
Poster: PA-Boot: A formally Verified Processor
Authentication Protocol for SMP Secure Boot

Zhuoruo Zhang, Rui Chang, Qinming Dai, Kui Ren
Zhejiang University

{zhangzhuoruo, crix1021, qinm dai, kuiren}@zju.edu.cn

Abstract—Multi-processor SoC systems are widely used nowa-
days. Symmetric multiprocessing (SMP) is a popular architecture
for multiprocessor systems, which classifies the processors into
a bootstrap processor (BSP) and multiple application processors
(APs). The authenticity of APs is under-examined since the APs
are trusted by default. However, it turns out to be vulnerable
when introducing the supply chain attack aiming to replace or
counterfeit the APs.

In this paper, we systematically investigate critical stages of
SMP system boot process, and discover a fundamental and
non-trivial attack due to the lack of AP authentication. To
mitigate the new attack, we propose PA-Boot, the first formally
verified processor authentication protocol for secure boot of
SMP systems. PA-Boot is proved to be functionally correct,
and is guaranteed to detect different adversarial behaviors, e.g.,
replacement of AP, tampering with certificates, and man-in-the-
middle attacks. The fine-grained formal specification and its fully
mechanized security proofs are carried out in the theorem prover
Isabelle/HOL with 305 lemmas/theorems and ∼7,000 LOC. We
also implement PA-Boot in C as a prototype, and the performance
and security evaluations show that it can identify boot process
attacks efficiently and improve the security of SMP systems.

I. INTRODUCTION

Attacks during boot process are arguably the most difficult
to defend against because at this stage in a device’s lifecycle,
traditional defences such as firewalls and anti-viruses are not
in place, and attacks are difficult to detect [1]. A common
defence against boot attacks is authenticated or secure boot [2].
Recent works have shown a growing interest in secure boot
verification both in academia and industry. However, despite
extensive research focusing on boot process for uniprocessors,
little attention has been paid to whether and how these verifi-
cation techniques can be applied to symmetric multiprocessing
(SMP) systems. SMP refers to the computer architecture where
multiple identical processors are interconnected to a single
shared main memory, with full accessibility to all the I/O
devices. Nowadays, given the increasing popularity of SMP
systems, it is imperative to guarantee the security of their boot
process.

In this paper, we focus on a fundamental but neglected
problem for SMP secure boot, which is a specific type of
attack stemming from the authentication of the application
processors (AP). Specifically, while all the processors in a
compliant system are functionally identical, SMP specification
classifies them into two types: the bootstrap processor (BSP)
and the application processors (AP). In the boot process, each
processor first executes boot code in its own bootROM. Then,

the BSP is responsible for initializing the system and booting
the operating system; APs are activated only after the operating
system is up and running with the same privilege as the BSP.
General permission includes access to peripherals, memory or
other hardware devices. Nevertheless, this mechanism renders
a severe vulnerability. Specifically, an attacker can replace
the BSP with a bootkit implanted one and tamper with the
bootROM and mutable code. Therefore, this malicious AP can
communicate with the BSP with the intent of getting access
to secret information or authorized services, even tampering
with the system runtime data.

The boot process has been developed to modern SMP
systems for years, and not enough attention is paid to the
security of the boot process since the APs are considered as
trusted by default. However, it turns out to be vulnerable in our
analysis when introducing the prominent supply chain attack.
More specifically, the customer’s device can be intercepted
and implanted with additional chip or a modified version of
the chip, either at the manufacturing site or on its way from the
manufacturer to the customer. Known attacks using modified,
replaced, or counterfeit chips raise the question of whether
such a shift of trust is justified [3].

To meet the requirement for stronger security in such a
scenario, we dig into the SMP system boot process and
develop a processor authentication protocol, called PA-Boot,
to validate the authenticity of APs. We also specify and
verify PA-Boot based on formal techniques, providing a strong
assurance of its correctness and security. In addition, guided
by principles of practicality and performance, we implement
PA-Boot as a prototype. It offers the user a trusted and efficient
way to ensure whether the processor is genuine or has been
manipulated. To the best of our knowledge, this is the first
study that systematically verifies the authenticity of APs in
SMP boot process based on formal methods.

In detail, the technical contributions of our work are as
follows:

• Systematical investigation: We systematically investi-
gate critical stages of SMP system boot process and
discover a novel attack in AP authentication.

