
POSTER: Why Crypto-detectors Fail: A Systematic
Evaluation of Cryptographic Misuse Detection

Techniques
Amit Seal Ami⇤, Nathan Cooper⇤, Kaushal Kafle⇤, Kevin Moran†, Denys Poshyvanyk⇤, and Adwait Nadkarni⇤

⇤William & Mary, Williamsburg, VA, USA
{aami@, nacooper01@, kkafle@, denys@cs., nadkarni@cs.}wm.edu

†George Mason University, Fairfax, VA, USA
kpmoran@gmu.edu

Title: Why Crypto-detectors Fail: A Systematic Evaluation of Cryptographic Misuse Detection Techniques

Authors: Amit Seal Ami, Nathan Cooper, Kaushal Kafle, Kevin Moran, Denys Poshyvanyk, and Adwait Nadkarni

Venue: 2022 IEEE Symposium on Security and Privacy (S&P), Los Alamitos, CA, USA, 2022

DOI: 10.1109/SP46214.2022.00024

Full Reference: A. S. Ami, N. Cooper, K. Kafle, K. Moran, D. Poshyvanyk, and A. Nadkarni, “Why Crypto-detectors Fail:
A Systematic Evaluation of Cryptographic Misuse Detection Techniques,” in 2022 IEEE Symposium on Security and Privacy
(S&P), Los Alamitos, CA, USA, 2022, pp. 397–414. Available at: https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.
00024

Abstract: The correct use of cryptography is central to ensuring data security in modern software systems. Hence, several
academic and commercial static analysis tools have been developed for detecting and mitigating crypto-API misuse. While
developers are optimistically adopting these crypto-API misuse detectors (or crypto-detectors) in their software development
cycles, this momentum must be accompanied by a rigorous understanding of their effectiveness at finding crypto-API misuse in
practice. This paper presents the MASC framework, which enables a systematic and data-driven evaluation of crypto-detectors
using mutation testing. We ground MASC in a comprehensive view of the problem space by developing a data-driven taxonomy of
existing crypto-API misuse, containing 105 misuse cases organized among nine semantic clusters. We develop 12 generalizable
usage-based mutation operators and three mutation scopes that can expressively instantiate thousands of compilable variants
of the misuse cases for thoroughly evaluating crypto-detectors. Using MASC, we evaluate nine major crypto-detectors and
discover 19 unique, undocumented flaws that severely impact the ability of crypto-detectors to discover misuses in practice.
We conclude with a discussion on the diverse perspectives that influence the design of crypto-detectors and future directions
towards building security-focused crypto-detectors by design.

Pre-print: https://arxiv.org/pdf/2107.07065.pdf

Artifact: https://github.com/Secure-Platforms-Lab-W-M/MASC-Artifact

https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00024
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00024
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00024
https://arxiv.org/pdf/2107.07065.pdf
https://github.com/Secure-Platforms-Lab-W-M/MASC-Artifact

The MASC Framework

POSTER: Why Crypto-detectors Fail: A Systematic Evaluation of Cryptographic Misuse Detection Techniques
Amit Seal Ami§, Nathan Cooper§, Kaushal Kafle§, Kevin Moran✝, Denys Poshyvanyk§ and Adwait Nadkarni§

§ William & Mary, ✝George Mason University
{aami@, ncooper01@., kkafle@., denys@cs, nadkarni@cs.} wm.edu, kpmoran@gmu.edu

https://amitsealami.com

Compromising Integrity through
Improper Checksum Use (10)

* CBC is insecure in TLS/client-server context; + applicable in specific situations; some misuse are newer compared to other in same cluster, # PKCS5 suggestion based

Compromising Non-Repudiation (3)

Key Signing Misuses
• Low entropy with DSA (1)
• Low entropy with ECDSA (1)
• Using 1024 bit DSA (2)

Compromising Client & Server Secrecy (20)

Compromising Secret Keys (12)

Unclustered (6)

Compromising Secrecy of Cipher Text (26)

Compromising Communication Secrecy
with Intended Receiver (6)

API/Program Specific Misuses (17)

Compromising Randomness (5)

Small Key Size
• Using RSA with < 1024 bit key (7)
• Using RSA with < 2048 bit key (3) +
• Using RSA with 2048 bit private key (1)

Weak Algorithm
• Using RSA with CBC (1)
• Using RSA with no padding (2)
• Using RSA with PKCS1 padding (5)

