
Title Context-Sensitive and Directional Concurrency Fuzzing for Data-Race Detection

Authors Zu-Ming Jiang (Tsinghua University) <jjzuming@outlook.com>

Jia-Ju Bai (Tsinghua University) <baijiaju@tsinghua.edu.cn>

Kangjie Lu (University of Minnesota) <kjlu@umn.edu>

Shi-Min Hu (Tsinghua University) <shimin@tsinghua.edu.cn>

Venue The 29th Network and Distributed System Security Symposium (NDSS'22)

Date February 27–March 3, 2022

Paper

abstract

Fuzzing is popular for bug detection and vulnerability discovery nowadays. To adopt

fuzzing for concurrency problems like data races, several recent concurrency fuzzing

approaches consider concurrency information of program execution, and explore

thread interleavings by affecting thread scheduling at runtime. However, these

approaches are still limited in data-race detection. On the one hand, they fail to

consider the execution contexts of thread interleavings, which can miss real data

races in specific runtime contexts. On the other hand, they perform random thread-

interleaving exploration, which frequently repeats already covered thread

interleavings and misses many infrequent thread interleavings.

In this paper, we develop a novel concurrency fuzzing framework named CONZZER, to

effectively explore thread interleavings and detect hard-to-find data races. The core

of CONZZER is a context-sensitive and directional concurrency fuzzing approach for

thread-interleaving exploration, with two new techniques. First, to ensure context

sensitivity, we propose a new concurrency-coverage metric, concurrent call pair, to

describe thread interleavings with runtime calling contexts. Second, to directionally

explore thread interleavings, we propose an adjacency-directed mutation to generate

new possible thread interleavings with already covered thread interleavings and then

use a breakpoint-control method to attempt to actually cover them at runtime. With

these two techniques, this concurrency fuzzing approach can effectively cover

infrequent thread interleavings with concrete context information, to help discover

hard-to-find data races. We have evaluated CONZZER on 8 user-level applications and

4 kernel-level filesystems, and found 95 real data races. We identify 75 of these data

races to be harmful and send them to related developers, and 44 have been

confirmed. We also compare CONZZER to existing fuzzing tools, and CONZZER

continuously explores more thread interleavings and finds many real data races

missed by these tools.

DOI 10.14722/ndss.2022.24296

Context-Sensitive and Directional Concurrency
Fuzzing for Data-Race Detection

Zu-Ming Jiang1, Jia-Ju Bai1, Kangjie Lu2, Shi-Min Hu1

1Tsinghua University, 2University of Minnesota

Research Problem

Existing fuzzing approaches are limited in detecting concurrency problems like data races. On one hand, they fail to consider
the execution contexts of thread interleavings. On the other hand, they lack effective techniques to perform thread-
interleaving exploration. In this paper, we propose a concurrency fuzzing framework named CONZZER which performs context-
sensitive and directional thread-interleaving exploration for data-race detection.

Introduction

Data races can cause critical security problems like privilege escalation. To detect data races, many developers utilize fuzzing
tools with data-race checkers to test concurrent programs. However, existing fuzzing approaches are limited in race detection.
First, they use context-insensitive coverage metrics as fuzzing feedback and thus miss many deep data races that occur only in
specific runtime contexts. Second, they perform random thread-interleaving exploration which is indicated to be inefficient.

To solve these limitations, we present CONZZER, a concurrency fuzzing framework that can explore infrequent thread
interleavings and detect hard-to-find data races. CONZZER uses a new concurrency coverage metric, concurrent call pair, to
describe thread interleavings with their runtime calling contexts as fuzzing feedback. Moreover, CONZZER incorporates
adjacency-directed mutation and deterministic breakpoint control to perform directional thread-interleaving exploration.

Methodology

① Context-sensitive concurrency coverage

 |--- Concurrent call pair

② Directional thread-interleaving exploration

 |--- Adjacency-directed mutation

 |--- Deterministic breakpoint control

Evaluation

 CONZZER finds 95 (75 harmful) data races in 12 programs.

 Many found data races cause severe security problems.
 CONZZER covers 19% more thread interleavings than the

method performing random-delay injection.

