
POSTER: Participant and Channel Privacy in
End-to-End Encrypted VoIP Teleconferencing

Samuel P. Laney∗, Justin A. Blanco†, Travis Mayberry‡ and Daniel S. Roche§
United States Naval Academy

∗Email: sam.laney18@gmail.com
†Email: blanco@usna.edu

‡Email: mayberry@usna.edu
§Email: roche@usna.edu

I. INTRODUCTION

Voice over Internet Protocol (VoIP) chat services such as
Discord allow groups to easily connect to one another with
voice teleconferencing. However, most VoIP traffic is either
unencrypted or encrypted only in transit, allowing for a com-
promised or overly-curious server to analyze and listen to any
traffic sent through it. Schemes currently exist that improve
security by implementing end-to-end encryption, preventing
the server from interpreting the contents of a message, but
these schemes still reveal conversation metadata such as who
is in a channel and who is talking at any given time.

This paper describes our work on a teleconferencing ap-
plication with a conversation model similar to Discord that
not only features full end-to-end encryption, but also hides
conversation metadata. Obscuring this metadata is important
because in many cases the contents of a given conversation
matter less than the fact that a conversation occurred between
two or more parties. Hackers, cyberstalkers, and leakers do
not need to know the contents of communications in order to
paint a clear picture of one’s associations, interests, and habits;
knowing who one connects with, how long they talk for, and
how frequently, is often more than enough.

We developed our scheme with the following objectives:
• Full end-to-end encryption
• Multiple channels on a given server
• Multiple users per channel
• Protection against malicious users
• Metadata hiding through:

– Channel population hiding
– Obscuring who is speaking at any given time

Current secure alternatives for teleconferencing, such as
Signal, utilize a peer to peer infrastructure. This inherently
limits the number of concurrent users (originally to 8, now 40),
requiring the client to mix and perform all computations for
the protocol [1]. Our use case expands the single call model to
multiple channels, like Discord, which are mixed at the server.
This allows for increased scalability as the computation burden
remains constant for users. Rohloff et al. were successful in
implementing a centrally mixed, end-to-end encrypted voice
conferencing platform using homomorphic operations, but
their scheme did not obscure channel membership [2].

II. THE PROTOCOL

The primary novel feature of our scheme is that the central
server does not know which user is in each channel. This
prevents the server from tracking who talks to one another,
when they do so, and how often they communicate in a
given channel. Our threat model presumes an honest-but-
curious server, and malicious users that do not collude with the
server. The protocols utilize the Microsoft SEAL homomor-
phic encryption library[3]. Our system consists primarily of
four protocols to perform initial setup, to specify each user’s
channel membership, to send and receive streaming audio, and
to identify attempted malfeasance.

A. Setup

Assume a teleconferencing server with n users amongst m
channels. A common key pair is used by the users and is
agreed upon out of band. The server will utilize the public
key in order to perform homomorphic operations, but it does
not possess the secret key.

B. Pick Channel

Each useri, where i runs from 1 to n, decides the channel
[1, 2, . . . , m] they want to communicate in. Useri then creates
a length-m vector initialized to 0, except for the channel they
are in, which holds a 1. A user in channel 2 on a server with 5
channels, for example, would have the membership vector [0,
1, 0, 0, 0]. Each user then encrypts their membership vector,
resulting in a vector of ciphertexts hi

T = [ci1, ci2, ci3, ..., cim].
Although all but one of these values is 0 when decrypted,
the CKKS encryption scheme used by SEAL is randomized,
so the ciphertext objects at each index of the vector differ.
Each user sends their membership vector to the server where
it is stored. Therefore, the server has n membership vectors,
each containing m ciphertexts. This protocol requires several
expensive encryptions, so it will run only when a user joins a
server.

