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Abstract—The growing volumes of data being collected and
its analysis to provide better services are creating worries
about digital privacy. To address privacy concerns and give
practical solutions, the literature has relied on secure multiparty
computation. However, recent research has mostly focused on
the small-party honest-majority setting of up to four parties,
noting efficiency concerns. In this work, we extend the strategies
to support a larger number of participants in the honest-
majority setting with efficiency at the center stage. Cast in the
preprocessing paradigm, our semi-honest protocol improves the
online complexity of the decade-old state-of-the-art protocol of
Damgård and Nielson (CRYPTO’07). In addition to having an
improved online communication cost, we can shut down almost
half of the parties in the online phase, thereby saving up to
50% in the system’s operational costs. Our maliciously secure
protocol also enjoys similar benefits and requires only half of
the parties, except for one-time verification, towards the end. To
showcase the practicality of the designed protocols, we benchmark
popular applications such as deep neural networks, graph neural
networks, genome sequence matching, and biometric matching
using prototype implementations. Our improved protocols aid in
bringing up to 60-80% savings in monetary cost over prior work.

Our contributions We improve the practical efficiency
of n-party honest-majority protocols using function-dependent
preprocessing [1], [2], [3], [4], [5], [6]. Our protocol suite,
MPClan, follows a 3-tier architecture (Fig. 1) to attain the
goal of privacy-conscious computations.

Fig. 1: Hierarchy of primitives in our 3-tier framework

MPC protocols Our goal is to design protocols with a
fast online phase. Thus, working over Z2ℓ and relying on
RSS, we design a semi-honest MPC protocol assuming a one-
time shared-key setup for correlated randomness. Our protocol
requires communicating only 2t ring elements in the online
phase and t in the preprocessing for a multiplication gate.
We are the first to achieve a communication cost of 2t in the
online phase (unlike 3t in the prior works [7], [8]), without
incurring any overhead in the total cost, i.e., our total cost

still matches that of the best known (optimized) semi-honest
honest-majority protocol [7], [8]. We extend our protocol
to provide malicious security with fairness1 at the cost of
additionally communicating t elements in the online phase and
2t in the preprocessing phase. Although (abort2) protocol of
[9] has the same communication as our maliciously secure
protocol, we achieve a stronger security notion of fairness.
Moreover, our protocol avoids the consistency check after each
level of circuit evaluation, reducing the number of rounds by
O(d) (d denotes circuit depth).

We benchmark our semi-honest and malicious protocols
over synthetic circuits comprising one million multiplications
with varying depths of 1, 100, and 1000, where gates are
distributed equally across each level in the circuit. We compare
against optimized ring variant of DN07 [10]. The online phase
of our semi-honest protocol enjoys the benefits of pushing
33% communication to a preprocessing phase compared to
DN07, which corroborates improvement in our protocol’s
online complexity. Our malicious protocol retains the online
communication cost of DN07 while incurring a similar over-
head in the preprocessing. With respect to online run-time, our
semi-honest protocol’s time is expected to be similar to DN07.
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Fig. 3: Monetary cost (in USD for
1000 instances for n = 9 par-
ties) for circuit evaluation of various
depths (d), reported in log2 scale.
Solid bars - computation over net-
work with asymmetric round trip
time (rtt), crosshatch - additional
cost incurred with symmetric rtt.

Compared to the semi-
honest protocol, the mali-
cious variant incurs a min-
imal overhead of less than
one second in online run-
time due to a one-time ver-
ification phase. However,
the overhead is higher (10
seconds) for the case of
the overall run-time due
to the distributed zero-
knowledge proof computa-
tion in the preprocessing
phase and gets amortized
for deeper circuits. Another
key highlight of our proto-
cols is their improved mon-
etary cost, as evident from
Fig. 3. Concretely, for nine
parties (semi-honest), we
observe a saving of 17% over DN07 for a depth-1 circuit, and
it increases up to 72% for circuits with depth 1000. This is
primarily due to the reduction in the number of online parties

1Guarantees either all parties receive the output or none do.
2Honest parties may not receive the output while corrupt parties do.
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(b) End-to-end runtime
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Fig. 2: Comparison for GNN and deep NN between our semi-honest protocol and DN07 (values plotted are logarithmic in base 2)

over DN07. Comparing our semi-honest and malicious vari-
ants, the latter has an overhead of 8× for depth-1 circuit, and it
reduces to 1.14× for depth-1000 circuit due to the amortization
kicking in for deeper circuits. Interestingly, our malicious
variant outperforms even the semi-honest DN07 upon reaching
circuit depths of 100 and above. As for throughput, our semi-
honest variant witnesses up to 1.78× improvements in TP (for
a single execution) over DN07 in the asymmetric rtt, which
vanishes in the symmetric rtt setting. While moving from
semi-honest to malicious security, we observe a significant
drop in TP, which is about 3× for the depth-1 circuit. This is
due to the increased run time owing to the verification in the
online phase for the malicious setting. However, this drop tends
to zero for deeper circuits (as verification cost gets amortized),
making the online phase of our malicious protocol on par with
that of semi-honest.

Applications To showcase the practicality of our frame-
work and improvements of our protocols, we benchmark the
following applications in the WAN setting using Google Cloud
instances. Owing to the inherent restrictions of RSS and
keeping the focus on practical scenarios, we showcase the
performance of our protocols for n = 5, 7, and 9 and compare
with the state-of-the-art (optimized) protocol of DN07 [7].

1. Graph neural network (GNN). Inference phase of graph
neural network [11], [12] is benchmarked on MNIST [13] data
set. We see an improvement of around 7× in online run-time
and up to 180× in online communication. Up to 15% savings
are observed in monetary cost compared to DN07.

2. Deep neural networks (NN). Inference phases of deep
neural networks such as LeNet [14] and VGG16 [15] are
benchmarked. While monetary cost savings are up to 71%,
up to 6× improvement in online run-time and throughput are
observed. Semi-honest results for GNN, NN appear in Fig. 2.

3. Genome sequence matching. Our similar sequence queries
(SSQ) protocol for secure genome matching is based on
the edit distance approximation protocol of [16], [17]. In
comparison to [7], we witness improvements of up to 5× in
online run-time and throughput, as reported in Table I when
the number of sequences in database (m) is 2000 and block
length (ω) is 30 [16]. For the monetary cost, our semi-honest
protocol saves up to 65% over DN07, and malicious has 42%
overhead over semi-honest counterpart.
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