
Strengthening Privacy in Robust Federated Learning
through Secure Aggregation

Tianyue Chu
IMDEA Networks Institute

Universidad Carlos III de Madrid

Devriş İşler
IMDEA Networks Institute

Universidad Carlos III de Madrid

Nikolaos Laoutaris
IMDEA Networks Institute

Abstract—Federated Learning (FL) has evolved into a pivotal
paradigm for collaborative machine learning, enabling a cen-
tralised server to compute a global model by aggregating the local
models trained by clients. However, the distributed nature of FL
renders it susceptible to poisoning attacks that exploit its linear
aggregation rule called FEDAVG. To address this vulnerability,
FEDQV has been recently introduced as a superior alternative
to FEDAVG, specifically designed to mitigate poisoning attacks by
taxing more than linearly deviating clients. Nevertheless, FEDQV
remains exposed to privacy attacks that aim to infer private
information from clients’ local models. To counteract such privacy
threats, a well-known approach is to use a Secure Aggregation
(SA) protocol to ensure that the server is unable to inspect
individual trained models as it aggregates them. In this work,
we show how to implement SA on top of FEDQV in order to
address both poisoning and privacy attacks. We mount several
privacy attacks against FEDQV and demonstrate the effectiveness
of SA in countering them.

I. INTRODUCTION

Federated Learning (FL) [15], [18] is a recent distributed
learning paradigm designed for machine learning across mul-
tiple clients. It enables clients to collectively train a global
model via a centralised server, all without divulging their raw
local training data to the server. Generally, an FL involves
an iterative process encompassing three key steps: the server
sends the current global model to the clients or a selected
subset of them; each selected client trains their local model
using its local training data and sending the local model up-
dates back to the server; then the server aggregates the received
local model updates adhering to an aggregation method, and
utilises it to update the global model. A prominent example
of an FL aggregation method is FEDAVG [18] developed by
Google and applied in tasks such as Google’s emoji [19]
and next-word prediction [13] for mobile device keyboards.
FEDAVG employs a weighted averaging mechanism for local
model updates. This weighting is determined by the sizes of
the local training datasets, making FEDAVG an effective and
widely adopted approach in the realm of FL.

However, FEDAVG is vulnerable to poisoning attacks,
where even a single malicious client can arbitrarily manipulate
the global model [2]. This arises from the equal treatment of

all local data points, resembling the “one person one vote
(1p1v)” election rule. To address this inherent vulnerability,
Chu et al. [8] recently proposed a novel method called FEDQV,
as a superior alternative for FEDAVG in the aggregation
process. FEDQV draws inspiration from Quadratic Voting [16],
showcasing improved efficiency and robustness compared to
1p1v. Functioning as a truthful mechanism, FEDQV compels
clients, including potentially malicious ones, to provide truth-
ful information rather than misinformation. This commitment
to truthfulness is reinforced by its masked voting role and
limited budget mechanism. FEDQV stands out for its sim-
plicity and adaptability, which can be seamlessly integrated
into Byzantine-robust FL defence schemes, enhancing their
defence capabilities. This characteristic positions FEDQV as
a promising solution to mitigate vulnerabilities observed in
FEDAVG concerning poisoning attacks.

In addition to the risk of poisoning attacks, the recent
escalating threat of privacy attacks within FL has garnered
considerable attention. Despite lacking direct access to clients’
local data, a malicious server can still infer patterns of private
information through inference and reconstruction attacks on
clients’ local models [10], [26], [28]. This underscores the
need for privacy mechanisms in FL to safeguard sensitive
user data. A viable solution involves the implementation of
secure aggregation (SA) [3]. SA typically signifies a protocol
enabling a group of mutually distrustful clients, each holding a
private value, to compute an aggregate value without revealing
any information about their individual private values to one
another. This holds particular relevance in the FL context,
where the goal is to have the server perform the aggregation
on the clients’ private local models utilising SA. SA in an FL
ensures that the server is incapable of accessing clients’ trained
models or acquiring information about their private data.

