
Poster: Fully Homomorphic Secret Sharing with
Output Verifiability

Arup Mondal
Ashoka University

arup.mondal phd19@ashoka.edu.in

Pratyush Ranjan Tiwari
Johns Hopkins University

pratyush@cs.jhu.edu

Debayan Gupta
Ashoka University

debayan.gupta@ashoka.edu.in

Abstract—We study, motivate, and construct the first fully
homomorphic secret sharing scheme with public verifiability. In
our scheme, n clients secret-share data to m servers to outsource
joint computation on private inputs. The ability to evaluate a
variety of functions due to the fully homomorphic nature of
the scheme increases possible application areas, and verifiability
allows any user to check output correctness. We note that previous
claims of achieving the same properties had major defects (they
assumed clients could solve discrete log).

I. INTRODUCTION AND PRELIMINARIES

We show an important catch in Tsaloli et al.’s verifiable
homomorphic secret sharing (VHSS) [1]: the verifiability
algorithms proposed for the multiplicative part of the scheme
are actually the ones that would work for making the additive
part verifiable. Specifically, [1] assumes that each participant
pi has private input xi but also x̃i such that gx̃i = xi, which
implies that every party can solve discrete log, but the
adversary cannot. The additive part of their scheme works
for the addition of secrets whereas the multiplicative part only
works for the multiplication of secrets, unless we can solve
discrete log. Any protocol in such a setting is not meaningful
as no combination of the two operations is possible. We detail
a fresh construction of the VHSS scheme which satisfies the:
Verifiability and Homomorphism. An ideal scheme would also
achieve efficiency through batching of proofs; our current
system, while correct, is inefficient, especially in terms of size.

Definition 1.1 (Homomorphic Secret Sharing): This is de-
fined by the following tuple of PPT algorithms:

• ShareSecret(1λ, i, xi): Pick polynomial pi of the form
pi(X) = xi + a1X + a2X

2 ++ atX
t where the

coefficients ai are selected uniformly at random from
F. And the degree t follows t.n < m. Output shares
(xi1, xi2, ..., xim).

• PartialEval(j, (x1j, x2j,, xnj)) : For the input j, we
must be able to compute for all i ∈ [n] the sum or the
product, shares of which, yj are then outputted.

• FinalEval(y1, y2,, ym): Takes as input the partial
evaluations and outputs their sum or product for
the final evaluation, y = y1 + y2 + + ym or
y = y1.y2.....ym.

Definition 1.2 (Verifiable Homomorphic Secret Sharing):
We add the following algorithms for verifiability, constructions
of which are detailed later:

• PartialProof(j, (x1j, x2j,, xnj)) : Proof share for j.

• FinalEval(y1, y2,, ym): Takes as input the partial
evaluations and outputs their sum or product.

• FinalProof(σ1, σ2,, σm) : Takes as input the partial
proofs and outputs the final proof, σ = σ1.σ2.....σm.

• Verify(σ, y): Check proof validity, return true/false.

Definition 1.3 (Self-Bilinear Maps): Self-Bilinear maps
are bilinear maps such that the groups in the domain of
the map are identical to the output group. G is a cyclic
group of order p. The generator of G is g. A self-bilinear
map is e : G × G → G. A self-bilinear map can be used
to construct multilinear maps by recursion as follows:
en+1 (X1, . . . , Xn, Xn+1) := e (en (X1, . . . , Xn) , Xn+1)

Self-Bilinear Maps from inversion hard rings: Self-
bilinear maps from inversion hard rings are constructed in
the paper[2]. Yamakawa et al. [2] use additive notation to
describe there bilinear map. However, we use the multiplicative
notation in our construction (see [2]). This is not a problem as
conversion between the two notations is easy. The main issue
with this construction self-bilinear maps is that there exists no
candidate ring with efficiently computable group operations
that satisfy c-inversion. We note that in this paper, we do not
attempt to find or describe a candidate ring with efficiently
computable group operations that satisfy c-inversion.

