
Poster: Semantic-Informed Driver Fuzzing Without
Both the Hardware Devices and the Emulators

Wenjia Zhao*
Xi’an Jiaotong University
University of Minnesota

Kangjie Lu
University of Minnesota

Qiushi Wu
University of Minnesota

Yong Qi
Xi’an Jiaotong University

Abstract—Device drivers are security-critical. In monolithic
kernels like Linux, there are hundreds of thousands of drivers
which run in the same privilege as the core kernel. Consequently, a
bug in a driver can compromise the whole system. More critically,
drivers are particularly buggy. First, drivers receive complex
and untrusted inputs from not only the user space but also the
hardware. Second, the driver code can be developed by less-
experienced third parties, and is less tested because running a
driver requires the corresponding hardware device or the emulator.
Therefore, existing studies show that drivers tend to have a higher
bug density and have become a major security threat. Existing
testing techniques have to focus the fuzzing on a limited number
of drivers that have the corresponding devices or the emulators,
thus cannot scale.

We propose a device-free driver fuzzing system, DR. FUZZ, that
does not require hardware devices to fuzz-test drivers. The core
of DR. FUZZ is a semantic-informed mechanism that efficiently
generates inputs to properly construct relevant data structures
to pass the “validation chain” in driving initialization, which
enables subsequent device-free driver fuzzing. The elimination of
the needs for the hardware devices and the emulators removes the
bottleneck in driver testing. The semantic-informed mechanism
incorporates multiple new techniques to make device-free driver
fuzzing practical: inferring valid input values for passing the
validation chain in initialization, inferring the temporal usage
order of input bytes to minimize mutation space, and employing
error states as a feedback to direct the fuzzing going through
the validation chain. Moreover, the semantic-informed mechanism
is generic; we can also instruct it to generate semi-malformed
inputs for a higher code coverage. We evaluate DR. FUZZ on
214 Linux drivers. With an only 24-hour time budget, DR.
FUZZ can successfully initialize and enable most of the drivers
without the corresponding devices, whereas existing fuzzers like
syzkaller cannot succeed in any case. DR. FUZZ also significantly
outperforms existing driver fuzzers that are even equipped with
the device or emulator in other aspects: it increases the code
coverage by 70% and the throughput by 18%. With DR. FUZZ,
we also find 46 new bugs in these Linux drivers.

I. INTRODUCTION

In monolithic kernels like the Linux kernel, 70% of the
kernel code is device drivers [4]. The kernel serves as a
hardware resource manager; its device drivers are responsible
for identifying and managing the specific devices. The drivers
are security-critical but buggy. Recent advances have turned
to fuzzing to test drivers. Fuzzers use invalid, unexpected, or
random data as inputs to a driver to trigger different paths at
runtime, and they use sanitizers like KASAN, KMSAN, and
UBSAN to monitor the abnormal behaviors to find bugs. For

* The work was done at the University of Minnesota.

example, DIFUZE [2] identifies 36 vulnerabilities in the Linux-
kernel drivers through a set of ioctl interfaces. PeriScope [8]
detects bugs in device drivers by intercepting driver accesses
to communication channels based on page faults generated by
mmio/dma. It also discovered 15 unique vulnerabilities. These
works show that fuzzing can be an effective approach to finding
vulnerabilities in the drivers.

Existing driver fuzzers however still suffer from an inherent
limitation—requiring the hardware device or an emulator. The
kernel supports many devices, e.g., there are more than 13,000
PCI devices alone [1]. Testing drivers with the corresponding
devices or emulators have clear shortcomings. If it uses the
hardware to support the driver fuzzing, both the hardware cost
and the time cost for operating the hardware can be very high.
If it uses an emulator, such as QEMU, it cannot scale: existing
emulators only provide emulation for a limited number of
devices. For example, there are less than 130 PCI devices in
QEMU according to our study. Meanwhile, extensive manual
efforts are required to build the emulators for the unsupported
devices. Although protocol reverse engineering techniques can
help by automatically extracting the format specification so as to
assist the emulation, they typically target a specific application
due to the complexity. More importantly, hardware devices or
emulators may generate too well-formed inputs that cannot
broadly trigger vulnerabilities that can only be caused by
malformed inputs [6] [3] [7] [5].

In this paper, we propose a novel device-free driver fuzzer,
DR. FUZZ, that addresses the limitations of existing driver
fuzzers. Through a characterization study of drivers, we observe
that they follow the Linux kernel device model (LKDM), and
the running of a driver requires a successful initialization of
the related data structures. More importantly, the initialization
process is essentially validation chains (code paths leading to
successful initialization) that read, check, and sometimes use
a number of inputs from the devices. Therefore, passing the
validation chains implies a successful initialization, which will
enable the driver and subsequent normal fuzzing. Based on
this observation, we propose to automatically create “driver
initializers” that properly construct the device-related data
structures to pass the validation chains. The core is a semantic-
informed mechanism that infers various classes of semantic
information to efficiently generate valid inputs for succeeding
the validation. DR. FUZZ’s approach is fully automated and
thus can scale; also, it does not require any hardware supports.
Developers, maintainers, and users can readily use DR. FUZZ
for testing drivers. The elimination of the needs for hardware
devices and emulators removes a bottleneck in driver fuzzing.

