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Abstract—Existing fingerprinting attacks on IoT devices have
primarily focused on closed-world settings and lack comprehen-
sive open-world analysis. In this poster, we try to understand how
effectively an attacker can fingerprint unseen targeted IoT devices
when building a classifier using either devices manufactured by
the same company or devices with similar functionality. We find
that an adversary benefits when the training set contains at least
one device type per company, enabling it to predict the other
devices manufactured by the same company even when the device
functionality might be different.

I. INTRODUCTION

Recent years have seen a surge in popularity in smart home
IoT products due to the convenience they provide through the
automation of appliances. However, such convenience often
comes with unforeseen security and privacy risks. For example,
simply knowing which devices are present in a household can
be sensitive, e.g., knowing the existence of a heart rate monitor
within a home can reveal the health condition of the inhabitant.
Similarly, knowing the exact make and model of a smart lock
can potentially help an adversary launch targeted attacks, e.g.,
exploiting known vulnerabilities that remain unpatched.

Researchers have recently exploited network traffic gener-
ated by IoT devices to uniquely fingerprint such devices [3],
[7] and infer their device-level activities [4], [6], [9]. However,
existing fingerprinting attacks on IoT devices have focused
on closed-world settings where the devices can be identified
with high accuracy and lack any comprehensive open-world
analysis — something that an adversary is bound to face in
any real-world setting. In this paper, we focus on determining
to what extent an adversary can successfully fingerprint IoT
devices in the open-world setting; more specifically, we focus
on targeted attacks where the attacker is focusing on inferring
a specific device manufactured by a specific vendor or simply
a certain category of IoT devices. To answer this question, we
first collect network traffic generated by a significant number
of IoT devices. Next, we build our own device fingerprinting
technique using well-known features [1] and perform open-
world evaluations to quantify how well an attacker can launch
targeted attacks.

II. METHODOLOGY

Datasets. We used six different datasets containing a total
of 188 IoT devices (out of which 120 were unique make
and model). Some of the datasets also contained traffic
from non-IoT devices such as printers, phones, laptops and
tablets. These datasets contain popular public datasets such

as YourThings [2], UNSW IoT traces [8]. Other datasets
from recent works were made available upon request such as
Mon(IoT)r datasets [6], HomeSnitch [4] and PingPong [9].
We also collect our own dataset. These datasets contain traffic
from multiple geographical regions such as the US, Europe,
Australia. They also contain different types of traffic, such
as continuous and event-based traffic, and vary in time from
when they were collected from 2016 to 2021. We combined
all these datasets and their devices in one combined dataset
for our analysis in an open-world setting. We extracted 154
features using 5-minute windows out of which 21 features are
multi-valued bag-of-words representation which are serialized
and one-hot encoded during model training

Threat model. Our threat model is defined as any passive on-
path adversary sniffing network traffic from the home router.
This definition can include an ISP or any other upstream
sniffer. The adversary is also able to use the datasets available
publicly and, if needed, can also collect its own traffic.
However, the adversary cannot access the local area traffic
(e.g., ARP) and does not modify any traffic from the devices.
The adversary is also constrained by the fact that they cannot
collect or otherwise obtain a dataset that contains data from
all IoT devices in the wild.

Open-world Perspective. Traditional work on IoT device fin-
gerprinting has focused on closed-world fingerprinting where,
given a labeled dataset, they train and test on data from the
same dataset. In the real world, however, many devices are not
seen by the classifier. So a useful insight, in this case, is to
determine if a given device is among the devices previously
seen by the classifier or not. The next step is to gain additional
information about the unseen devices. For example, if the
classifier has not seen a Nest Camera but has seen other
cameras, it can classify the device as a camera.

