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Abstract—The growing volumes of data being collected and
its analysis to provide better services are creating worries
about digital privacy. To address privacy concerns and give
practical solutions, the literature has relied on secure multiparty
computation. However, recent research has mostly focused on
the small-party honest-majority setting of up to four parties,
noting efficiency concerns. In this work, we extend the strategies
to support a larger number of participants in the honest-
majority setting with efficiency at the center stage. Cast in the
preprocessing paradigm, our semi-honest protocol improves the
online complexity of the decade-old state-of-the-art protocol of
Damgard and Nielson (CRYPTO’07). In addition to having an
improved online communication cost, we can shut down almost
half of the parties in the online phase, thereby saving up to
50% in the system’s operational costs. Our maliciously secure
protocol also enjoys similar benefits and requires only half of
the parties, except for one-time verification, towards the end. To
showcase the practicality of the designed protocols, we benchmark
popular applications such as deep neural networks, graph neural
networks, genome sequence matching, and biometric matching
using prototype implementations. Our improved protocols aid in
bringing up to 60-80% savings in monetary cost over prior work.

Our contributions We improve the practical efficiency
of n-party honest-majority protocols using function-dependent
preprocessing [1], [2], [3], [4], [S5], [6]. Our protocol suite,
MPClan, follows a 3-tier architecture (Fig. 1) to attain the
goal of privacy-conscious computations.
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Fig. 1: Hierarchy of primitives in our 3-tier framework

MPC protocols Our goal is to design protocols with a
fast online phase. Thus, working over Z,: and relying on
RSS, we design a semi-honest MPC protocol assuming a one-
time shared-key setup for correlated randomness. Our protocol
requires communicating only 2¢ ring elements in the online
phase and ¢ in the preprocessing for a multiplication gate.
We are the first to achieve a communication cost of 2¢ in the
online phase (unlike 3¢ in the prior works [7], [8]), without
incurring any overhead in the total cost, i.e., our total cost

still matches that of the best known (optimized) semi-honest
honest-majority protocol [7], [8]. We extend our protocol
to provide malicious security with fairness' at the cost of
additionally communicating ¢ elements in the online phase and
2t in the preprocessing phase. Although (abort®) protocol of
[9] has the same communication as our maliciously secure
protocol, we achieve a stronger security notion of fairness.
Moreover, our protocol avoids the consistency check after each
level of circuit evaluation, reducing the number of rounds by
O(d) (d denotes circuit depth).

We benchmark our semi-honest and malicious protocols
over synthetic circuits comprising one million multiplications
with varying depths of 1, 100, and 1000, where gates are
distributed equally across each level in the circuit. We compare
against optimized ring variant of DNO7 [10]. The online phase
of our semi-honest protocol enjoys the benefits of pushing
33% communication to a preprocessing phase compared to
DNO7, which corroborates improvement in our protocol’s
online complexity. Our malicious protocol retains the online
communication cost of DNO7 while incurring a similar over-
head in the preprocessing. With respect to online run-time, our
semi-honest protocol’s time is expected to be similar to DNO7.

Compared to the semi-
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Cclous variant incurs a min-
imal overhead of less than
one second in online run-
time due to a one-time ver-
ification phase. However,
the overhead is higher (10
seconds) for the case of
the overall run-time due
to the distributed zero- d=1
knowledge proof computa-
tion in the preprocessing
phase and gets amortized
for deeper circuits. Another
key highlight of our proto-
cols is their improved mon-
etary cost, as evident from
Fig. 3. Concretely, for nine
parties (semi-honest), we
observe a saving of 17% over DNO7 for a depth-1 circuit, and
it increases up to 72% for circuits with depth 1000. This is
primarily due to the reduction in the number of online parties
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Fig. 3: Monetary cost (in USD for
1000 instances for n = 9 par-
ties) for circuit evaluation of various
depths (d), reported in log, scale.
Solid bars - computation over net-
work with asymmetric round trip
time (rtt), crosshatch - additional
cost incurred with symmetric rtt.

IGuarantees either all parties receive the output or none do.
2Honest parties may not receive the output while corrupt parties do.
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Fig. 2: Comparison for GNN and deep NN between our semi-honest protocol and DNO7 (values plotted are logarithmic in base 2)

over DNO7. Comparing our semi-honest and malicious vari-
ants, the latter has an overhead of 8 x for depth-1 circuit, and it
reduces to 1.14x for depth-1000 circuit due to the amortization
kicking in for deeper circuits. Interestingly, our malicious
variant outperforms even the semi-honest DNO7 upon reaching
circuit depths of 100 and above. As for throughput, our semi-
honest variant witnesses up to 1.78 x improvements in TP (for
a single execution) over DNO7 in the asymmetric rtt, which
vanishes in the symmetric rtt setting. While moving from
semi-honest to malicious security, we observe a significant
drop in TP, which is about 3x for the depth-1 circuit. This is
due to the increased run time owing to the verification in the
online phase for the malicious setting. However, this drop tends
to zero for deeper circuits (as verification cost gets amortized),
making the online phase of our malicious protocol on par with
that of semi-honest.

