Title

Context-Sensitive and Directional Concurrency Fuzzing for Data-Race Detection

Authors

Zu-Ming Jiang (Tsinghua University) <jjzuming@outlook.com>
Jia-Ju Bai (Tsinghua University) <baijiaju@tsinghua.edu.cn>
Kangjie Lu (University of Minnesota) <kjlu@umn.edu>

Shi-Min Hu (Tsinghua University) <shimin@tsinghua.edu.cn>

Venue

The 29th Network and Distributed System Security Symposium (NDSS'22)

Date

February 27—-March 3, 2022

Paper

abstract

Fuzzing is popular for bug detection and vulnerability discovery nowadays. To adopt
fuzzing for concurrency problems like data races, several recent concurrency fuzzing
approaches consider concurrency information of program execution, and explore
thread interleavings by affecting thread scheduling at runtime. However, these
approaches are still limited in data-race detection. On the one hand, they fail to
consider the execution contexts of thread interleavings, which can miss real data
races in specific runtime contexts. On the other hand, they perform random thread-
interleaving exploration, which frequently repeats already covered thread

interleavings and misses many infrequent thread interleavings.

In this paper, we develop a novel concurrency fuzzing framework named CONZZER, to
effectively explore thread interleavings and detect hard-to-find data races. The core
of CONZZER is a context-sensitive and directional concurrency fuzzing approach for
thread-interleaving exploration, with two new techniques. First, to ensure context
sensitivity, we propose a new concurrency-coverage metric, concurrent call pair, to
describe thread interleavings with runtime calling contexts. Second, to directionally
explore thread interleavings, we propose an adjacency-directed mutation to generate
new possible thread interleavings with already covered thread interleavings and then
use a breakpoint-control method to attempt to actually cover them at runtime. With
these two techniques, this concurrency fuzzing approach can effectively cover
infrequent thread interleavings with concrete context information, to help discover
hard-to-find data races. We have evaluated CONZZER on 8 user-level applications and
4 kernel-level filesystems, and found 95 real data races. We identify 75 of these data
races to be harmful and send them to related developers, and 44 have been
confirmed. We also compare CONZZER to existing fuzzing tools, and CONZZER
continuously explores more thread interleavings and finds many real data races

missed by these tools.

DOI

10.14722/ndss.2022.24296

Context-Sensitive and Directional Concurrency
Fuzzing for Data-Race Detection

"t EZEH

Tsinghua University

Zu-Ming Jiang?, Jia-Ju Bai?, Kangjie Lu?, Shi-Min Hu?! UNIVERSITY OF MINNESOTA
1Tsinghua University, 2University of Minnesota Driven to Discover™

Research Problem

Existing fuzzing approaches are limited in detecting concurrency problems like data races. On one hand, they fail to consider
the execution contexts of thread interleavings. On the other hand, they lack effective techniques to perform thread-
interleaving exploration. In this paper, we propose a concurrency fuzzing framework named CONZZER which performs context-
sensitive and directional thread-interleaving exploration for data-race detection.

ion

Introdu

Data races can cause critical security problems like privilege escalation. To detect data races, many developers utilize fuzzing
tools with data-race checkers to test concurrent programs. However, existing fuzzing approaches are limited in race detection.
First, they use context-insensitive coverage metrics as fuzzing feedback and thus miss many deep data races that occur only in
specific runtime contexts. Second, they perform random thread-interleaving exploration which is indicated to be inefficient.

To solve these limitations, we present CONZZER, a concurrency fuzzing framework that can explore infrequent thread
interleavings and detect hard-to-find data races. CONZZER uses a new concurrency coverage metric, concurrent call pair, to
describe thread interleavings with their runtime calling contexts as fuzzing feedback. Moreover, CONZZER incorporates
adjacency-directed mutation and deterministic breakpoint control to perform directional thread-interleaving exploration.