The widespread adoption of SA has primarily occurred in
conjunction with the FEDAVG framework. This preference is
rooted in the inherent simplicity of FEDAVG, rendering it an
accessible and practical foundation for integrating SA. Given
that FEDQV stands out as a superior alternative to FEDAVG,
this paper embarks to implement and adapt SA to make it
compatible with FEDQV. Through this integration, we aspire
to establish a more privacy-preserving defence mechanism in
robust FL against potential privacy attacks. More specifically,
we make the following two contributions:

• Implementation of Secure Aggregation (SA) within
FEDQV: We incorporate SECAGG into the FEDQV
framework with specific adjustments, addressing the
challenges posed by the unique voting mechanism of

Workshop on AI Systems with Confidential Computing (AISCC) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-4-5
https://dx.doi.org/10.14722/aiscc.2024.23012
www.ndss-symposium.org

FEDQV that hinders a straightforward integration of
secure aggregation protocols. This novel integration
serves to enhance the security architecture of FEDQV,
providing a nuanced exploration into the synergies
between SECAGG and FEDQV.

• Empirical Assessment of SECAGG’s Privacy En-
hancement in FEDQV: Subsequent to the implementa-
tion, we conduct privacy attacks to empirically assess
the effectiveness of SECAGG in fortifying privacy
within the FEDQV framework. Our findings highlight
that implementing SECAGG atop FEDQV significantly
improves resistance against 2 privacy attacks.

II. BACKGROUND

A. Reconstruction Attacks in FL

In terms of privacy leakage, communicating gradients
throughout the training process in FL can reveal sensitive
information about participants. Deep leakage from gradients
(DLG) [28] demonstrated that sharing the gradients can leak
private training data of clients, including images and text.
Building upon this, Improved DLG (iDLG) [26] presents an
analytical procedure to extract the ground-truth labels from
the shared gradients and is shown to be even more effective
than DLG. Inverting Gradients (IG) [10] introduced cosine
similarity as a cost function in their reconstruction attacks and
employed total variation loss LT V as an image prior. Inverting
Gradients [10] demonstrated the capability to reconstruct high-
resolution images with increased batch sizes.

B. Secure Aggregation for FL

Due to the sensitive nature of the updates sent by clients
and the threat from the aforementioned privacy attacks, secure
aggregation (SA) protocols have been proposed as potential
countermeasures [17]. Secure aggregation can be achieved
using four main privacy-enhancing technologies: differential
privacy [11], trusted-execution environment (TEE) [27], secure
shuffling under anonymity assumptions [14], and cryptog-
raphy. Among those, secure aggregation based on cryptog-
raphy is the most widely studied [4], [22], [23]. Existing
secure aggregation solutions have been proposed for different
contexts [17], including under malicious clients, a malicious
aggregator(s), and for varying communication and compu-
tation costs, etc. Although crypto-based secure aggregation
provides strong security guarantees compared to alternatives,
i.e., differential privacy, it also suffers from high computational
and communication overhead making it impractical for many
real-life use cases. Among the different proposals, the one
based on masking [4] outperforms its alternatives in terms of
performance and ensures a strong security guarantee.

C. Aggregation Methods in FL

Aggregation plays a pivotal role in FL, with FEDAVG being
the predominant aggregation method due to its simplicity and
effectiveness. However, FEDAVG is susceptible to poisoning
attacks. There exist several Byzantine-robust FL aggregation
methods for mitigating this vulnerability. They are either
statistics-based outlier detection techniques [2], [7], [24], [25],
or utilise auxiliary labelled data collected by the aggregation
server to verify the correctness of the received gradients [6],

[12]. Both approaches require examining the properties of
the updates of individual clients, which can jeopardise their
privacy due to aforementioned privacy attacks [10], [28]
mounted by an honest-but-curious server. To defend against
privacy attacks, the most secure way is to use cryptographic
techniques [28]. However, the computational complexity of
these robust aggregation methods poses challenges, particu-
larly when integrating them with SA, which also imposes a
heavy computational overhead.

FEDQV presents a superior alternative to FEDAVG, demon-
strating enhanced resilience against poisoning attacks owing
to its Quadratic Voting nature and defence mechanism while
inheriting the simplicity of FEDAVG. This attribute enables
the integration of FEDQV with specialised adjustments into
existing SA protocols, which are originally established in the
FEDAVG framework. This integration aims to fortify the de-
fence capabilities against both poisoning and privacy attacks.

III. SECURE AGGREGATION IN FEDQV

We first overview FEDQV and the secure aggregation
concepts we incorporate in our design. Later, we describe how
we tailored adjusted the FEDQV protocol to implement secure
aggregation into FEDQV.