II. VERIFIABLE ADDITIVE HSS

We start with a recent scheme [1] where multiple
clients employ multiple servers to perform computation
of a function on their joint input. There are n clients
{c1, c2,, cn} who employ m servers {s1, s2,, sm} to
calculate f(x1, x2,, xn) where {x1, x2,, xn} are
the respective inputs of the n clients; corruption of upto
t servers is tolerated. Such a scheme exists if and only if
m > n.t. There are two main schemes: (1) an additive HSS
scheme for adding n inputs and (2) a Verifiable Homomorphic
Secret Sharing scheme that calculates f on n inputs; the
function f calculates the product of the inputs. A VHSS
scheme allows any user to confirm final output (rather than
each share). However, [1] assumes that each client ci has
private input xi but also x̃i such that gx̃i = xi, which
implies that every party can solve the discrete logarithm
problem. The additive part of their scheme works for addition
of secrets {x1, x2,, xn} whereas the multiplicative part
only works for multiplication of secrets {gx1 , gx2 ,, gxn}.
Unless we can solve discrete log, no combination of the two
operations is possible. The construction of our additive HSS
scheme as follows:

For a finite field F with |F| > m, security parameter λ, let
θi1,, θim be distinct field elements, for any i ∈ {n} there
exist λi1,, λim such that over some univariate polynomial
pi of degree t over F we have pi(0) =

∑m
i=1 λijpi(θij). Each

client ci distributes a share of their secret to each servers for the
server to compute the partial sum yi (for server si) following
which any user can easily compute the final sum.

Definition 2.1 (Additive HSS): An additive HSS scheme is
defined by the following tuple of PPT algorithms:

• ShareSecret(1λ, i, xi): Pick polynomial pi of the form
pi(X) = xi + a1X + a2X

2 ++ atX
t where the

coefficients ai are selected uniformly at random from
F. And the degree t follows t.n < m.
Output (xi1, xi2, ..., xim) =
(λi1.pi(θi1), λi2.pi(θi2, ..., λim.pi(θim)).

• PartialEval(j, (x1j, x2j,, xnj)) : For the input j,
compute for all i ∈ [n] the sum xij = λijpi(θij).
Output yj =

∑n
i=1 λijpi(θij).

• FinalEval(y1, y2,, ym): Takes as input the partial
evaluations and outputs their sum for the final eval-
uation, y = y1 + y2 ++ ym.

Definition 2.2 (Additive VHSS): An additive VHSS
scheme is defined by the following tuple of PPT algorithms:

• ShareSecret(1λ, i, xi): Pick polynomial pi of the
form pi(X) = xi + a1X + a2X

2 + +
atX

t where the coefficients ai are selected uni-
formly at random from F. And the degree t
follows t.n < m. Output (xi1, xi2, ..., xim) =
(λi1.pi(θi1), λi2.pi(θi2, ..., λim.pi(θim)).

• PartialEval(j, (x1j, x2j,, xnj)) : For the input j,
compute for all i ∈ [n] the sum xij = λijpi(θij).
Output yj =

∑n
i=1 λijpi(θij).

• PartialProof(j, (x1j, x2j,, xnj)) : Share of proof for
j; output σj = e(g, gx1j .gx2jgxnj) = e(g, gy

j

),
where e : G×G.→ Gk

• FinalEval(y1, y2,, ym): Takes partial evals and out-
puts their sum for the final eval, y = y1+y2+.....+ym.

• FinalProof(σ1, σ2,, σm) : Takes as input the partial
proofs and outputs their product for the final proof,
σ = σ1.σ2.....σm.

• Verify(σ, y): Check σ = e(g, gy); return
1(equal)/0(not).

Notice that the partial proof computes σj =
e(g, gx1j .gx2jgxnj) = e(g, gΣixij), and Σixij is simply
yj . When these partial proofs are multiplied, we get the
following product: e(g, gy

1

) × e(g, gy
2

) × · · · × e(g, gy
m

).
By the basic properties of bilinear pairings, this equals
e(g, g)y

1 × e(g, g)y
2 × · · · × e(g, g)y

m

= e(g, g)Σiy
i

=
e(g, gΣiy

i

) = e(g, gy), as required.

III. VERIFIABLE MULTIPLICATIVE HSS

We present the scheme as in [1]. We plan to leverage
multiplicative Beaver triples and our additive scheme to pro-
duce a verifiable, multiplicative framework. The setup for

the multiplicative VHSS scheme is similar and uses bilinear
pairings. Every time a computation is performed, a proof of it
has to be published, and can be checked using Verify.