Comparison

CONZZER vs. existing fuzzer (AFL++, Syzkaller, inst-pair-fuzzer):
 Additionally finds 13, 58 and 32 races;
 Covers 88%, 118% and 58% more thread interleavings.

Conclusion

 Existing fuzzers are limited in testing concurrent programs.
 We design a new concurrency fuzzing framework named

CONZZER, which can effectively cover infrequent thread
interleavings and detect hard-to-find data races.

 CONZZER finds many harmful data races in both user-level
applications and kernel-level filesystems.

CONZZER architecture

Program
Source Code

Code Analyzer

Executable
Program

Race Checker

Original
Program Input

Data-Race
Reports

Runtime Analyzer

Call-Pair
Generator

Input
Generator

Runtime Information

Runtime Information

Program Inputs

Concurrent Call Pairs

 Fuzzing LoopN

Inject code breakpoints

Execute the program

Cover new
concurrent call pairs within the

time limit?

End

Mutate new covered
concurrent call pairs

Y

Execute the program and
control breakpoints

Identify covered
concurrent call pairs

Infer new posssible
concurrent call pairs

Collect runtime information

Process of context-sensitive and directional fuzzing

void btrfs_tree_read_lock(…) {
……
BUG_ON(eb->blocking_writers == 0 && …);
……
wait_event(eb->write_lock_wq,

eb->blocking_writers == 0);
……

}

127.

135.

151.
152.

159.

FILE: btrfs/locking.c

Thread 2

void btrfs_tree_unlock(…) {
…..
btrfs_assert_no_spinning_writers(eb);
eb->blocking_writers--;
…..

}

300.

312.
313.

324.

FILE: btrfs/locking.c

Thread 1

Harmful race in the btrfs filesystem

FILE: linux/fs/jfs/jfs_txnmgr.c
487. void txEnd(...) {

501. log = JFS_SBI(tblk->sb)->log; // read

534. if (--log->active == 0) // log is NULL

564. }

FILE: linux/fs/jfs/jfs_logmgr.c
1442. int lmLogClose(...) {

1444. struct jfs_sb_info *sbi = JFS_SBI(sb);

1455. sbi->log = NULL; // write

1503. }

Thread 1 Thread 2

Harmful race in the jfs filesystem

0
100K
200K
300K
400K
500K
600K
700K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

reiserfs

CONZZER Insensitive
Random delay Normal running

0

100K

200K

300K

400K

500K

600K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

jfs

CONZZER Insensitive
Random delay Normal running

0

200K

400K

600K

800K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

ffmpeg

CONZZER Insensitive
Random delay Normal running

0

5K

10K

15K

20K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

memcached

CONZZER Insensitive
Random delay Normal running

Growth of covered concurrent call pairs

0

1000

2000

3000

4000

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t c

al
l p

ai
rs

Time

xz

CONZZER
inst-fuzzer
AFL++

0

250

500

750

1000

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t c

al
l p

ai
rs

Time

pigz

CONZZER
inst-fuzzer
AFL++

0

4M

8M

12M

16M

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t c

al
l p

ai
rs

Time

btrfs
CONZZER
inst-fuzzer
Syzkaller

0

200K

400K

600K

800K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t c

al
l p

ai
rs

Time

reiserfs
CONZZER
inst-fuzzer
Syzkaller

0

150K

300K

450K

600K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t c

al
l p

ai
rs

Time

jfs
CONZZER
inst-fuzzer
Syzkaller

0

2M

4M

6M

8M

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t c

al
l p

ai
rs

Time

xfs
CONZZER
inst-fuzzer
Syzkaller

0

50K

100K

150K

200K

250K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t c

al
l p

ai
rs

Time

x264

CONZZER
inst-fuzzer
AFL++

0

200K

400K

600K

800K

1M

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t c

al
l p

ai
rs

Time

ffmpeg

CONZZER
inst-fuzzer
AFL++

Growth of covered concurrent call pairs in comparison Testing results

	CONZZER+poster.pdf
	幻灯片编号 1