A. FEDQV Overview

1) Federated Learning Setting: Consider a horizontal FL
system involving N clients with a local dataset and a central
server. In each training round t, a specific subset of clients St is
selected to participate in the training task. Client i has the local
dataset Di with |Di| samples, drawn from Non-IID distribution
Xi(µi, σ

2
i). The overarching goal of employing FL is to train

a global model on the server by aggregating the local models
of clients, weighted by their refined votes. Given the loss
function ℓ(w;D), the objective function of FL can be described
as L(w) = ED∼X [ℓ(w;D)]. Therefore, the task becomes:
w∗ = argminw∈Rd L(w). To find the optimal w∗, Stochastic
Gradient Descent (SGD) is employed to optimise the objective
function. Let T be the total number of every client’s SGD, E
be the local iterations between two communication rounds, and
thus T

E is the number of communication rounds.

2) FEDQV: FEDQV consists of two key components:
similarity computation and voting scheme.

Similarity Computation. In round t, client i (i ∈ St) trains its
local model wt

i using the local data. Then the client calculates
its similarity score sti:

sti = Scos

(
wt

i ,w
t−1

)
=

〈
wt

i ,w
t−1

〉
∥wt

i∥ · ∥wt−1∥
(1)

Subsequently, each client transmits its model updates wit to
the central server, with the message ⟨sti⟩.

Voting Scheme Upon receiving the updates and messages from
selected clients, the voting scheme proceeds as follows:

• The server normalises the similarity scores using Min-
Max scaling to obtain s̄ti as:

s̄ti = norm
(
sti, {sti}i∈[N]

)
(2)

2

Algorithm 1: FEDQV
Input : w0 ← random initialisation;

B, θ ← FEDQV parameters

Server :
1 for Iteration t← 1 to T

E do
2 Broadcast wt−1 to selected clients St

(|St| = C ≥ 1);
3 Receive the local updates (wt

i , s
t
i) and compute

the normalised s̄ti ;
4 for i← 1 to N do in parallel
5 if s̄ti ≤ θ or s̄ti ≥ 1− θ then
6 Penalise budget Bi ← Eq.(3)
7 Calculate credit voice cti ← Eq.(4):
8 Calculate vote vti ← Eq.(5);
9 Update budget Bi ← Eq.(6)

10 end
11 return wt ←

∑N
i=1

vt
i∑N

i=1 vt
i

wt
i

12 end
Client :

1 for Client i ∈ St do in parallel
2 Receive the global update wt−1;
3 Conduct local training;
4 Calculate the similarity score sti ← Eq.(1);
5 send back (wt

i , s
t
i)

6 end

• The server penalises abnormal similarity scores by
reducing the clients’ budgets Bi as:

Bi = max
(
0, Bi + ln s̄ti − 1

)
(3)

• The server calculates the voice credit cti for client i
using the masked voting rule H as:

cti = H(s̄ti) =
(
− ln s̄ti + 1

)
1θ<s̄ti<1−θ (4)

• The server checks the budget Bi for each client and
computes their final votes vti as:

vti =
√
min (cti,max (0, Bi)) (5)

• The server updates the budget as:

Bi = max(0, Bi −
(
vti
)2
) (6)

Algorithm 1 summarises all these steps of FEDQV.

B. SECAGG Concepts

A secure aggregation protocol can guarantee input con-
fidentiality by safeguarding the local input model updates
of each participant and revealing only the globally aggre-
gated model during FL training, thereby efficiently averting
or alleviating concerns regarding the aforementioned privacy
attacks. For our work, we utilise the SECAGG proposed by
[4] due to its performance in terms of communication and
computational overhead. Below we overview the SECAGG
protocol of [4] (see [4] for their complete protocol). The secure
aggregation protocol consists of three phases: SECAGG.Setup,
SECAGG.Protect, and SECAGG.Aggregate.

• In the SECAGG.Setup phase, each client and the
aggregator get the public parameters and the key
materials. Each client generates two masks: (ki, bi)
where ki is generated using a key agreement protocol
(e.g., Diffie Hellman [9]), and bi is generated via a
pseudorandom generator. Each client secret shares its
mask with other clients using threshold secret sharing
[21]. With the secret sharing, the masks of dropped
clients can be recovered as long as threshold-many
clients are still alive.

• In the SECAGG.Protect phase, each client protects
their local inputs using their unique private key and
sends the protected input, denoted by [wt

i], to the
aggregator.