Applications To showcase the practicality of our frame-
work and improvements of our protocols, we benchmark the
following applications in the WAN setting using Google Cloud
instances. Owing to the inherent restrictions of RSS and
keeping the focus on practical scenarios, we showcase the
performance of our protocols for n = 5,7, and 9 and compare
with the state-of-the-art (optimized) protocol of DNO7 [7].

1. Graph neural network (GNN). Inference phase of graph
neural network [11], [12] is benchmarked on MNIST [13] data
set. We see an improvement of around 7x in online run-time
and up to 180x in online communication. Up to 15% savings
are observed in monetary cost compared to DNO7.

2. Deep neural networks (NN). Inference phases of deep
neural networks such as LeNet [14] and VGG16 [15] are
benchmarked. While monetary cost savings are up to 71%,
up to 6x improvement in online run-time and throughput are
observed. Semi-honest results for GNN, NN appear in Fig. 2.

3. Genome sequence matching. Our similar sequence queries
(SSQ) protocol for secure genome matching is based on
the edit distance approximation protocol of [16], [17]. In
comparison to [7], we witness improvements of up to 5x in
online run-time and throughput, as reported in Table I when
the number of sequences in database (m) is 2000 and block
length (w) is 30 [16]. For the monetary cost, our semi-honest
protocol saves up to 65% over DNO7, and malicious has 42%
overhead over semi-honest counterpart.
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Secure Multi Party Computation (MPC) MPClan Protocol
» Introduced by Andrew Chi Chi Yao [1982] > Fa

Applications

tates secure outsourced and non-outsourced computation setting > Neural networks (NN) - Inference

> Enables n mutually distrusting parties to jointly compute a public » Works over [-bit rings (64-bit for benchmarks) in preprocessing paradigm > Graph neural network (GNN) Inference

function on their private inputs. » Semi-honest multiplication: > Similar sequence queries (SSQ) for genome sequence matching

> Properties Helper Set, D Evaluator Set, €
» Privacy: Nothing beyond function output is leaked

» Correctness: All parties obtain the correct output of the function

NN and GNN architectures:

» NN-1: 3-layered fully connected network with ReLU activation after each layer

. (around 118K parameters)
» Adversarial model (Models the distrust among the parties)

N

» Semi-honest: honest but curious
» Malicious: arbitrarily deviate from protocol specification

» NN-2: LeNet[3] has 2 convolutional layers and 2 fully connected layers with ReLU
activation after each layer, additionally followed by maxpool for convolutional layers
(around 431K parameters)

» NN-3:  VGG16[4] has $165 layers in total and comprises of fully-connected,

» Corruption threshold

,»v Io”mmﬁ Majority: majority are honest @ Generation of random r € Zyr @ Computing [r] &4r) ® Com- convolutional, ReLU activation and maxpool layers (around 138 million parameters)
» Dishonest Majority: minority are honest puting €[1,1,8[A5] @ D sending {[z - 1]} to Piing & & sending . o
{[z= 11}¢ to Piing and receiving result from Py @nmca?:sm ) » GNN[5,6]: Graph convolution layer followed by RelU activation and a fully

> mmnclﬁ«\ levels Figure 2: Steps of multiplication protocol connected layer with 10 nodes

» Security with Abort: honest parties may abort without receiving output

> Fairness: either all parties or none get the output Ref. n Online . Er :,ZH,_
. . . Co 4 Time TP Comm®  Time Cost®
» Guaranteed Output Delivery (GOD): all parties guaranteed to obtain output . m e Cot
WQDOIBN—,_ASN West Europe South-East Asia 5| 40723 8629 4450 040 8629 033
DNo7 7 610.85 92.97 41.30 0.60 92.97 0.46
. ) ) Py P; 187 ms P p, 9| 81446 9299  41.01 0.80 9299  0.60
» Google Cloud (n1-standard-64 instances) 2 \ a (emi) g | ey 02 EOZ| gy 202
. . . . < -
» Model: n parties, t corrupt (t<n/2), semi-honest and malicious > Runtime, Communication, Throughput 8y %% %, {2 This 5| BT . 2081] o o7 017 sor
. 7 33.88 209.49 0.64 0.25
(mal) 2 +2
security » Monetary cost (using Google Cloud pricing) é 5 9] 440 0723| 085 030 ol
s . . . . 219 a t MB TP denotes throughput ~ € i
» Multiplication (semi-honest): online - 2t ring elements, preprocessing - » #iparties: 5,7, and 9 o e o~ inGB “Time i sceonds  ‘monctang ot mUSD
tring elements Table 1: Genome sequence matching for m = 2000, & = 30. 400

Figure 3: Round trip time (rtt)

» 33% improvement in online communication over state-of-the-art
optimized ring protocol of DNO7 [1, 2]

» Multiplication (malicious): online - 3t ring elements, preprocessing - 3t
ring elements

Figure 5: Monetary cost for SSQ evaluation for varying number of
sequences and block lengths ((1000,25), (2000, 30), (4000,35)) for n = 9
parties. Costs for 1000 instances are reported in USD.

Comparison with DNO7 [1, 2]
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