• Formally verified PA-Boot: To address the above prob-
lem, we propose a processor authentication protocol,
named PA-Boot, that can satisfy security goals for se-
cure boot in the presence of an active attacker exe-
cuting simultaneously with the protocol. We provide a
mechanically checked formal specification for PA-Boot

TABLE I: Security statistics for three types of attacks.
Error code: ❶=version error; ❷=datatype error; ❸=reserved space is not empty; ❹=length field error; ❺=verifying Certroot error;
❻=verifying CertBSP error; ❼=total length error; ❽=RSA decryption error; ❾=DH public key error; ❿=verifying CertAP error

Category Tamper with Packets in Shared Memory Tamper with Certificates in Flash Replace the AP

Attack PCert PChall PRC PResp Certroot CertBSP CertAP AP ′

Total Time 2,502 2,453 2,418 2,627 10,000 10,000 10,000 10,000

Time 1 1 1 5 1,272 1,222 6 6 12 14 4 2,411 1 3 8 12 6 783 1,605 8 4 8 12 6 870 1,219 10,000 8 9,991 8 9,991 10,000

Error Code ❶ ❷ ❸ ❹ ❺ ❻ ❶ ❷ ❸ ❹ ❼ ❽ ❶ ❷ ❸ ❹ ❼ ❾ ❽ ❶ ❷ ❸ ❹ ❼ ❾ ❽ ❺ success ❻ success ❿ ❽

in Isabelle/HOL, a state-of-the-art interactive theorem
prover. More precisely, we use 91 functions/definitions
to specify the protocol model covering system behaviors,
adversary capabilities and security properties. In order to
verify integrity, authenticity, and confidentiality for SMP
secure boot, 305 lemmas/theorems are proved to ensure
that the model satisfies the security properties. About
7000 lines of Isabelle code are implemented in total.

• Implementation and evaluation: We implement PA-
Boot in C based on a code-to-spec review and validate
its performance and security by extensive evaluations.
The results show that it offers adequate performance in
practice and can improve the security of SMP systems.

II. WORKFLOW

Figure 1 depicts PA-Boot’s workflow. First, we find vulner-
abilities in SMP processor authentication process, and design
PA-Boot as a mitigation approach. Based on it, a threat
model is explicitly described with respect to the attacker’s
fundamental target, security assets and three potential attacks.
Then, security goals are defined coarsely in terms of integrity,
authenticity and confidentiality. Afterward, following the in-
formal threat model and security goals, we formally derive MA

in Isabelle/HOL [4], a high-level functional specification of
PA-Boot. In addition, the security goals are formally specified
into high-level security properties and are verified to be
satisfied by MA. Next, to describe a more detailed design
of PA-Boot, we specify MC , which is an instance of MA. It
succinctly captures the key attributes and behaviors of various
components in the threat model. Based on MC , we extend
each of the high-level security properties into a low-level one
that is stronger and more precise. MC is proved to hold all of

Threat Model

Security Goals

Low-level ModelHigh-level Model

Low-level Security
Properties

High-level Security
Properties

Implementation

Derives

Formalizes

Refines

Refines

Implements

Satisfies Satisfies

Security Test

Performance
Test

Conducts

Conducts

Fig. 1: Workflow

them based on refinement relation. Afterward, based on human
review and logical equivalence transformation from MC , a
practical processor authentication protocol is implemented in
C. As it follows the formally verified protocol design, it is
guaranteed to meet our security goals. Finally, we evaluate
the protocol in terms of performance and security, and the
results indicate its high efficiency and security.

III. IMPLEMENTATION AND EVALUATION

We implemented our PA-Boot with about 3000 lines of C
code as a prototype, along with roughly 1000 lines for perfor-
mance and security tests. Specifically, we measure the running
time of the certificate generation stage and the processor
authentication stage 10,000 times each. The average running
time is around 28ms for certificate generation, and around
110ms for processor authentication. For security evaluation,
we simulate three types of attacks, i.e., man-in-the-middle
attacks, flash compromise, and AP replacement, 10,000 times
each. We then record the return value to analyze if our system
can discover the attacks as expected (see Table I). In summary,
the results show that PA-Boot offers adequate performance and
completely complies with our security goals.

IV. CONCLUSION

The security of boot process depends on the weakest link
in the authentication chain. This paper address this point by
proposing a formally verified PA-Boot to mitigate the new
boot attack resulting from AP replacement in SMP system.
This paper intends to rethink the security design of SMP boot
process and motivate the researchers/developers to draw more
attention to the “known-safe” or “assumed-safe” components
in the existing systems. Therefore, this work is of great value
for identifying boot process attacks and improving the boot
ecosystem’s overall security.

REFERENCES

[1] Zhe Tao et al., “DICE*: A Formally Verified Implementation of DICE
Measured Boot”, in 30th USENIX Security Symposium, 2021.