Classifier Design. In terms of machine learning models,
we found Random Forests [5] to be most effective (we
also tested SVM and decision trees). We set the number
of trees in the forest to 100 (i.e., n estimators=100). We
did not use deep-learning techniques for better explainability,
like understanding why certain features rank at the top. To
evaluate the effectiveness of our model, we use well-known
metrics, like accuracy, precision and recall. We perform 5-fold
cross-validation to account for the randomness inherent in the
training data and repeat the whole process 10 times to account
for any randomness inherent to the Random Forest model. We
report the mean and 95% confidence interval (CI) over 10 runs
unless mentioned otherwise.
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Fig. 1. Process of creating train and test set for the targeted attack scenario.
Each shape is a device sample and same shapes denote samples from the same
device. Red and black color denote target and other devices respectively.
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Fig. 2. t-SNE scatter plot showing different devices with similar functionality
and vendor have similar fingerprints

Targeted Attacks. The aim is to identify similar devices. If
we have devices from the same vendor, e.g., Amazon Echo
Dot, we want to see if we can then identify, using network
traffic only, other devices from that vendor, e.g., Amazon Echo
Look. The first step is to identify the target group of devices.
We label all the target device samples as ”target” and all the
other devices, which are a mix of IoT and non-IoT devices,
as ”other”. These are colored as red and black in Figure 1,
respectively. We then randomly split devices equally from both
sets to create the corresponding seen and unseen datasets. We
then perform a standard 80:20 train-test split on the datasets
and use only the seen dataset to create the train set while both
unseen and seen samples are used to create the test set. We
then train the classifier using only the devices in the train set.
We then measure the performance of the classifier using the
test dataset. The overall process is explained in Figure 1.

III. RESULTS

We evaluated our approach on different possible target
groups, including groups such as similar series of devices,
devices from the same vendor, devices with similar func-
tionality, and a combination of these possible groups. The
results are shown in Table I. We see high accuracy across
the board, and precision is on the higher side as well. In
certain cases, we observe low recall scores. This occurs for
devices/groups which are more generic, e.g., different models
of Roku TV provide Amazon Alexa and Google Assistant
support. Some groups also contain devices from different
vendors, which might be different in their functionality as well,

TABLE I. EFFECTIVENESS OF CLASSIFIER UNDER TARGETED DEVICE
SETTINGS

Group Accuracy Precision Recall

Geeni Cameras 98.03 (0.44) 89.39 (4.61) 69.26 (10.09)
Google Home Devices 99.74 (0.12) 99.66 (0.64) 88.98 (5.5)
Roku TV 98.6 (0.38) 91.37 (4.98) 61.42 (12.62)
Ring Doorbells 98.46 (0.47) 99.94 (0.05) 65.9 (10.45)
Amazon Echo Devices 97.78 (0.53) 88.47 (3.9) 69.72 (9.59)
Belkin WeMo Devices 99.73 (0.21) 99.68 (0.37) 96.9 (2.48)
Smart Switches 95.29 (0.59) 77.24 (4.86) 60.67 (6.34)

e.g., Smart plugs and switches are made by a lot of different
vendors. Conversly, Belkin WeMo and Google Home have less
variability in their network fingerprints, as shown through the
scatter plot in Figure 2.

IV. CONCLUSION AND DISCUSSION

We show that it is possible to fingerprint previously unseen
devices which are similar to other devices with high accuracy
and precision. We also observe that these IoT device finger-
prints are relatively stable over time (our datasets cover data
over multiple years) because of minimal updates and changes
in traffic patterns. Furthermore, we observe that some devices
have similar fingerprints, e.g., Belkin WeMo devices and
potentially share the same network stack and infrastructure.
Overall, the network traffic of an IoT device can be easily
fingerprinted, and in the future, we plan to explore feasible
countermeasures.

REFERENCES

[1] D. Ahmed, A. Das, and F. Zaffar, “Analyzing the feasibility and gener-
alizability of fingerprinting internet of things devices,” Proceedings on
Privacy Enhancing Technologies (PoPETs), vol. 2022, no. 2, 2022.

[2] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security
evaluation of home-based IoT deployments,” in Proceedings of the 40th
IEEE Symposium on Security and Privacy (SP), 2019, pp. 1362–1380.