Weak Certificate Management
• Improper certificate validation expiry check (2) ✔
• Trusting all certificates (3) ✔
• Missing certificate validation (3) ✔
• Improper following of a cert’s chain of trust (1)✔

Weak SSL Protocol
• Using weak SSL context

{SSLContext.getInstance(“SSL”)} (1)
• Using SSL and not using TLS as context (1)
• Using SSLV3 (1)
• Using SSLV2 (1)
• HMAC for TLS with SHA1 (1)
• Using CBC for SSL/TLS with AES (1) *
• Using TLS < v 1.2 (1)
• Using TLS < v 1.1 (3)

Weak Hostname Management
• Allowing all hostnames (10) ✔
• Using Default hostname verifier (1) +

Insecure Key Size
• ECC < 224 bit (2)
• Using AES with < 128 bit key (1)
• Using RC2 with < 64 bits (1)

Insecure Number of Iterations/Cycles
• Using < 500 iterations for PBE (1)
• Using < 1000 iterations for PBE (6)#

Using Unsafe Mode
• Using ECB for symm. encryp. with AES (2) ✔
• Using AES with CBC for encryption with PKCS5Padding (1)
• Using Electronic Code Book Mode (ECB) for encryption (11)

✔
• Using AES with CBC for Encryption * (2)
• Using DESede with ECB (1)
• Using DES with CBC3 SHA (1)
• Using CBC without HMAC (1)
• Using 3DES with EDE CBC SHA (1)
• Using non-random IV in Cipher Block Chaining (CBC) for

encryption (6)

Using Non-Random Salt
• Using constant salts for PBE (6)

Unsafe Algorithm Usage
• Using RC2 for symmetric encryption (4)
• Using NullCipher to encrypt plain text (1)
• Using Blowfish Algorithm for Encryption (4)
• Using ESAPI Encryptor (1)
• Using 3DES/DESEDE for encryption (4)
• Using RC4 (3)
• Using IDEA Algorithm for Encryption (3)
• Using DES for encryption (8) ✔
• Using EXP1024 for ciphers (1)
• Using Seed Cipher (1)
• Using blowfish with less than 128 bit key (1)

Communication Secrecy Compromised
• Use of a key past its expiration date (1)
• HTTP and HTTPs mixing (3)
• Key Exchange without Entity Authentication (1)
• Improper Check for Certificate Revocation (1) ✔
• Improper Validation of Certificate with Host Mismatch (1)

✔
• Untrusted CA Signed Certificate (1) ✔

API/Program Specific
• Apache HTTPClient no host verification (1)
• Gnutls_certificate_verify_peers2 returns 0 when self

signed certificate (1)
• Constant password for android keystore (2)
• JSSE checkTrusted method does not check identify if the

algorithm field is null or empty string (1) ✔
• Android Webview incorrect certificate verification (2)
• Java defaults to ECB for encryption with “AES"
• Weberknecht does not have host verification (1)
• Using DefaultHttpClient (due to no TLSv1.2) (1)
• ignoring onReceivedSSLError (3)
• SSLSocketFactory without verifying Hostname (1)
• Reusing counter value in encryption (2)
• Apache HttpHost data allows mixed schemes (1)
• Using obsolete algorithm (11) ✔
• Storing sensitive data in Java String (3)
• Using Socket directly for connection (1)
• No clearPassword call after using PBEKeySpec (2)
• PBEKeySpec initialized without salt (2)

Secret Key Misuses
• Using low entropy seeds in key generation (1)
• Password Based Key Derivation Function (PBKDF) Using <

SHA224 (1)
• Not using Salts while hashing password (1)
• PBKDF Using HMAC (1)
• PBKDF Using MD5 (3)
• PBKDF Using MD2 (2)
• IVs generated w/o random num generator (1) ✔
• Static IV (4) ✔
• Zeroed IV (2)
• Using hardcoded key / password (3)
• Using Constant Encryption Key (9)
• Using < 64bit salt for password (2)

Misuse of Randomness
• Bad derivation of IV (file/text) (4) ✔
• Low entropy in key generation/ RNG (3)
• Using static seeds for Secure Random RNG (7)
• Not using Secure Pseudo RNG (7)
• Using Setseed (3)

• Inscure pinning with ambiguous values
• Trusting Self-signed Certificates +
• Using unencrypted server socket
• Using unencrypted socket
• Using export quality ciphers
• Using stateless encryption