[wt
i] = wt

i + ki + bi (7)

• In the SECAGG.Aggregate phase, after the aggregator
collects all the protected inputs from the clients, it
executes an aggregation algorithm to retrieve the sum
of the client’s inputs. The aggregator first collects
threshold-many shares of the seed of each mask bi
for every alive client i and reconstructs it. Then it gets
threshold-many shares of the Diffie-Hellman’s secret
key of the dropped clients and thus reconstructs the
missing masks kj for every dropped client j.∑

i∈[N]

wt
i =

N∑
i=1

[wt
i]−

∑
i∈Drop

bi +
∑

j∈Live

kj (8)

All masking and unmasking operations involve modular addi-
tion.

Threat Model and Properties. We assume that the clients
are honest-but-curious meaning that clients correctly follow
the protocol steps but remain curious to discover any private
information. All communications between clients are through
secure-and-authenticated channels, offering a robust layer of
protection against unauthorised access and data tampering.

C. Implementing SECAGG in FEDQV

FEDQV differs from FEDAVG, which as its name suggests
uses averaging for integration, by instead using a voting
mechanism to weigh the contributions of wt

i to the global
model. This makes it not-trivial to integrate upon FEDQV
secure aggregation protocols developed for FEDAVG. Related
integration challenges include the following:

• Aggregation of {wt
i}i∈[N]. Recall that the aggregation

formulated by FEDQV is 1∑N
i=1 vt

i

∑N
i=1 v

t
i · wt

i . As-
sume a client i masks the value of wt

i as in Equation 8.
However, there is one more parameter vti to be added
in the calculation. As shown by the equation below, if
the server simply multiplies [wt

i] by its corresponding
vti , the masks do not cancel each other as supposed.
Thus, vti must be added before a client masks its wt

i .
n∑

i=1

vti · [wt
i]−

∑
i∈Drop

bi +
∑

j∈Live

kj

∑
i∈[n]

wt
i ̸=

n∑
i=1

vti ·(wt
i+ki+bi)−

∑
i∈Drop

bi+
∑

j∈Live

kj

3

• Calculation of vti . As mentioned, each client shall add
its vti to its wt

i , but in FEDQV vti can only be calcu-
lated by the server based on the budget Bi, similarity
sti, and the size of the data |Di| of client i. To over-
come this shortcoming, the server, after receiving sti
and |Di| of each client i, computes vti using Equation
5 and sends vti back to its corresponding client. Then
each client computes SECAGG.Protect using ⟨ki, bi⟩
in which the input is assigned as wt

i ·vti . Note that this
does not harm the security and privacy of the clients
while introducing negligible computational overhead.

Considering the crucial adjustments above, let us form the
securely aggregated FEDQV. Our approach is in line with
other securely aggregated FL designs consisting of three main
stages: 1) Setup; 2) Generation and Protect; and 3) Aggregate.
Our integration of secure aggregation to FEDQV is depicted
in Figure 1. We further discuss its details below:

Stage 0 (Setup). In this stage, the server and the clients
compute SECAGG.Setup and initialise FEDQV by having
the server send values of the protocol’s parameters wt−1 to
participating clients.

Stage 1 (Generation and Protect). After the setup and ini-
tialisation stage, each client first computes its local model
wt

i as in FEDQV and computes its sti. Later, it transmits
the message ⟨sti⟩. Upon receiving ⟨sti⟩, the server computes
vti as in Equation 5 and transmits vti to the corresponding
client. Then client i first computes wt

i · vti and protects its
input wt

i ·vti by treating it an input to the SECAGG.Protect as
[wt

i] = wt
i · vti + ki + bi. Client i sends [wt

i] to the server.

Stage 3 (Aggregate). Upon receiving [wt
i], the server first calls

SECAGG.Aggregate as described previously which returns the
sum of all wt

i . The server requires one more step to finalise
by multiplying the sum retrieved by 1/

∑N
i=1 v

t
i , as it is the

sole entity possessing complete knowledge of all vti .

Due to the nature of FEDQV and our adjustments, there
are two attack scenarios we consider: 1) Privacy attacks by
the server; and 2) Client attacking vti . In the former scenario,
the server knows only sti of each client, therefore the server
can’t reconstruct the local model (wt

i) of clients by relying
solely on similarity scores. Moreover, sti can be protected from
the server by utilising cryptography (see Section V for further
discussion).(see Section V for further discussion). In the latter
scenario, it can be a concern that each client possesses the
knowledge of their vote. This issue can be effectively mitigated
by enforcing clients to provide proof (e.g., via zero-knowledge
proofs [20]) that the sti sent is indeed computed honestly and
correctly, adhering to the protocol rules.