Definition 3.1 (Multiplicative HSS): A multiplicative HSS
scheme is defined by the following PPTA:

• ShareSecret(1λ, i, xi): Pick polynomial pi of the form
pi(X) = xi + a1X + a2X

2 ++ atX
t where the

coefficients ai are selected uniformly at random from
F, degree t follows t.n < m. Output (xi1, xi2, ..., xim)
such that xi1.xi2....xim = xi

• PartialEval(j, (x1j, x2j,, xnj)) : For the input j,
compute the product x1j .x2j .. .xnj = yj .

• FinalEval(y1, y2,, ym): Takes as input the partial
evaluations and outputs their product for the final
evaluation, y = y1.y2.....ym.

Definition 3.2 (Multiplicative VHSS): A multiplicative
VHSS scheme is defined by the following PPTA:

• ShareSecret(1λ, i, xi): Pick polynomial pi of the form
pi(X) = xi + a1X + a2X

2 ++ atX
t where the

coefficients ai are selected uniformly at random from
F, degree t follows t.n < m. Output (xi1, xi2, ..., xim)
such that xi1.xi2....xim = xi

• PartialEval(j, (x1j, x2j,, xnj)) : For the input j,
compute the product x1j .x2j .. .xnj = yj .

• PartialProof(j, (x1j, x2j,, xnj)) : Share of proof for
j; output σj = en (gx1j , . . . , gxnj), where en is the
multinear map constructed from the self-bilinear map
e : G×G.→ G.

• FinalEval(y1, y2,, ym): Takes as input the partial
evaluations and outputs their product for the final
evaluation, y = y1.y2.....ym.

• FinalProof(σ1, σ2,, σm) : Takes as input the partial
proofs and outputs their product for the final proof,
σ = em(σ1.σ2.....σm). where em is the multinear map
constructed from the self-bilinear map e : G × G. →
G.

• Verify(σ, y): Check if σ = e(g, gy) return 1 if both
are equal, else return 0.

A summary of the above scheme is that secret x is split
as

∏n
i=1 xi then these xi’s are split over m different server’s

as xi = xi1.xi2......xim. As a result what we get is this
matrix m× n matrix where the ij’th element is xij such that
x =

∏m
j=1

∏n
i=1 xij =

∏n
i=1

∏m
j=1 xij . These products are

checked in the exponent using the multilinear map construction
via self-bilinear maps.

REFERENCES

[1] G. Tsaloli, B. Liang, and A. Mitrokotsa, “Verifiable homomorphic secret
sharing,” in Provable Security - 12th International Conference, ProvSec
2018, Jeju, South Korea, October 25-28, 2018, Proceedings, 2018, pp.
40–55.

[2] T. Yamakawa, S. Yamada, G. Hanaoka, and N. Kunihiro, “Generic
hardness of inversion on ring and its relation to self-bilinear map,” Theor.
Comput. Sci., vol. 820, pp. 60–84, 2020.

2

Poster: Fully Homomorphic Secret Sharing with Output Verifiability
Arup Mondal1, Pratyush Ranjan Tiwari2, Debayan Gupta1

1Ashoka University, 2Johns Hopkins University
arup.mondal phd19@ashoka.edu.in, pratyush@cs.jhu.edu, debayan.gupta@ashoka.edu.in

Objectives

We study, motivate, and construct the first fully homomorphic secret
sharing scheme with public verifiability. Figure 1 present a schematic
overview of the problem of outsourcing computations, where n partic-
ipants secret-share data to m servers to outsource joint computation on
joint inputs with output verification.

Figure 1: n participants compute the joint function g (addition or multiplication) of their joint inputs to m servers with
publicly output verifiable.

We detail a fresh construction of the verifiable homomorphic secret
sharing scheme which actually satisfies the requirements, discussing
two essential properties::

• Homomorphism: Arbitrary computations on shared inputs based on
local computations on their shares.

• Verifiability: Ensure any participants can efficiently confirm and
verify the final output (rather than each share) is correct.

Self-Bilinear Maps

Self-Bilinear maps are bilinear maps such that the groups in the do-
main of the map are identical to the output group. G is a cyclic
group of order p. The generator of G is g. A self-bilinear map is
e : G × G → G. A self-bilinear map can be used to construct
multilinear maps by recursion as follows: em (X1, . . . , Xm−1, Xm) :=

e (em−1 (X1, . . . , Xm−1) , Xm).