Methodology

Data-Race
Context-sensitive concurrency coverage E Wl
1‘ Runtime Information
. Original -
|--- Concurrent call pair \ || Program input pxecutable
| identify covered infer new posssible ! < Program Runtime Information
- | concurrent call pairs concurrent call pairs |
(2) Directional thread-interleaving exploration | } = 2 -
I program) @
i | Source Code
|--- Adjacency-directed mutation L | [[Progamime: 1«
-I
|--- Deterministic breakpoint control - o))
Process of context-sensitive and directional fuzzing CONZZER architecture
- Concurrent call pair Data race X264 pigz
Program Tover | Gen Real | Possible | Final | Harmgfl g gow 2 g
sqlite 660M | 4807K | 404K 13 6 3 e = soox H =0
memcached | 180K 6K T6K 33] 2 2 £ oo 2 0 lmee =TT S
X264 876K | 672K | 57K pET)] 3 g1 £ 1oox BT o £ w0
Mnpeg 75K _| TR | 10K 130 10 0 F £ 2o g aelos £
gl 31 38 il T 3 3 S o S e S o S o
& E R R R R
axel 572 468 62 9 1 1 Time Time Time. Time.
pigz 556 1354 &5 5 i 0 s reiserfs
xz 2762 3139 377 6 0 0 H £ [—conm £ £ -
birfs [3.0M | 3626K | 488K s 34 77 H) E E
T SI50K | 163.0K | 261K 103 2 10 £ £ 300 -~ 3 £
[67M | 3304K | 447K 33 ¥ 5 £ o £ £
reiserts 6305K | 80K | 13.0K G 5 1 H £ £ H =
5 7 5 § o § o
Total 87.9M 1.7M 192.1K 872 95 IR Oh ah 8h 12h 16h 20h 28h Oh 4h sh 12h 16h 20h 28h Oh 4h 8h 12h 16h 20h 24h Oh 4h 8h 12h 16h 20h 2ah

Time Time

Testing results
¥' CONZZER finds 95 (75 harmful) data races in 12 programs. CONZZER vs. existing fuzzer (AFL++, Syzkaller, inst-pair-fuzzer):

e Do memcached fimpeg v Additionally finds 13, 58 and 32 races;
300, void bifs_tree_unlodk(.) { 127. void brfs._tree_read_lock(-) | . .
v’ Covers 88%, 118% and 58% more thread interleavings.

Time Time
Growth of covered concurrent call pairs in comparison

TEETE

£
witersieb),|_p] 135, BUG_ON(eb-sblocking_wriers == 088 .| S

313 ebsbl H
151 wait_event(eb->write_lock wa, £

152 g

S

2.} T~ 15: eb->blocking_ writers == 0); conaz, w -
o
159. } Oh ah Bh 12h 16h 20h 24h H
Harmful race in the btrfs filesystem "';'s‘“ r:;:r‘s CO“CIUSlon
£ 700¢

Thread 1 Thread 2 3.
FILE: Tinax 575/ bmar.c [LE: Tnun /o _Toamarc
487, void taEnd(..) 1442, nt ImLogClosel..]

501, 55 = JFS_SBtbik->sb)->log; //ready [1444. ~ Sictfs_sb_info *sbi= JFS_SBI(sb);
534 if (“tog->active == 0) //logisNULL | M1ass. Shi>log = NULL; // write
js6.) J1503.}

® Existing fuzzers are limited in testing concurrent programs.
® We design a new concurrency fuzzing framework named

oh an s 1h 1

Harmful race in the jfs filesystem Growth or;’mzovered concurrent cg’rlepairs CONZZER' which can effeCtively cover infrequent thread
) interleavings and detect hard-to-find data races.
¥ Many found data races cause severe security problems. ® CONZZER finds many harmful data races in both user-level

v" CONZZER covers 19% more thread interleavings than the

applications and kernel-level filesystems.
method performing random-delay injection.

	CONZZER+poster.pdf
	幻灯片编号 1