[2] J. Douglas et al., “Dyad: A System for Using Physically Secure Co-
processors”, in Proceedings of the Joint Harvard-MIT Workshop on
Technological Strategies for the Protection of Intellectual Property in the
Network Multimedia Environment, 1991.

[3] Felix Bohling et al., “Subverting Linux’ integrity measurement architec-
ture”, in Proceedings of the 15th International Conference on Availability,
Reliability and Security, 2020.

[4] Nipkow et al., “Isabelle/HOL: a proof assistant for higher-order logic”,
in Springer Science & Business Media, 2002.

2

Poster: PA-Boot: A formally Verified Processor
Authentication Protocol for SMP Secure Boot

Zhuoruo Zhang, Rui Chang, Qinming Dai, Kui Ren
ICSR, Zhejiang University

1. Contribution and Workflow

5. Implementation and Evaluations

4. Formal Specification and Verification

Table 1: Statistics for specification, proofs and implementation.

• Discovery of a new attack. After a systematic investigation in
SMP system secure boot, find a fundamental but neglected
vulnerability due to the lack of AP.

• Proposing a mitigation method. Define a threat model
describing the attacker's fundamental target, security assets,
and three types of attacks. Based on this, define security
goals in terms of integrity, authenticity and confidentiality.
Design a processor authentication protocol, called PA-Boot,
that can satisfy the security goals in the presence of an active
attacker executing concurrently with the protocol.

• Formal Specification and Verification. Formalize the protocol
and verify it against the security properties. The mechanical
verification is performed in Isabelle/HOL, a state-of-the-art
interactive theorem prover.

• Implementation and evaluation. Implement the protocol in C
and validate its effectiveness, scalability and security by
extensive evaluations.

• Fig. 1: Workflow.

• Fig. 4: The normal flow of PA-
BOOT, vulnerabilities marked
with red devils.

3. Protocol Design

• Certificates Validation. The
immutable hash value of root
certificate is stored in bootROM,
serving as a chain of trust. Use
this to help validate the legality
of certificates.

• Challenge-Response. Obtains
the other processor's public key
from the validated certificate
for encrypted communication.
After authentication, use DH
algorithm to generate shared
session key for subsequent
secret communications
between the two processors.

• Performance: Measure the running time of the certificate
generation stage and the processor authentication stage,
respectively.

• Security: Simulate three types of attacks, i.e., man-in-the-
middle attacks, flash compromise, AP replacement, 10,000
times each. Record the return value to analyze if our system
can discover the attacks as expected.

Implement PA-Boot in C, and Evaluate It in Two-fold

• Security Property under Normal Execution: Starting from
initial state where the initial configuration has not been
tampered, and there is no adversary behaviors during
execution, then the final state must be an ideal state

𝐼𝐼𝐼𝐼 Γ ⊢ 𝑜𝑜𝑜𝑜𝑜𝑜, 𝑜𝑜 ⇒ 𝑡𝑡,𝒫𝒫 𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 ℛ 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑎𝑎 𝒱𝒱(𝑡𝑡)

• Security Property under Tampered Configuration: Starting
with compromised initial configuration, the system should
terminate in a bad state

𝐼𝐼𝐼𝐼 Γ′ ⊢ 𝑜𝑜𝑜𝑜𝑜𝑜, 𝑜𝑜 ⇒ 𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 ℛ 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑎𝑎 ¬𝒱𝒱(𝑡𝑡)

• Security Property under Adversarial behaviors: Any
adversary behaviors during system execution should be
detected, resulting in a bad final state

𝐼𝐼𝐼𝐼 Γ ⊢ 𝑜𝑜𝑜𝑜𝑜𝑜, 𝑜𝑜 ⇒ 𝑡𝑡, ¬𝒫𝒫 𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 ℛ 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑎𝑎 ¬𝒱𝒱(𝑡𝑡)

Security Properties Covering all Execution Traces

Conclusion: PA-Boot offers adequate performance and completely complies
with our security goals.

Runtime of certificate generation stage Runtime of processor authentication stage

2. Motivation and Threat Model

• Formalize PA-Boot as a state machine, consisting of states and
events. Formalize security goals as three security properties.

• Prove if the model satisfies the security properties.

Table 2: Security statistics for three types of attacks.

• Fig. 3: Security assets in threat model.

• Fig. 2: Adversarial behaviors.

Discovery, Design, Verification, Implementation, Evaluation

Contact: Zhuoruo Zhang (zhangzhuoruo@zju.edu.cn), Rui Chang (crix1021@zju.edu.cn), Qinming Dai
(qinm_dai@zju.edu.cn) and Kui Ren (kuiren@zju.edu.cn).

	ndss abstract
	ndss poster
	幻灯片编号 1