Automatically creating such “initializers” to pass validation
chains without the devices is challenging because the extremely
complex device-related data structures and diverse I/O device
addressing incur a huge input space. To address these challenges,
we propose three new techniques to make device-free driver
fuzzing practical.

(1) Byte-level, field-sensitive value inference and mapping.
We identify the I/O-dependant fields and build an I/O-
dependence graph through a field-sensitive analysis. Based
on this graph, we infer the candidate values for the
fields of related data structures involved in the validation
chains, through a byte-level analysis. Further, we develop
additional techniques to map the fields to the input bytes
at specific addresses.

(2) Byte-priority inference based on temporals. The driver
often reads a chunk of data, e.g., 8 bytes or even more.
Mutating the whole input would not be practical due to the
huge search space. We observe that the validation chain
is naturally temporal, so the byte usage follows a clear
temporal pattern. We thus propose to infer the priority of
each byte in inputs based on the temporals. By focusing
the mutation on only one or a few bytes each time, we
dramatically reduce the mutation space.

(3) Error states as fuzzing feedback. Given an input, it is
important to know whether it triggers a normal execution
or erroneous (or even the specific error), so as to guide
the fuzzer to make progress in the validation chain. This
technique exploits the rich error-handling information in
drivers and dynamically collects the error information as
the fuzzing feedback. We combine this error-state feedback
together with the code coverage to guide the fuzzer.

The semantic-informed mechanism is generic. In fact, in
addition to device-free driver fuzzing, we can also re-purpose it
for increasing the code coverage of driver fuzzing. Our intuition
is that a high-coverage driver fuzzer requires well-formed
inputs to reach deep paths but also malformed inputs to trigger
broad paths. As such, we propose to instruct our semantic-
informed mechanism to generate semi-malformed inputs. The
inferred semantics offer rich information, including expected
valid inputs and execution states (e.g., normal execution or
erroneous execution). Therefore, we also reuse the semantic-
informed mechanism as a semi-malformed input generator to
improve the code coverage and throughput of driver fuzzing.

We have implemented a prototype for DR. FUZZ and
evaluated its functionality, effectiveness, and performance. We
evaluate DR. FUZZ on 214 Linux drivers, and the results are
impressive. With a only 24-hour time budget, DR. FUZZ can
successfully run 149 of them without the corresponding devices
or emulators, whereas existing driver fuzzers cannot succeed
in any case. We further show that when allocated with more
time, DR. FUZZ can initialize more drivers. DR. FUZZ even
outperforms existing fuzzers equipped with hardware devices in
coverage and throughput. Compared to syzkaller, our evaluation
shows that DR. FUZZ increases the code coverage by 70% and
the throughput by 18%. Interestingly, when we enable the semi-
malformed input generator, i.e., breadth first feedback, DR.
FUZZ can even improve the coverage over syzkaller by 200%.
At last, we also apply DR. FUZZ to find new bugs. With DR.
FUZZ, we find 46 new bugs in the Linux drivers.

In summary, we make the following research contributions.

• A new study and fuzzing mechanism. We perform a study
to characterize the organization and the code semantics
of device drivers. The findings indicate that device-free
driver fuzzing is feasible—the essence of a successful driver
initialization is to pass its validation chains. We then propose
a semantic-informed mechanism to automatically create
“driver initializers” that know how to properly initialize the
related data structures involved in the validation chains.

• New techniques. We propose three new techniques to make
device-free driver fuzzing practical: (1) byte-level and field-
sensitive value inference which infers expected valid values
in validation and maps them to I/O addresses, (2) byte-
priority (temporals) inference which dramatically reduces
the mutation space, as the validations chains are naturally
temporal, and (3) error state as fuzzing feedback which
directionally guides the fuzzing to trigger deep normal
execution and broad erroneous execution.

• Implementation and new bugs. We further instruct the
semantic-informed mechanism to generate semi-malformed

inputs to both broadly and deeply cover driver paths. We
implement DR. FUZZ and extensively evaluate it. We will
release source code and artifacts at https://github.com/
secsysresearch/DRFuzz.git. DR. FUZZ can successfully run
drivers without the hardware devices. DR. FUZZ even
achieves a higher code coverage and throughput than existing
fuzzers equipped with hardware devices. With DR. FUZZ,
we also find many new bugs in Linux drivers.

