
POSTER: Precise Detection of Unprecedented
Python Cryptographic Misuses Using On-Demand

Analysis

Miles Frantz, Ya Xiao, Tanmoy Sarkar Pias, Danfeng (Daphne) Yao
Computer Science, Virginia Tech, Blacksburg, VA
{frantzme, yax99, tanmoysarkar, danfeng}@vt.edu

Abstract—While many research studies target Java crypto-
graphic API misuses, similar issues within the Python landscape
are still uncovered. In this work, we provide 1) security guar-
antees for complex Python cryptographic code through the use
of our tool, Cryptolation, and 2) a basis for understanding the
practices of Python cryptographic API misuses and detection
through a thorough analysis and a state-of-the-art benchmark.
Cryptolation is a Static Code Analysis (SCA) tool that conducts an
inter-procedural data-flow analysis and successfully handles many
Python features through inference and context injection. Our
state-of-the-art benchmark, PyCryptoBench, includes 228 basic
and advanced insecure cases to evaluate our tool and provide a
framework for future evaluation and comparison of competing
tools. We evaluate Cryptolation and other state-of-the-art tools
Bandit, Licma, Semgrep, and DLint against our benchmark and
1000 open-source projects. Overall, Cryptolation provides more
insight when scanning Python projects and our benchmark com-
pares state-of-the-art tools against several programming patterns.

Keywords—static code analysis, cryptographic API misuses,
Python, benchmark

I. INTRODUCTION

Many studies have shown how cryptographic API misuses
result in security vulnerabilities [1], [2], [3], [4]. These studies
motivate a line of research into SCA to find these API
misuses [5], [6], [7], [8]. Since most attention is paid to Java
or C applications using cryptographic libraries, Python crypto-
graphic APIs have not been thoroughly examined. We focus on
59 Python cryptographic modules, including PyCrypto [9]
and PyJWT [10] that are popular in Python [11]. We mapped
18 security rules to the API misuses that violate them. We
leverage Astroid [12] to create our Abstract Syntax Tree (AST)
since it makes variable inferences. Astroid attempts to infer the
potential values of a variable within the AST. This, in turn, lets
us create separate AST to extend our data flow analysis through
the different inferences of the variables. Creating the separate
AST decreases the performance but increases the Precision and
Recall while decreasing the False Negative (FN).

II. CHALLENGES

Shown in Figure 1 is a simple insecure path-sensitive
hash example. The developer imported the hashlib module
but changed the value based on the conditional at line 2.
This snippet creates a simple AST to parse but requires the
SCA tool to track the default hash value propagation. SCA
tools will have to either operate in a path-insensitive manner
or evaluate the conditional on identifying the correct path.
Developers may not make use of their imports and we do

not create False Positive (FP) alerts on unused imports. We
do live-import analysis by identifying uses of the imports to
ensure it is a cryptographic misuse and not a dead import.
Analyzers need to trace the import propagation and reaching
definitions of assigning the imports. Cryptolation uses the
inferred values of variables provided by the AST to trace the
variable propagation. We also use a path-insensitive approach
through the variable inference to ensure complete coverage and
lower FN.

1 i m p o r t h a s h l i b
2 i f True :
3 d e f a u l t h a s h = h a s h l i b . sha1
4 e l s e :
5 d e f a u l t h a s h = h a s h l i b . sha256
6 p r i n t (d e f a u l t h a s h (b ” Hel loWor ld ”))

Listing 1. An insecure hash Python sample. The default hash method is set to
sha 1 at line 3 then the developer calls the default hash on a custom string at
line 6. Static analyzers must identify the hashlib import, use path-insensitive
flow to identify the vulnerable import at line 3, and identify the use at line 6.
This sample is similar to several samples seen through testing.