C. Send Audio

Assuming 16kHz mono-audio, useri generates 4,000 Pulse
Code Modulation (PCM) frames (samples) per quarter-second.
The user batches these values and encrypts them into the vector
vi, then sends this ciphertext to the server. The server then



multiplies this by the user’s channel vector stored on the server
(the following operations are homomorphic, meaning they are
performed in the encrypted space):

Bi = vi ⊗ hi (1)

Bi : useri’s contribution to all channels on the server

Note that since each user is only in one channel, the audio
samples will be multiplied by the encryption of 1 once, and
every other column in Bi remains as 4,000 encryptions of 0.
The server performs this operation for each user on the server
concurrently and adds all n matrices together:

D =

n∑
i=1

Bi = [d1,d2, ...,dm] (2)

D : 4, 000 × m matrix containing the encrypted contents of
each channel for one epoch

This produces the matrix [d1,d2, ...,dm] where d1 is a
length 4,000 vector of the encrypted sum of all audio signals
in channel 1, d2 is channel 2, etc. Finally, the server computes
the correct sum to send to each user based on what channel
they are in and subtracts their own audio to eliminate echo:

ai = Dhi − vi (3)

With this final matrix-vector product, ai ends up being an
encryption of just the channel that useri is in since the other
channels’ audio is multiplied by an encryption of 0. Useri
decrypts ai using the secret key and has a quarter-second series
of audio samples from their channel, while the server cannot
determine which channel the user is communicating in.

We secure channel population metadata by ensuring that all
users are indistinguishable from one another to the server. Each
user has a channel membership vector of length m and sends
a fixed-length, encrypted PCM stream at constant interval,
regardless of if a user is speaking or not. All user audio
is mixed with the same protocol, yielding no participation
information to the server other than if a user is connected.

D. Find Cheaters

As noted, our threat model assumes malicious users, such
that users should be able to send to and receive from only one
channel at any given time. This would prevent a malicious
user from interfering with or listening in to multiple channels.
An attacker could make the service unusable by configuring
one’s channel vector to contain a one (or any nonzero value) in
multiple indices, thus ”joining” multiple channels, after which
one could broadcast shouting or interference to every channel.

The server stores each user’s channel membership vector,
which should contain exactly one encryption of 1 and m− 1
encryptions of 0. However, since each vector is encrypted,
the server cannot check to make sure that this is the case.
Another user could decrypt and check, but doing so would
reveal which channel the user is in, which is data we intend
to protect. Instead, the server will compute m + 1 values for

each useri: one value si and m values tij , one for each index
j in the membership vector.

si = ci1 + ci2 + ...+ cim (4)
tij = cij × (cij − ENCpk(1)) (5)

If useri is not cheating, then DECsk(si) = 1. Further, each
value of DECsk(tij) should equal 0. This is because each cij
should be either 0 or 1, so tij should either be an encryption
of 1 × (1 − 1) = 0 or 0 × (0 − 1) = 0. At a varied interval,
the server will compute each of these values for each user
and send them to randomly selected clients to check that each
DECsk(si) = 1 and every DECsk(tij) = 0. This ensures
that each user has a properly formatted membership vector
and is only in one channel.

III. CONCLUSION

We secure channel population metadata by ensuring that
users’ audio is mixed identically, regardless of channel. Each
user has a channel membership vector of length m and sends
an encrypted, fixed-length PCM stream at constant interval,
regardless of if a user is actively speaking or silent during the
interval. All user audio is mixed with the same protocol that
yields no participation information to the server other than
whether a user is connected.

In the current state, our implementation is a command-
line Python application that allows for multiple “channels,” or
independent conference calls, facilitated by a single instance
of the server program. The application utilizes the Microsoft
SEAL homomorphic encryption library. Our local proof of
concept has demonstrated that our scheme outpaces the rate at
which audio is supplied. Historically, homomorphic encryption
has not been feasible for real-time applications due to its
slow computation times. Our scheme outsources most of the
intensive computation to the central server, while keeping user
work to only encrypting and decrypting audio samples. Server
computation scales linearly with the number of users, while
user computation remains constant, regardless of how many
users are connected. These factors make us optimistic about
its ability to scale better than a peer-to-peer infrastructure,
handling dozens of live users over the network. The coming
months are dedicated to investigating the scalability of the
scheme in the cloud environment.