Compromised Checksums
• Hashing credentials - MD5 (5) ✔
• Hashing Credentials - MD4
• Hashing Credentials - MD2
• Digital Signature Hashes - MD4
• Obsolete Hash Algorithm (7) ✔
• Hashing Credentials - SHA1
• Digital Signature Hashes - MD5 (5) ✔
• Using a custom MessageDigest instead of relying on the

SHA-224 (1)
• Digital Signature Hashes - MD2 (4)
• Digital Signature Hashes - SHA1 (5)

Crypto API Misuse Taxonomy

References
A. S. Ami, N. Cooper, K. Kafle, K. Moran, D.
Poshyvanyk, and A. Nadkarni, “Why Crypto-detectors
Fail: A Systematic Evaluation of Cryptographic Misuse
Detection Techniques,” in 2022 IEEE Symposium on
Security and Privacy (S&P), Los Alamitos, CA, USA,

Artifact: https://github.com/Secure-Platforms-Lab-
W-M/MASC-Artifact

https://spl-wm.github.io/

http://www.cs.wm.edu/semeru/

Introduction
• Correct use of cryptographic primitives is hard.
• Security researchers make Crypto API misuse-detectors (Crypto-Detectors) to prevent API misuse.
• However, we know very little regarding the actual effectiveness of crypto-detectors.
• The Mutation Analysis for evaluating Static Crypto-API misuse detectors (MASC) framework can

help evaluate crypto-detectors by leveraging mutation testing, i.e., by seeding mutants (crypto
API misuse).

Challenges
• Must express (i.e., test with) relevant misuse cases across existing crypto-APIs, but,

cryptoAPIs are as vast as the primitives they enable.
• Evaluation only using misuse identified in the wild verbatim may not lead to

robust analysis, as it does not express the various usage patterns of such APIs.
• Efficiently creating and seeding large numbers of compilable mutants without

significant manual intervention is critical for identifying flaws in crypto-detectors.

FC1: String case
mishandling

FC2: Incorrect value
resolution

FC4: Insufficient
analysis of generic
conditions in
extensible crypto-APIs

FC5: Insufficient
analysis of context-
specific conditions in
extensible crypto-APIs

FC3: Incorrect
resolution of complex
inheritance and
anonymous objects

Flaw
ClassesCipher.getInstance(“DES”);

Base Case

Benign Developer,
Harmful Fix

Cipher.getInstance(“des”.
toUpperCase());

Benign Developer,
Accidental Misuse

Cipher.getInstance(“des”);

Evasive Developer,
Harmful fix

Cipher.getInstance(
“AES”.
replace(“A”,”D”));

T
hr

ea
t

M
od

el

 This work is supported in part by the NSF-1815336, NSF-1815186, NSF-1955853

grants and CoVA CCI Dissertation Fellowship. Any opinions, findings, and conclusions

expressed herein are the authors’ and do not necessarily reflect those of the sponsors.

Secure Platforms Lab

Some tools want to observe
misuse instances frequently in
the wild before addressing those!

Takeaway

Tool designs are often based on
technique-centric perspectives,
whereas we need security centric
evaluation.

“…developers will write almost
everything you can think of…”,
hence we should evaluate using
more than trivial cases.

Increasing importance of cyber-
security through new legislations
means tools need to become
more robust.

MASC can help tools get better
in detection by its rigorous,
security-centric evaluation.

Data-Driven
Taxonomy Generation

Crypto-API Misuse TaxonomyMisuse Sources

source
code

 Mutation
Operators

Mutation
Scopes

misuse cases

analyze
apps

uncaught
 mutants

Creating mutants

Evaluating tools

Target
Crypto-detector

Design/
Implementation

flaws
Mutated
App(s)

Open Source Apps

Research
Papers

Industry
Tools

Advisories …

C
on

tr
ib

ut
io

ns

Discussion with Tool developers revealed the
factors influencing the design and testing of
current crypto-detectors

An impact study proved that all these flaws have
real consequences

Evaluation of 9 major crypto-detectors from
industry, academia, and open-source revealed
19 previously unknown flaws

Comprehensive Crypto API Misuse Taxonomy
Contains: 105 misuse cases Covers: last 20 years

Usage-based Crypto-mutation Operators allow
expressive instantiation of Crypto misuse cases