III. EVALUATION

Cryptolation is framework-agnostic and general to the lan-
guage itself; thus, we compared against tools that scan Python
code. We compared Cryptolation against the cryptographic re-
sults of Bandit [13], Semgrep [14], Licma [15], and Dlint [16].
We created the basic and advanced PyCryptoBench bench-
mark, which evaluates the tools against a standard set of
insecure cryptographic practices derived from [8]. The 38
basic cases are basic files testing each rule. The 190 advanced
cases include global, inter-procedural, inter-procedural at two-
level, path-insensitive, and field-insensitive test files. We also
scanned the nine famous Python projects chosen by their
maturity and how much of the repository was Python; keras,
ansible, scrapy, IntelOwl, requests, core, httpie, Django, and
flask. We also used 1008 projects from GitHub if they were
a Python repository tagged with either “payments” or “cryp-
tography”. Table II is the breakdown of True Positive (TP)
alerts, Precision, Recall, Accuracy, and F1 scores. Cryptolation
outperforms all other tools during the benchmark examination,
with DLint coming in a close second. DLint outperformed
Cryptolation within Tagged Projects by a minimal gap since
it identifies the vulnerabilities based on imports.This approach
could lead to False Positives if the import is included but
unused. Licma focuses on hybrid-based Python projects with
a smaller cryptographic scope. Cryptolation has a precision
of 99.7% while having more than 6,000 alerts compared to
the nearest tool DLint. Due to the massive quantity of files,

TABLE I. THE CRYPTOGRAPHIC VULNERABILITY, ATTACK TYPE, AND CRYPTOGRAPHIC PROPERTY PER VULNERABILITY. THE SEVERITY LEVELS ARE
DENOTED H/M/L FOR HIGH, MEDIUM, AND LOW RISK. THE CRYPTOGRAPHIC PROPERTIES C/I/A ARE CONFIDENTIALITY, INTEGRITY, AND AUTHENTICITY.

Vulnerability Attack Type Crypto. Property Severity

1 Predictable/Constant Cryptographic keys Predictability Confidentiality H
2 Use Wildcard Verifiers to Accept All Hosts

SSL/TLS MitM

C/I/A H
3 Create Custom String to Trust All Certificates C/I/A H
4 Create Unverified HTTPS Context C/I/A H
5 Use of HTTP C/I/A H
6 Cryptographically Insecure PRNGs Predictability Confidentiality M
7 Static Salts CPA Confidentiality M
8 ECB Mode in Symmetric Ciphers Confidentiality M
9 Fewer than 1,000 Iterations for creating Salt

Brute Force

Confidentiality L
10 Insecure block ciphers (e.g., IDEA, Blowfish) Confidentiality L
11 Insecure asymmetric ciphers (e.g, RSA, ECC) C/A L
12 Insecure cryptographic hash (e.g., SHA1, MD5) Integrity H
13 Not Verifying a Json Web Token

SSL/TLS MitM
I/A H

14 Using an insecure TLS Version Confidentiality H
15 Using an Insecure Protocol C/I/A H
16 Using an insecure XML Deserialization

Deserialization Confidentiality
M

17 Using an insecure YAML Deserialization M
18 Using an insecure Pickle Deserialization H
19 Not escaping a regular expression Brute Force Integrity M

the Massive and Tagged project scans do not have ground
truth. We reviewed their results by automatically retrieving the
code snippets identified by line numbers and programmatically
identifying specific libraries.

TABLE II. THE BREAKDOWN OF THE PRECISION AND RECALL PER
TOOL PER SCANNING TYPE. THE BENCHMARK IS A CUSTOM AND

OPEN-SOURCED DATA SET WHILE THE FULL TESTS AND MASSIVE SCAN
TYPES ARE LIVE PROJECTS PULLED FROM GITHUB.