[3] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and
N. Feamster, “Spying on the smart home: Privacy attacks and defenses
on encrypted IoT traffic,” CoRR, vol. abs/1708.05044, 2017. [Online].
Available: http://arxiv.org/abs/1708.05044

[4] T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and A.-
R. Sadeghi, “Homesnitch: behavior transparency and control for smart
home IoT devices,” in Proceedings of the 12th Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec), 2019, pp. 128–
138.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[6] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, “Information exposure from consumer IoT devices: A mul-
tidimensional, network-informed measurement approach,” in Proceedings
of the 19th Internet Measurement Conference (IMC), 2019, pp. 267–279.

[7] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying IoT devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, vol. 18, no. 8, pp. 1745–1759, 2018.

[8] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wije-
nayake, A. Vishwanath, and V. Sivaraman, “Characterizing and classi-
fying IoT traffic in smart cities and campuses,” in IEEE Conference on
Computer Communications Workshops, 2017, pp. 559–564.

[9] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky, “Packet-
level signatures for smart home devices,” in Proceedings of the 27th
Annual Network and Distributed System Security Symposium (NDSS),
2020.

2



RESULTS

o We show we can achieve good AUC scores for open-
world settings and distinguish effectively between 
previously known and unknown devices.

o We show, compared to extended open-world 
containing all devices to gain additional information, 
we achieve much better results when targeting a 
particular device group.

o We observed high accuracy values across the board, 
and relatively high precision values as well.

o We observe that certain recall values were low, 
which occur in groups that have more generic 
devices.

o We observe better results on target groups with 
similar fingerprints as seen is t-SNE scatter plot.

o Overall, we observe that it is fairly easy to fingerprint 
the network traffic of an IoT device.

INTRODUCTION

o There has been a rapid increase in prevalence of 
IoT devices, which can lead to unforeseen 
security and privacy risks.

o We aim to see if, in an open-world setting, an 
adversary can successfully fingerprint previously 
unseen devices with a high degree of precision.

o To that end, we aim to identify devices which 
have a similar functionality, such as identifying an 
Amazon Echo Dot device from network traffic 
from other Amazon devices.

METHODOLOGY

o We used data from 6 datasets including 188 
IoT devices, of which 120 were unique make 
and models.

o We split target group devices and other 
devices randomly into to seen and unseen sets 
as shown in the Figure below.

o We use a Random Forest classifier (100 trees).
o We use 154 features out of which 21 were bag-

of-word representation for features such as 
ports, ips, hostnames.

o We also vary the ratio of known-to-unknown 
devices and show even with decent ratios 
results are similar

We show attackers can fingerprint previously unseen 
devices in an open-world setting with an average 

accuracy of more than 97%

Fingerprinting IoT Devices in Open-world Setting
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Device Group Accuracy Precision Recall

Geeni Cameras 98.03 89.39 69.26

Google Home 99.74 99.66 88.98

Roku TV 98.6 91.37 61.42

Ring Doorbells 98.46 99.94 65.9

Amazon Echo 97.78 88.47 69.72

Belkin WeMo 99.73 99.68 96.9

Smart Switches 95.29 77.24 60.67

Splitting devices for targeted attacks

Varying known-to-unknown ratio against metrics

t-SNE Scatter plot of device samples

FUTURE DIRECTIONS
o Generalizability of classifiers across time and space.
o Feasible countermeasures.

Contact:
o Dilawer Ahmed (dahmed2@ncsu.edu)

Name (Country) Capture Period 
(Duration in days)

IoT Devices 
(Unique)

YourThings (US) Early 2018 (11) 45 (45)

HomeSnitch(US) Early 2020 (12) 28 (24)

PingPong (US) Late 2019 (51) 18 (17)

Mon(IoT)r (US) Early 2019 (14) 41 (41)

Mon(IoT)r (UK) Early 2019 (17) 29 (29)

UNSW (AU) Late 2016 (21) 19 (19)

Our (US) Early 2020 (11) 8 (8)

Dataset information
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