IV. PRIVACY ATTACKS AGAINST FEDQV WITH SECAGG

In this section, we conduct a comprehensive evaluation to
quantify the privacy-preserving properties of FEDQV with and
without SECAGG. By evaluating these methods under real-
world conditions, we seek to evaluate their effectiveness under
true attack scenarios.

A. Experimental Setup

We evaluate models Conv-2 [5] along with the correspond-
ing datasets FEMNIST [5], commonly employed in FL studies.

 Setup

Generate and Protect

Aggregate

Fig. 1: Overview of implementation of the SECAGG protocol
in FEDQV.

In each round of training, we randomly select 10 clients from
a pool of 193 users for the FEMNIST dataset. The training
process involves 100 iterations with a batch size of 20, and
local updates and a learning rate of 0.25.

B. Privacy Attack Algorithm

We mount the Deep Leakage from Gradients (DLG) at-
tack [28] and the Gradient Inversion (GI) attack [10] on
FEDQV. These attacks aim to generate dummy data and cor-
responding labels by leveraging a gradient-matching objective.
The detailed algorithms are outlined in Algorithm 2.

Algorithm 2: DLG and GI Attacks
1 Input: F (Di;w

t
i): model at round t from targeted user i;

learning rate η for inverting gradient optimiser; S: max
iterations for attack; τ : regularisation term for cosine loss in
inverting gradient attack; d:the model size

2 Output: reconstructed training data (Di, yi) at round t
3 Initialise D′

0 ← N (0,1), y′
0 ← Randint(0,max(y))

4 for s← 0,1, ... S − 1 do
5 ∇w′

s ← ∂ℓ(F (D′
s,w

t
i), y

′
s)/∂wt

i

6 switch Case do
7 case DLG attack do L′

s ←∥ ∇w′
s −∇wt

i ∥2
8

9 case GI attack do L′
s ← 1− ∇wt

i ·∇w′
s

∥∇wt
i∥∥∇w′

s∥
+ τ

10
11 D′

s+1 ← D′
s − η∇D′

s
L′

s, y′
s+1 ← y′

s − η∇y′
s
L′

s

12 return D′
S , y

′
S

In each iteration t, the attack algorithms proceed as follows:

1) The attack randomly initialises a set of dummy data,
comprising dummy inputs D′

0 and dummy labels y′0;
2) After the dummy gradient w′ is acquired, the server

then updates the dummy data in the direction that
minimises the Euclidean distance (for DLG) or the
cosine distance (for GI) between the dummy gradient
and the real gradient ∇wt

i .

4

(a) The Deep Leakage from Gradients (DLG) Attack.

(b) The Gradient Invention (GI) Attack.

Fig. 2: Visual Comparison of Images Reconstructed by Privacy Attacks (DLG and GI) on FEDQV with and without SECAGG.
The first row displays the original private training images from the targeted client. The second row illustrates reconstructed
images resulting from the privacy attacks (DLG and GI) on FEDQV without SECAGG. In the third row, reconstructed images
from the privacy attacks (DLG and GI) on FEDQV with SECAGG are presented. The use of SECAGG is observed to contribute
significantly to mitigating information leakage from the images.

We initiate these attacks with a learning rate of 0.01 and
perform 10,000 attack iterations.

C. Evaluation Results

We conduct the Deep Leakage from Gradients (DLG) and
Gradient Inversion (GI) attacks on the FEDQV framework,
both with and without the integration of SECAGG. Figure 2a
provides visualizations of the reconstructed images by the
DLG attack. In the absence of SECAGG, the DLG attack
achieves a 20% recovery rate of private images from the
client. However, when SECAGG is integrated, the DLG attack
fails to recover any of the client’s images. Figure 2b presents
visualisations of the reconstructed images by the GI attack.
Without SECAGG, the GI attack successfully recovers 50%
of the private images from the client. Yet, with SECAGG, the
GI attack is unable to recover any client images, although it
may vaguely leak the overall shape of the image. These results
underscore the pivotal role of SECAGG in fortifying FEDQV
against privacy attacks, with the GI attack exhibiting a higher
level of potency compared to the DLG attack.