Batch Scan Tool Name TP Precision Recall Accuracy F1

Benchmark

Bandit 86 100% 37.70% 100% 54.8%
Cryptolation 108 100% 47.40% 100% 64.3%

DLint 104 100% 45.60% 100% 62.7%
Licma 10 100% 4.40% 100% 8.4%

Semgrep 52 100% 22.80% 100% 37.1%

Tagged

Bandit 3001 89.7% 100% 89.7% 94.6%
Cryptolation 16471 99.8% 100% 99.8% 99.9%

DLint 6482 99.9% 100% 99.9% 100%
Licma 0 0% 0% 0% 0%

Semgrep 2213 100% 100% 100% 100%

Massive

Bandit 164 92.7% 100% 92.70% 96.2%
Cryptolation 288 100% 100% 100% 100%

DLint 356 100% 100% 100% 100%
Licma 0 0% 0% 0% 0%

Semgrep 109 100% 100% 100% 100%

IV. CONCLUSION AND ONGOING WORK

We created Cryptolation to examine and discover potential
cryptographic misuse for complex programming patterns. Our
benchmark PyCryptoBench provides 228 files that cover sev-
eral complex programming patterns. When evaluating against
PyCryptoBench, Cryptolation provides improved Recall and
F1 on complex patterns compared to the state-of-the-art tools.
We will further evaluate these tools against more projects based
on their McCabe Cyclomatic Complexity (MCC) score.

ACKNOWLEDGMENT

This work has been supported by the National Science
Foundation under Grant No. CNS-1929701.

REFERENCES

[1] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information sources
on code security,” in 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, 2016, pp. 289–305.

[2] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Arango-Argoty, “Secure
coding practices in Java: Challenges and vulnerabilities,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 372–383.

[3] M. Chen, F. Fischer, N. Meng, X. Wang, and J. Grossklags, “How
reliable is the crowdsourced knowledge of security implementation,”
in Proceedings of the 41st International Conference on Software Engi-
neering. IEEE Press, 2019, pp. 536–547.

[4] D. Votipka, K. R. Fulton, J. Parker, M. Hou, M. L. Mazurek, and
M. Hicks, “Understanding security mistakes developers make: Qual-
itative analysis from build it, break it, fix it,” in Proceedings of the 29
th USENIX Security Symposium (USENIX) Security, vol. 20, 2020.

[5] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in Android applications,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 73–84.

[6] B. He, V. Rastogi, Y. Cao, Y. Chen, V. Venkatakrishnan, R. Yang, and
Z. Zhang, “Vetting SSL usage in applications with SSLint,” in 2015
IEEE Symposium on Security and Privacy. IEEE, 2015, pp. 519–534.

[7] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
F. Günther, C. Weinert, D. Demmler et al., “CogniCrypt: supporting
developers in using cryptography,” in 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2017, pp. 931–936.

[8] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. D. Yao, “CryptoGuard: High Precision Detec-
tion of Cryptographic Vulnerabilities in Massive-sized Java Projects,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2019, pp. 2455–2472.

[9] “PyCrypto - The Python Cryptography Toolkit,” https://www.dlitz.net/
software/pycrypto/.

[10] “Welcome to PyJWT,” https://pyjwt.readthedocs.io/en/stable/#.
[11] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,

and C. Stransky, “Comparing the usability of cryptographic APIs,” in
2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp.
154–171.

[12] PyCQA, “GitHub - PyCQA/astroid: A common base representation of
python source code for pylint and other projects.” [Online]. Available:
https://github.com/PyCQA/astroid

[13] Bandit, “Welcome to Bandit’s developer documentation! — Bandit
documentation.” [Online]. Available: https://bandit.readthedocs.io/en/
latest/

[14] “Semgrep,” Feb 2022, [Online; accessed 8. Feb. 2022]. [Online].
Available: https://semgrep.dev

[15] A.-K. Wickert, L. Baumgärtner, F. Breitfelder, and M. Mezini,
“Python Crypto Misuses in the Wild,” vol. 21, pp. 1–6, sep 2021.
[Online]. Available: http://arxiv.org/abs/2109.01109http://dx.doi.org/10.
1145/3475716.3484195