Additive Verifiable Homomorphic Secret Sharing

Participants
with Secrets

Servers
S1 S2 . . . Sm

x1 x11 x12 . . . x1m
x2 x21 x22 . . . x2m
.
xn xn1 xn2 . . . xnm

Partial Eval
(Addition) y1 =

∑n
i=1 xi1 y2 =

∑n
i=1 xi2 . . . ym =

∑n
i=1 xim

Partial Proof σ1 = e(g, gy
1

) σ2 = e(g, gy
2

) . . . σm = e(g, gy
m

)
Final Eval
(Addition) y =

∑m
i=1 y

i

Final Proof σ =
∑m

i=1 σ
i

Verify σ = e(g, gσ)

Table 1: Additive Verifiable Homomorphic Secret Sharing Construction and Functionalities.

Notice that the partial proof (in Table 1) computes σj =

e(g, gx1j.gx2j.....gxnj) = e(g, gΣixij), and Σixij is simply yj. When
these partial proofs are multiplied, we get the following product:
e(g, gy

1

)×e(g, gy
2

)×· · ·×e(g, gy
m

). By the basic properties of bilinear
pairings, this equals e(g, g)y

1×e(g, g)y
2×· · ·×e(g, g)y

m

= e(g, g)Σiy
i

=

e(g, gΣiy
i

) = e(g, gy), as required.

Multiplicative Verifiable Homomorphic Secret Sharing

Participants
with Secrets

Servers
S1 S2 . . . Sm

x1 x11 x12 . . . x1m
x2 x21 x22 . . . x2m
.
xn xn1 xn2 . . . xnm

Partial Eval
(Multiplication) y1 =

∏n
i=1 xi1 y2 =

∏n
i=1 xi2 . . . ym =

∏n
i=1 xim

Partial Proof σ1 σ2 . . . σm

Final Eval
(Multiplication) y =

∏m
i=1 y

i

Final Proof σ = em(σ
1, . . . , σm)

Verify σ = e(g, gσ)

Table 2: Multiplicative Verifiable Homomorphic Secret Sharing Construction and Functionalities.

A summary of the above scheme (in Table 2) is that secret x is
split as

∏n
i=1 xi then these xi’s are split over m different server’s as

xi = xi1.xi2.xim. As a result what we get is this matrix m × n

matrix where the ij’th element is xij such that x =
∏m

j=1

∏n
i=1 xij =∏n

i=1

∏m
j=1 xij. These products are checked in the exponent using the

multilinear map construction via self-bilinear maps.

Applications with Asymptotic Complexity Comparison

Privacy-Preserving Machine Learning: The proposed primitives
provide the following three features over existing schemes:

• Privacy and correctness against the semi-honest corruption of any
subset of servers and participants.

• Privacy against any t-malicious server (t is the threshold of a thresh-
old secret sharing scheme).

• Detect the manipulation of the inference results with short evidence
(using output verifiability).

Paper
Threat Model No. of

Server(s)

Privacy
Guarantee Comms.

Output
Verify

Participants Servers Computation Output

[2] dishonest
1-server

dishonest 3 yes yes 2 round no
This
Work dishonest

t-server
dishonest m yes yes 1 round yes

Table 3: Comparison between a secret-shared privacy-preserving neural network training framework and what would
happen if VHSS was used instead.

Privacy-Preserving Federated Learning: The proposed primitives
can enable an improved federated learning (FL) framework by intro-
ducing multiple FL aggregators to design a distributed network of FL
aggregators A, where each A aggregates each participant’s secret-
shared model parameters and produces a proof of the computation.
This reduces the risk of a malicious aggregator by distributing the task.

Paper
Threat Model Decentralized

FL Server(s)

Privacy
Guarantee Comms.

Output
Verify

Participants FL servers Compute Output
[1] dishonest semi-honest No yes yes 3 round no

This
Work dishonest

t-server
dishonest Yes yes yes 1 round yes

Table 4: Comparison between a secret-shared privacy-preserving federated learning framework and what would happen
if VHSS was used instead.

References
[1] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ram-

age, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 1175–1191, 2017.

[2] Prashanthi Ramachandran, Shivam Agarwal, Arup Mondal, Aastha Shah, and Debayan Gupta. S++: A fast
and deployable secure-computation framework for privacy-preserving neural network training. arXiv preprint
arXiv:2101.12078, 2021.

[3] Georgia Tsaloli, Bei Liang, and Aikaterini Mitrokotsa. Verifiable homomorphic secret sharing. In International
Conference on Provable Security, pages 40–55. Springer, 2018.

