
Poster: WATSON: Abstracting Behaviors from Audit
Logs via Aggregation of Contextual Semantics

Jun Zeng† Zheng Leong Chua‡+ Yinfang Chen† Kaihang Ji† Zhenkai Liang† Jian Mao§
†School of Computing, National University of Singapore

‡Independent Researcher
§School of Cyber Science and Technology, Beihang University

Abstract—Endpoint monitoring solutions are widely deployed
in today’s enterprise environments to support advanced attack
detection and investigation. These monitors continuously record
system-level activities as audit logs and provide deep visibility
into security incidents. Unfortunately, to recognize behaviors
of interest and detect potential threats, cyber analysts face a
semantic gap between low-level audit events and high-level system
behaviors. To bridge this gap, existing work largely matches
streams of audit logs against a knowledge base of rules that
describe behaviors. However, specifying such rules heavily relies
on expert knowledge. In this paper, we present WATSON, an
automated approach to abstracting behaviors by inferring and
aggregating the semantics of audit events. WATSON uncovers the
semantics of events through their usage context in audit logs. By
extracting behaviors as connected system operations, WATSON
then combines event semantics as the representation of behaviors.
To reduce analysis workload, WATSON further clusters semanti-
cally similar behaviors and distinguishes the representatives for
analyst investigation. In our evaluation against both benign and
malicious behaviors, WATSON exhibits high accuracy for behavior
abstraction. Moreover, WATSON can reduce analysis workload by
two orders of magnitude for attack investigation. We present an
end-to-end design and support for audit event analysis on multiple
system platforms.

I. INTRODUCTION

Security incidents in large enterprise systems have been
on the rise globally. We have been witnessing attacks with
increasing scale and sophistication. For example, Capital One
reported that 106 million customers’ credit card information
was exposed due to unauthorized database access. To better
prevent and respond to such attacks, endpoint monitoring
solutions (e.g., Security Information and Event Management
(SIEM) tools) are widely deployed for enterprise security.
These monitors continuously record system-level activities as
audit logs, capturing many aspects of the system’s execution
states. When reacting to a security incident, cyber analysts
perform a causality analysis on audit logs to discover the
root cause of the attack and the scope of its damages [3].
However, the amount of audit logs generated by a normal
system is non-trivial. To overcome this challenge, recent
research solutions scale up causality analysis by eliminating
irrelevant [4]. Unfortunately, these solutions do not capture the
semantics behind audit data and leave behavior recognition to
analysts. Consequently, intensive manual effort is still involved
in evaluating relevant yet benign and complicated events that
dominate audit logs.

The main problem faced by analysts is a semantic gap

between low-level audit events and high-level system behav-
iors. Existing work strives to bridge this gap by matching
audit events against a knowledge store of expert-defined rules
that describe behaviors, such as tag-based policies [2], query
graphs [5], and TTP specifications [1]. Essentially, these solu-
tions identify high-level behaviors through tag propagation or
graph matching. However, an expected bottleneck is the man-
ual involvement of domain experts to specify such rules. For
example, MORSE [2] needs experts to traverse system entities
(e.g., files) and initialize their confidentiality and integrity tags
for tag propagation. TGMiner [5] requires manual behavior
labeling in training log sets before mining discriminative
behavioral patterns and searching for their existence in test
sets. Despite crucial role in audit log analysis, mapping events
to behaviors heavily relies on expert knowledge, which may
hinder its applications in practice.

Extracting representative behaviors from audit events for
analyst investigation provides an efficient strategy to mitigate
this problem. More concretely, we can use procedural analy-
sis to automatically abstract high-level behaviors and cluster
semantically similar ones, albeit without the labels explain-
ing what they are. However, because repetitive/comparable
behaviors have already been clustered, analysts only need
to label the representatives from clusters, resulting in far
fewer events to be investigated. Besides reducing the manual
workload in behavior analysis, automatic behavior abstraction
also enables proactive analysis to detect unusual behavioral
patterns in insider threats or external exploits. Particularly, any
deviation of normal behaviors can be flagged efficiently for
attack response.

While behavior abstraction sounds promising, there are two
main challenges to extracting behaviors and inferring their
semantics: event semantics differentiation and behavior identi-
fication. Audit events record general-purpose system activities
and thus lack knowledge of high-level semantics. A single
event, such as process creation or file deletion, can represent
different semantics in different scenarios. Furthermore, due to
the large-scale and highly interleaving nature of audit events,
partitioning events and identifying boundaries of behaviors are
like finding needles in a haystack.