[16] duo labs, “dlint,” Feb 2022, [Online; accessed 8. Feb. 2022]. [Online].
Available: https://github.com/duo-labs/dlint

https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://pyjwt.readthedocs.io/en/stable/#
https://github.com/PyCQA/astroid
https://bandit.readthedocs.io/en/latest/
https://bandit.readthedocs.io/en/latest/
https://semgrep.dev
http://arxiv.org/abs/2109.01109 http://dx.doi.org/10.1145/3475716.3484195
http://arxiv.org/abs/2109.01109 http://dx.doi.org/10.1145/3475716.3484195
https://github.com/duo-labs/dlint

• Imports: There are several ways to use imports at different scopes

• Functions as variables: Functions must be resolved for inferences

• Type Hinting: Static Analysis leverages this to infer variable values

Yao Group on Cyber Security
http://people.cs.vt.edu/danfeng/

Miles Frantz, Ya Xiao, Tanmoy Sarkar Pias, and Danfeng (Daphne) Yao
Computer Science, Virginia Tech, Blacksburg, VA 24060, USA

{frantzme, yax99, tanmoysarkar, danfeng}@vt.edu

We present our tool Cryptolation that successfully scans complex Python code. We also present our open-source
benchmark PyCryptoBench to provide samples for further tool evaluation.

POSTER: Precise Detection of Unprecedented Python Cryptographic Misuses Using
On-Demand Analysis

1. Motivation

3. Approach

2. Challenges

4. Challenges

The code is vulnerable and uses HTTP despite being insecure. When
code analysis is not path-sensitive, the malicious code is not identified.

Python allows developers to use functions as variables and doesn’t
require type definitions, restricting normal Static Analysis techniques.

We create and test a path-insensitive,
inter-procedural, and depth-
insensitive static analysis tool called
Cryptolation.

We leverage the AST to create a
demand-driven analysis.

We scan the Python file if it contains
any cryptographic imports we have
rules for.

We create more ASTs if the identified
cryptographic method is nested within
multiple methods.

We continue slicing through the
nested ASTs to determine the
cryptographic misuse in a path-
insensitive way.

6. Preliminary Evaluation

5. Benchmark and Tests
• We created PyCryptoBench to evaluate tools’ performance against

specific programming patterns. This benchmark is provided to
researchers for future evaluation and tool comparison and includes
the ground truth:

• 38 Basic Files

• 190 Advanced Files, using global, inter-procedural, field-
sensitive, and path-sensitive programming patterns

• We also evaluated all the tools against nine major Python Projects
such as keras and scrapy and more than 1000 python projects.

Python is used by practitioners of various levels of coding experience

The support for static analysis on Python is way behind other common
programming languages[1].

Python is difficult for static analysis tools due to its dynamic nature[1]. Only
optional hints, import aliasing, and functions as methods are a few issues.

The current cryptographic analysis projects mainly focus on frameworks.

We propose Cryptolation, a static analysis tool that scans Python code in a
depth-insensitive and path-insensitive manner with 98% precision.

7. Ongoing Work

Cryptolation has the highest recall and F1 scores with 47.4% and
64.33 %, respectively. The benchmark results are shown since we
have the ground truth.

[1] Gulabovska, Hristina, and Zoltán Porkoláb. "Survey on Static Analysis Tools of Python Programs." SQAMIA. 2019.
[2] "OWASP Top 10:2021." 15 Nov. 2021, owasp.org/Top10.

Our 19 rules
identify several
popular attack
vectors used
within the
OWASP top 10[2].

We allow
developers to add
their own custom
rules as well.

Python code allows for various types
of aliasing, forcing analyzers to trace
the variable propagation

0

50 000

10 0000

15 0000

20 0000

25 0000

30 0000

35 0000

Ba ndit Cr ypt olat ion dlin t Licma sem grep

Ti
m

e
(s

)

Tool Name

Performance of each Tool

Licma took the longest
since it creates a
multilingual AST.

The other tools all took
within 75% percentile of
time, up to 63,362
seconds.

2. Rules

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ban dit Cryp tolation dl int Licma se mgr ep

Pe
rc

en
t

Tool Name

Recall and F1 Score Per Tool on the Benchmark

Recal l F1

	Introduction
	Challenges
	Evaluation
	Conclusion and Ongoing Work
	References