ACKNOWLEDGMENT

The authors would like to thank the US Naval Academy
Computer Science Department, the Trident Scholar Program,
and the Office of Naval Research for sponsoring this student
work.

REFERENCES

[1] Signal Foundation, Group Calling - Voice or Video with Screen Sharing
[2] K. Rohloff, D. B. Cousins and D. Sumorok, ”Scalable, Practical VoIP

Teleconferencing With End-to-End Homomorphic Encryption,” in IEEE
Transactions on Information Forensics and Security, vol. 12, no. 5, pp.
1031-1041, May 2017, doi: 10.1109/TIFS.2016.2639340.

[3] ”Microsoft SEAL (release 3.6).” https://github.com/Microsoft/SEAL.
(2020).

2



Results & Conclusion

Our Protocol

Background

The Solution

The Problem End-to-End Encryption

Participant & Channel Privacy in End-to-End Encrypted 
VoIP Teleconferencing
Midshipman 1/C Sam Laney, Computer Science Department, US Naval Academy
Assoc. Prof. Dan Roche, Assoc. Prof. Travis Mayberry, Assoc. Prof. Justin Blanco

Current teleconferencing 
applications are either 
unencrypted or encrypted only in 
transit, meaning that a 
compromised or over-curious 
server can analyze and listen to any 
and all traffic sent through it. [1]

How does a computer represent and 

mix audio?

Utilize:

- End-to-End Encryption

- Metadata Protection

- Homomorphic Encryption

To ensure the server does not know 
whom is talking to whom and when

- We have successfully implemented our encrypted 
mixing protocol as a proof of concept.

- Homomorphic encryption is known for being slow, 
but the scheme outpaces the rate at which audio 
is supplied. 

- We have successfully implemented the multi-
channel teleconferencing application in the 
unencrypted space. 

- The next steps for our Trident project are adding 
encryption to our current application and testing 
scalability in a cloud environment.

Pulse Code Modulation (PCM)
of an analog signal

- A computer’s sound card generates 
PCM values from a microphone. 

- These values can be added together 
to express multiple parties talking at 
the same time

- End-to-End Encryption is the unbroken
encryption of a communication from the 
initiating user to the destination user.

- This ensures that any intermediate 
servers, routers, or services between the 
two users cannot inspect the contents of 
their communication.

Protocol Encryption Models

Metadata Protection
Our scheme seeks to protect user metadata 
such as who is conversing together in a 
channel, and who is speaking at any given 
time.

Homomorphic 
Encryption

Homomorphic Encryption allows for 
mathematical operations to be performed 
on encrypted data. This allows a central, 
untrusted server to mix, or add, audio signals 
to create a teleconference without revealing 
any conversation contents to the server. Our 
protocol uses the Microsoft SEAL library. [3]

A simple example of a homomorphic addition

The mixing scheme 
obscures channel 

membership 
Our Pick Channel Protocol

Example epoch

- In our protocol, each user sends audio chunks every 250ms. 
- The client encrypts this vector of PCM samples and sends it to 

the server. 
- The server mixes the audio homomorphically and utilizes 

channel vectors to select and send each user their respective 
channel audio, without revealing to the server which channel 
they are in.

References
[1] K. Rohloff, D. B. Cousins and D. Sumorok, "Scalable, 
Practical VoIP Teleconferencing With End-to-End 
Homomorphic Encryption," in IEEE Transactions on 
Information Forensics and Security, vol. 12, no. 5, pp. 1031-
1041, May 2017, doi: 10.1109/TIFS.2016.2639340.

[2] Ahmad Ishtiyaque, et al. “Addra: Metadata-private voice 
communication over fully untrusted infrastructure,” 15th 
USENIX Symposium on Operating Systems Design and 
Implementation, Jul. 2021.

[3] "Microsoft SEAL (release 3.6)." 
https://github.com/Microsoft/SEAL. (2020).

http://www.electronicshub.org/wp-content/uploads/2013/10/Pulse-
Code-Modulation.jpg