REFERENCES

[1] “List of pci id’s.” [Online], 2018, http://pci-ids.ucw.cz/.
[2] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao,

C. Kruegel, and G. Vigna, “DIFUZE: interface aware
fuzzing for kernel drivers,” in Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications

Security, CCS 2017.
[3] T. Goodspeed and S. Bratus, “Facedancer usb: Exploiting

the magic school bus.”
[4] A. Kadav and M. M. Swift, “Understanding modern

device drivers,” in Proceedings of the 17th International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2012.
[5] D. Kierznowski, “Badusb 2.0: Usb man in the middle

attacks,” 2016.
[6] A. T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce,

P. G. Neumann, S. W. Moore, and R. N. M. Watson,
“Thunderclap: Exploring vulnerabilities in operating system
IOMMU protection via DMA from untrustworthy periph-
erals,” in 26th Annual Network and Distributed System

Security Symposium, NDSS 2019.
[7] B. Ruytenberg, “Breaking Thunderbolt Protocol Security:

Vulnerability Report,” 2020.
[8] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Vol-

ckaert, G. Vigna, C. Kruegel, J. Seifert, and M. Franz,
“Periscope: An effective probing and fuzzing framework
for the hardware-os boundary,” in 26th Annual Network

and Distributed System Security Symposium, NDSS 2019.

2

Poster: Semantic-InformedDriverFuzzingWithoutBoth
theHardwareDevicesandtheEmulators

Wenjia Zhao1,2, Kangjie Lu2, Qiushi Wu2, Yong Qi1
1Xi’an Jiaotong University and 2University of Minnesota

Problem, Goal, and Architecture
Problem

• Device driver is critical in the Kernel

• The drivers are security-critical but buggy

• Driver fuzzing requires the hardware device or
an emulator which is typically unavailable.

Goal

• Device-free driver fuzzing

Architecture
To implement the device-free driver fuzzing, we find
the device input needs to pass the input-validation
chains and build the critical structures. To pass these
chains, we find some useful features, the temporal
input usage, hard-coded I/O address-value mappings
and prevalent error handling. Then we propose three
new techniques based on these features. Finally, we
design a semantic-informed mechanism and implement
DR. FUZZ to support the device-free driver fuzzing.

Overview of DR. FUZZ

Feedback

1b

2

5 Corpus3Corpus3 4

Semantic-informed
 fuzzer

QEMU

VM kernel

Communication

KVM
Host kernel

Fuzzer

Path state

Call driver
interface

User mode agent

snapshot

1aInstrumentation

Configuration

Semantic
analysis

Hybird
mutate

Boot
Device adaptor

Devices

Virtual dev

Technical Contributions
Semantic-informed mechanism
(I) Byte-level and field-sensitive value inference. (II) Byte-priority (temporals) inference. (III) Error state as fuzzing feedback.

T2:	Byte-priority	inference

T1.1: Byte-level, field-sensitive
value inference

T1.2: I/O address-field mapping

Sema�c	analysis

T3:	Path	state	as	fuzzing	feedback

Fuzzing
Corpus

Vmcall		 State	analyzer

				Byte-priority		
muta�on

IR

Generate

Instrument Feedback

Select

Failure

Failure

I/O

F F

Failure

Failure

I/O

F F

Figure 1: The semantic-informed mechanism. The IR bitcode of the kernel is the input. The semantic analysis generates the initial inputs in the corpus.
Meanwhile, it instruments the code based on the analysis to collect the state feedback and pass it to the analyzer.

Results

VI VI+BP VI+BP+PF FUZZ
0

20

40

60

80

100

120

140

Nu
m

be
rs

PC
I

IS
A

SC
SI

I2
C

US
B

Match
Initialize

(a) One hour

VI VI+BP VI+BP+PF FUZZ
0

20

40

60

80

100

120

140

Nu
m

be
rs

PC
I

IS
A

SC
SI

I2
C

US
B

Match
Initialize

(b) Three hours

VI VI+BP VI+BP+PF FUZZ
0

20

40

60

80

100

120

140

Nu
m

be
rs

PC
I

IS
A

SC
SI

I2
C

US
B

Match
Initialize

(c) Twenty-four hours

VI VI+BP VI+BP+PF FUZZ
0

1

2

3

4

5

6

7

8

Co
ve

ra
ge

Drivers
Average

(d) The coverage

Figure 2: The number of device Match/Initialization with each technique (a) (b) (c) and the coverage of using each technique after the device initialization
(d). VI denotes only enabling byte-level value inference. BP denotes enabling byte-priority inference. PF denotes enabling path state feedback. FUZZ denotes
syzkaller-dev, which is a the traditional fuzzing based only on code coverage.

0

5

10

15

20

25

30

35

0 1H 2H 3H

e1000

(a) e1000

0

5

10

15

20

25

30

35

0 1H 2H 3H

8139too

(b) 8139too

Figure 3: DR. FUZZ fuzzing throughput (execs/second) measured every 10 minutes for 3 hours.

Bug Finding
Across the 214 drivers, we in total found 46
unique new memory bugs. In these bugs, DR.
FUZZ detected 6 via a kernel warning or crash,
and the checkers (KASAN) caught the remaining
40. These 40 bugs include slab-out-of-bounds ac-
cess (8), use-after-free (13), NULL pointer deref-
erence (19).

Conclusions
• Semantic-informed mechanism supports to the driver running without the device.
• Three new techniques to make the semantic-informed mechanism practical.
• DR. FUZZ, a new device-free driver fuzzer, successfully run drivers without the corresponding devices.

