the API completion
solution. Although many neural language models (e.g. LSTM,



(a) Two byte code Sequences (b) Slice sequence (c) API dependence graph

Fig. 1: Sequences from slice and dependence graph
BERT [3]) achieved great success for natural languages, we
observe that they are still insufficient in the cryptograhpic
API completion experiments. Our manual analysis reveals
that they have difficulties in dealing with program specific
properties. Programming language-specific challenges need
to be identified and well addressed when we design neural
network models for API completion.

Fig. 2: Examples illustrating the challenge of learning global
dependencies and how we fix them.

Fig. 3: Examples illustrating the challenge of learning multi-
path dependencies and how we fix them.

Fig. 2 and Fig. 3 illustrate two unreported programming
language-specific challenges from the global dependencies and
the multi-path dependencies identified based on our case stud-
ies. As shown in Fig. 2, we noticed that an API completion can
be decided by an early dependence far away from the current
location, referred to as global dependencies. While global
dependencies can be captured by program analysis and fed into
the neural network, they are very likely to be neglected when
appearing in a less-frequent API pattern. Neural networks
tend to recognize the shorter but more frequent subsequences,
instead of the longer but less frequent ones. Moreover, Fig. 3
(a) demonstrates that two functionally similar APIs that share
some identical dependence paths. A sequential model that only
relies on a single path often fails to distinguish them. To fix
it, we design a model relying on multiple paths.
Comparisons of specialized neural network designs. We
present a new neural network Multi-HyLSTM to overcome
the programming language-specific challenges. It includes two

important features, a global dependence enhancing learning
module HyLSTM and a new multi-path architecture. We
conducted an ablation study to compare Multi-HyLSTM with
two intermediate solutions, HyLSTM, and Multi-BERT, which
remove or replace one of our designs. We further compare
our model with BERT and LSTM in the same task. The
experiments show that our Multi-HyLSTM achieves the best
accuracy of cryptographic API completion at 98.99%, showing
a boost compared with BERT (92.49%) and LSTM (90.62%).

ACKNOWLEDGMENT

This work has been partly supported by the National Science
Foundation under Grant No. CNS-1929701.

REFERENCES

[1] U. Alon, R. Sadaka, O. Levy, and E. Yahav, “Structural language models
of code,” in International Conference on Machine Learning. PMLR,
2020, pp. 245–256.

[2] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, p. 40, 2019.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[4] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[5] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, vol. 62, no. 12, pp. 56–65, 2019.

[6] J. Harer, O. Ozdemir, T. Lazovich, C. Reale, R. Russell, L. Kim et al.,
“Learning to repair software vulnerabilities with generative adversarial
networks,” in 32nd Conference on Neural Information Processing Sys-
tems (NeurIPS 2018), Montréal, Canada., 2018.

[7] J. Henkel, S. K. Lahiri, B. Liblit, and T. Reps, “Code vectors: under-
standing programs through embedded abstracted symbolic traces,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2018, pp. 163–174.

[8] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2016, pp. 298–
312.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[10] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. D. Yao, “CryptoGuard: High precision de-
tection of cryptographic vulnerabilities in massive-sized java projects,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2019, pp. 2455–2472.

[11] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, 2014, pp.
419–428.

[12] Y. Xiao, S. Ahmed, W. Song, X. Ge, B. Viswanath, and D. Yao, “Embed-
ding code contexts for cryptographic api suggestion: New methodologies
and comparisons,” arXiv preprint arXiv:2103.08747, 2021.

2

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2103.08747


Yao Group on Cyber Security
http://yaogroup.cs.vt.edu

Ya Xiao1, Salman Ahmed1, Wenjia Song1, Bimal Viswanath1, Na Meng1, Patrick McDaniel2, Xinyang Ge3, Danfeng (Daphne) Yao1

1Department of Computer Science, Virginia Tech
2Department of Computer Science and Engineering, Penn State University

3Microsoft Research
{yax99, ahmedms,wenjia7,vbimal, nm8247, danfeng}@vt.edu, mcdaniel@cse.psu.edu, aegiryy@gmail.com

Our ongoing work is to publish an API completion plugin based on our program analysis guided embedding and neural
network design. We are also preparing our cryptographic API dataset as an API completion evaluating benchmark.

Comparing Neural Network solutions in Cryptographic API Completion[1]

1. Motivation

[1] Ya Xiao, Salman Ahmed, Wenjia Song, Xinyang Ge, Bimal Viswanath, Danfeng (Daphne) Yao. Embedding Code Contexts for 
Cryptographic API Suggestion: New Methodologies and Comparisons. arXiv:2103.08747.

Table 1: Accuracy comparison between different embedding settings in
cryptographic API Completion.

What are our research questions of the comparisons?
• RQ1: How does program analysis guidance influence

code embedding?
• RQ2: What are the programming language specific

challenges?

• RQ3: How well do our neural network design choices
in cryptographic API completion?

3. Program Analysis Guided Embedding Approaches

• State-of-the-art API Completion is
insufficient.

• Systematical Comparisons for
neural network solutions are
necessary.

• Programming language specific
challenges need to be identified.

Ongoing Work: Publishing an API Completion Plugin and an Evaluation Benchmark

Table 2: Accuracy comparison between our neural network (Multi-HySTLM)
and its intermediate baselines in cryptographic API completion. A, K and U

stand for accuracy for all cases, known cases, and unknown cases.

• With program analysis, dep2vec improves the accuracy by 
36.10% on average, compared with byte2vec.

• With slice2vec, the accuracy is improved by 12.02% on average
compared with its one-hot baseline.

• With dep2vec, the accuracy is improved by 3.97% on average
compared with one-hot vectors.

Global dependence challenge

Multi-path dependence challenge

• Our design, Multi-HyLSTM achieves the best accuracy at 98.99%.

• Outperform the state-of-the-art, BERT, by 6.5% accuracy
improvement.

2. Research Questions

5. Comprehensive Comparisons

• We obtain byte code sequences,
program slices, and API dependence
graphs by applying program analysis.

• We train 3 types of code embeddings,
byte2vec, slice2vec, and dep2vec
respectively.

4. Programming Language Specific 
Challenges and Our Designs


	Introduction
	References