To address the above challenges, our first key insight is
that the semantics of audit events can be revealed from the
contexts in which they are used. Intuitively, we can represent
behaviors by aggregating the semantics of their constituent
events. With such representations, similar behaviors can be
clustered together. In addition, we observe that the information



KG Construction

Event Semantics 
Inference

Behavior 
Summarization

Behavior Semantics 
Aggregation

Behavior 
Clustering

Representative 
Behaviors

Audit Logs

Knowledge Graph

embedding Space

I: Knowledge Graph 
Construction II: Behavior Abstraction III: Representative Behavior 

Identification

Semantic 
Representation

!!: ($!!, $!", ⋯ , $!#)
!": ($"!, $"", ⋯ , $"#)

⋮ ⋮
!$: ($$!, $$", ⋯ , $$#)

Behavior Instance

Fig. 1: WATSON Overview.

flow of system entities provides a natural boundary of high-
level behaviors. It can serve as guidance to correlate audit
events belonging to individual behaviors.

In this paper, we present WATSON, an automated behavior
abstraction approach that aggregates the semantics of audit
events to model behavioral patterns. It does not assume expert
knowledge of event semantics to perform behavior abstraction.
The semantics is obtained automatically from the context
of event usage in audit logs. We call this the contextual

semantics of events. More specifically, WATSON first leverages
a translation-based embedding model to infer the semantics of
audit events based on contextual information in logs. Then,
WATSON identifies events connected to related data objects
(i.e., files and network sockets) and aggregates their semantics
as the representation of high-level behaviors. Finally, WATSON
clusters similar behaviors recorded in audit logs and distin-
guishes the representatives for analyst investigation.

II. WATSON OVERVIEW

Figure 1 shows the overview of WATSON. It consists of
three phases: Knowledge Graph Construction, Behavior Ab-
straction, and Representative Behavior Identification. WATSON
takes as inputs system audit data. It supports events from Linux
and Windows systems. It summarizes behavior instances, un-
covers their semantics, and finally outputs representative high-
level behaviors. Specifically, given audit logs in a user session
as the input, the Knowledge Graph Construction module first
parses logs into triples and constructs the log-based knowledge
graph (KG). Then, the Event Semantics Inference module
employs a translation-based embedding model to infer the
contextual semantics of nodes in the KG. At the same time,
the Behavior Summarization module enumerates subgraphs
from the KG to summarize behavior instances. Combined with
node semantics, the Behavior Semantics Aggregation module
next enhances subgraphs to encode the semantics of behavior
instances. Finally, the Behavior Clustering module groups
semantically similar subgraphs into clusters, each specifying a
high-level behavior. These cluster-based behavior abstractions
can further be used to reduce the efforts of downstream tasks.
We built an end-to-end system to facilitate audit analysis.

III. EVALUATION

We evaluate WATSON’s correctness and explicability using
17 daily routines and eight real-life attacks simulated in

an enterprise environment. In addition, we use the public
DARPA TRACE dataset 1 released by the DARPA Transparent
Computing program to evaluate WATSON’s efficacy in attack
investigation. We note that WATSON is the first to abstract
both benign and malicious behaviors for evaluation. Previous
techniques do not take benign behaviors into consideration
because they mainly focus on attack detection. However, WAT-
SON extracts high-level behaviors regardless of their security
concerns. Experimental results show that WATSON accurately
correlates system entities with similar usage contexts and
achieves an average F1 score of 92.8% in behavior abstraction.
Moreover, WATSON is able to reduce the number of audit logs
for analyst investigation by two orders of magnitude.

ACKNOWLEDGEMENT

This research is supported by the National Research
Foundation, Singapore under its Industry Alignment Fund
– Pre-positioning (IAF-PP) Funding Initiative, National Re-
search Foundation, Singapore under its International Re-
search Centres in Singapore Funding Initiative and Ministry
of Education Humanities and Social Science project, China
(No.16YJC790123), Beijing Natural Science Foundation (No.
4202036), and National Natural Science Foundation of China
(No. 61871023). Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research
Foundation, Singapore.

REFERENCES

[1] Wajih Ul Hassan, Adam Bates, and Daniel Marino. Tactical provenance
analysis for endpoint detection and response systems. In IEEE Security

and Privacy, 2020.
[2] Md Nahid Hossain, Sanaz Sheikhi, and R Sekar. Combating dependence

explosion in forensic analysis using alternative tag propagation seman-
tics. In IEEE Security and Privacy, 2020.

[3] Samuel T King and Peter M Chen. Backtracking intrusions. In SOSP,
2003.

[4] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu
Zhang, Gabriela Ciocarlie, Ashish Gehani, Vinod Yegneswaran, Dongyan
Xu, and Somesh Jha. Kernel-supported cost-effective audit logging for
causality tracking. In USENIX ATC, 2018.

[5] Bo Zong, Xusheng Xiao, Zhichun Li, Zhenyu Wu, Zhiyun Qian, Xifeng
Yan, Ambuj K Singh, and Guofei Jiang. Behavior query discovery in
system-generated temporal graphs. In VLDB, 2015.

