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Paper 

abstract 

Fuzzing is popular for bug detection and vulnerability discovery nowadays. To adopt 

fuzzing for concurrency problems like data races, several recent concurrency fuzzing 

approaches consider concurrency information of program execution, and explore 

thread interleavings by affecting thread scheduling at runtime. However, these 

approaches are still limited in data-race detection. On the one hand, they fail to 

consider the execution contexts of thread interleavings, which can miss real data 

races in specific runtime contexts. On the other hand, they perform random thread-

interleaving exploration, which frequently repeats already covered thread 

interleavings and misses many infrequent thread interleavings. 

 

In this paper, we develop a novel concurrency fuzzing framework named CONZZER, to 

effectively explore thread interleavings and detect hard-to-find data races. The core 

of CONZZER is a context-sensitive and directional concurrency fuzzing approach for 

thread-interleaving exploration, with two new techniques. First, to ensure context 

sensitivity, we propose a new concurrency-coverage metric, concurrent call pair, to 

describe thread interleavings with runtime calling contexts. Second, to directionally 

explore thread interleavings, we propose an adjacency-directed mutation to generate 

new possible thread interleavings with already covered thread interleavings and then 

use a breakpoint-control method to attempt to actually cover them at runtime. With 

these two techniques, this concurrency fuzzing approach can effectively cover 

infrequent thread interleavings with concrete context information, to help discover 

hard-to-find data races. We have evaluated CONZZER on 8 user-level applications and 

4 kernel-level filesystems, and found 95 real data races. We identify 75 of these data 

races to be harmful and send them to related developers, and 44 have been 

confirmed. We also compare CONZZER to existing fuzzing tools, and CONZZER 

continuously explores more thread interleavings and finds many real data races 

missed by these tools. 
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Research Problem 

Existing fuzzing approaches are limited in detecting concurrency problems like data races. On one hand, they fail to consider 
the execution contexts of thread interleavings. On the other hand, they lack effective techniques to perform thread-
interleaving exploration. In this paper, we propose a concurrency fuzzing framework named CONZZER which performs context-
sensitive and directional thread-interleaving exploration for data-race detection. 

Introduction 

Data races can cause critical security problems like privilege escalation. To detect data races, many developers utilize fuzzing 
tools with data-race checkers to test concurrent programs. However, existing fuzzing approaches are limited in race detection. 
First, they use context-insensitive coverage metrics as fuzzing feedback and thus miss many deep data races that occur only in 
specific runtime contexts. Second, they perform random thread-interleaving exploration which is indicated to be inefficient. 

To solve these limitations, we present CONZZER, a concurrency fuzzing framework that can explore infrequent thread 
interleavings and detect hard-to-find data races. CONZZER uses a new concurrency coverage metric, concurrent call pair, to 
describe thread interleavings with their runtime calling contexts as fuzzing feedback. Moreover, CONZZER incorporates 
adjacency-directed mutation and deterministic breakpoint control to perform directional thread-interleaving exploration. 

Methodology 

① Context-sensitive concurrency coverage 

        |--- Concurrent call pair 

② Directional thread-interleaving exploration 

        |--- Adjacency-directed mutation 

        |--- Deterministic breakpoint control 

Evaluation 

 CONZZER finds 95 (75 harmful) data races in 12 programs. 

 Many found data races cause severe security problems. 
 CONZZER covers 19% more thread interleavings than the 

method performing random-delay injection. 

Comparison 

CONZZER vs. existing fuzzer (AFL++, Syzkaller, inst-pair-fuzzer): 
 Additionally finds 13, 58 and 32 races; 
 Covers 88%, 118% and 58% more thread interleavings. 

Conclusion 

 Existing fuzzers are limited in testing concurrent programs. 
 We design a new concurrency fuzzing framework named 

CONZZER, which can effectively cover infrequent thread 
interleavings and detect hard-to-find data races. 

 CONZZER finds many harmful data races in both user-level 
applications and kernel-level filesystems.  
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Process of context-sensitive and directional fuzzing 

void btrfs_tree_read_lock(…) {
……
BUG_ON(eb->blocking_writers == 0 && …);
……
wait_event(eb->write_lock_wq,

eb->blocking_writers == 0);
……

}

127.

135.

151.
152.

159.

FILE: btrfs/locking.c

Thread 2

void btrfs_tree_unlock(…) {
…..
btrfs_assert_no_spinning_writers(eb);
eb->blocking_writers--;
…..

}

300.

312.
313.

324.

FILE: btrfs/locking.c

Thread 1

Harmful race in the btrfs filesystem 

FILE: linux/fs/jfs/jfs_txnmgr.c
487. void txEnd(...) {
             ......
501.     log = JFS_SBI(tblk->sb)->log;  // read 
             ......
534.     if (--log->active == 0)  // log is NULL
             ......
564. }

FILE: linux/fs/jfs/jfs_logmgr.c
1442. int lmLogClose(...) {
               ......
1444.     struct jfs_sb_info *sbi = JFS_SBI(sb);
               ......
1455.     sbi->log = NULL;  // write 
               ......
1503. }

Thread 1 Thread 2

Harmful race in the jfs filesystem 
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Growth of covered concurrent call pairs 
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