1https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-
E3.md

2



\

Poster: Watson: Abstracting Behaviors from Audit Logs 
via Aggregation of Contextual Semantics

Jun Zeng, Zheng Leong Chua, Yinfang Chen, Kaihang Ji, Zhenkai Liang, Jian Mao
{junzeng,yinfang,kaihang,liangzk}@comp.nus.edu.sg, 

czl@iiyume.org, maojian@buaa.edu.cn

Background and Motivation

Our insight

Endpoint monitoring solutions record audit logs for attack investigation.
Audit logs are a history of events representing OS-level activities and provide 
deep visibility into security incidents with data provenance.

Researchers propose to use a provenance graph to navigate through audit logs, 
but real-world audit logs are always large-scale and provenance graphs can easily 
overwhelm security analysts.

Motivating Example: Data exfiltration attack

13.250.X.X

secret.txt

a.c a.out

cp

gcc

github
bash

lsvim gcc

cc1 collect2as

ld

Pro1.c

a.out

a.out

sudo

vim tar

Eva.doc Eva.tar

bash

git add

git commit

git push 13.250.X.X

apt

sudo apt

sh

dpkg

gpgv

dpkg

update-motd-upd

http

http

apt-config dpkg

rm find

apt-key

bash ssh

shrun-parts

sshd

gcc

cc1

git add git commit git push

ssh13.250.X.X

catls cp

secret.txt a.c

bash

Related works:
l Scale up provenance analysis:

l Data reduction [NDSS’16, 18 …] & Query system [Security’18, ATC’18 …]
l Recognizing behaviors of interest requires intensive manual efforts 

A semantic gap between low-level events and high-level behaviors

l Apply expert-defined specifications to bridge the gap
l Match audit events against domain rules that describe behaviors
l Query graph [VLDB’15, CCS’19], Tactics Techniques Procedures (TTPs) 

specification [SP’19,20], and Tag policy [Security’17,18]

Behavior-specific rules heavily rely on domain knowledge (time-consuming)

l How do analysts manually interpret the semantics of audit events?

Similar context --> Similar semantics

a.c

cc1 as ld

/tmp/ccCdWCyH.s a.outX.o

/tmp/zc34rsak.ssecret.txt

Data Exfiltration 

Different context --> Different semantics

Compiling 
program
using GNN

The semantics of audit events can be revealed from their usage contexts in logs

l How do analysts manually identify behaviors from audit events?
Forward tracking 
on secret.txt

Behaviors can be summarized by tracking information flows rooted at data objects

System Design: Watson
An automated behavior abstraction approach that aggregates the semantics of 
audit logs to model behavioral patterns

l Input: audit logs (e.g., Linux Audit[1]) 
l Output: representative behaviors

KG Construction: We propose to use a knowledge graph (KG), a directed acyclic graph 
built upon triples, to represent audit logs:

Behavior Abstraction: (1) We use knowledge-graph embedding (i.e., TransE) to 
capture contextual semantics of audit logs; TransE: Head + Relation ≈ Tail à Context 
decides semantics
(2) We identify individual behaviors by applying an adapted depth-first search to track 
information flows rooted at a data object

Representative Behavior Identification: (1) We aggregate the event semantics to 
represent behaviors semantics (noise reduction + attention: IDF);
(2) We cluster semantically similar behaviors using agglomerative hierarchical clustering 
analysis (HCA) and extract the most representative behaviors for security analysis for 
attack investigation

KG = {(h, r, t)|h, t ∈ {Process, F ile, Socket}, r ∈ {Syscall}}

Data Exfiltration
Attack

Evaluation Results
• Experimental Setup:

l Simulated dataset: 275,863,292 events in 4,280 SSH sessions
l DARPA Trace Dataset[2]: 726,072,596 events in 211 graphs

l Behavior Abstraction Accuracy: 

Can WATSON cluster similar behaviors?

l Event Semantics Explicability: 

Does inferred event semantics match our domain knowledge?

l Efficacy in Attack Investigation: 
How many manual efforts can WATSON save?

High F1 score on both benign and malicious behavior abstraction

Semantically similar system entities are clustered in the embedding space

Two orders of magnitude reduction in analysis workload and behaviors

• Accuracy on 17 daily routines and 8 attacks in the 
simulated dataset

Behavior Recall Precision F1
Package 

Installation
95.3% 97.9% 96.6%

Data Theft 100% 100% 100% 
… … … …

Average 94.2% 92.8% 92.8%

• Analysis workload reduction in the analysis of APT 
attacks in the DARPA Trace dataset

• Visualization (t-SNE) on the embedding space of 25 data object and 53 programs

Files

Sockets (port 22) Sockets (port 80)

Github

How can we automatically abstract high-level behaviors from low-
level audit logs and cluster similar behaviors to assist investigation?

a.c

cc1 as ld

/tmp/ cc5vRkEk.s a.outX.o

Compiling 
program
using GNN

cc1


	Introduction
	Watson Overview
	Evaluation
	References