V. DISCUSSION

In this section, we discuss possible research directions and
open problems as follows:

Malicious Clients:In this paper, we operate under the
assumption that clients are honest-but-curious for simplicity,
which allows us to focus on the core integration without delv-
ing into discussions on potential malicious actions by clients.
However, clients can act maliciously to deviate from the
protocol. For instance, a malicious client can send the wrong
sti while also conducting poisoning attacks. These attacks have
been extensively discussed and addressed in the FEDQV and
can be mitigated further by cryptography. Therefore, our paper
can readily extend the assumption to malicious clients.

Protection of vi: The server has to send vti to its corre-
sponding client in order to successfully and correctly aggregate
wt. Note that FEDQV does not allow clients to learn their
votes. While our adjustment is letting clients know their vi
does not harm their privacy, it requires further investigation
on its impact. However, the server can also protect vi (as
clients do for their wt

i) and then share the protected version.
Homomorphic Encryption [1] can be deployed to actualise our
approach, but we leave further investigation as future work.

Enhanced Privacy Attacks: While the integration of
SECAGG has proven effective in mitigating privacy leakage
and defending against privacy attacks, there are instances
where residual information leakage persists even after employ-
ing SECAGG. Our future work will delve into this aspect by
investigating more potent privacy attack scenarios, aiming to
comprehensively evaluate the impact of secure aggregation on
privacy in FL. Additionally, we plan to extend our investiga-
tions to encompass a broader range of datasets and models,
providing a more thorough understanding of the results.

VI. CONCLUSION

In this paper, we have illustrated the implementation
of SECAGG on the FEDQV framework to enhance its de-
fense mechanisms against privacy attacks. The integration of
SECAGG into the FEDQV framework demonstrated significant
improvements in resisting privacy attacks. Empirical assess-
ments, including Deep Leakage from Gradients (DLG) and
Gradient Inversion (GI) attacks, revealed enhanced privacy
protection when SECAGG was applied. Notably, SECAGG
successfully prevented information leakage in scenarios where
FEDQV alone exhibited vulnerabilities. This empirical evi-
dence contributes valuable insights, affirming the effective-
ness of implementing SECAGG atop FEDQV as a privacy-
enhancing measure in robust FL.

5

ACKNOWLEDGEMENT

Tianyue Chu and Nikolaos Laoutaris were supported by the
MLEDGE project (RE-GAGE22e00052829516), funded by the
Ministry of Economic Affairs and Digital Transformation and
the European Union NextGenerationEU/PRTR. Devriş İşler
was supported by the European Union’s HORIZON project
DataBri-X (101070069).

REFERENCES

[1] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey
on homomorphic encryption schemes: Theory and implementation,”
ACM Comput. Surv., 2018. [Online]. Available: https://doi.org/10.1145/
3214303

[2] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[3] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMa-
han, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure
aggregation for federated learning on user-held data,” arXiv preprint
arXiv:1611.04482, 2016.

[4] ——, “Practical secure aggregation for privacy-preserving machine
learning,” in proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 1175–1191.

[5] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated set-
tings,” in 33rd Conference on Neural Information Processing Systems
(NeurIPS), 2019.

[6] X. Cao, M. Fang, J. Liu, and N. Gong, “Fltrust: Byzantine-robust
federated learning via trust bootstrapping,” in Proceedings of Network
and Distributed System Security Symposium (NDSS), 2021.

[7] T. Chu, A. Garcia-Recuero, C. Iordanou, G. Smaragdakis, and
N. Laoutaris, “Securing federated sensitive topic classification against
poisoning attacks,” in Proceedings of Network and Distributed System
Security Symposium (NDSS), 2022.

[8] T. Chu and N. Laoutaris, “FedQV: Leveraging quadratic voting in
federated learning,” arXiv preprint arXiv:2401.01168, 2024.

[9] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, 1976. [Online]. Available: https://doi.org/10.1109/
TIT.1976.1055638

[10] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?”
Advances in Neural Information Processing Systems(NeurIPS), vol. 33,
pp. 16 937–16 947, 2020.

[11] S. Goryczka, L. Xiong, and V. S. Sunderam, “Secure multiparty
aggregation with differential privacy: a comparative study,” in
EDBT/ICDT Conferences, EDBT/ICDT. ACM, 2013. [Online].
Available: https://doi.org/10.1145/2457317.2457343

[12] H. Guo, H. Wang, T. Song, Y. Hua, Z. Lv, X. Jin, Z. Xue, R. Ma,
and H. Guan, “Siren: Byzantine-robust federated learning via proactive
alarming,” in Proceedings of the ACM Symposium on Cloud Computing,
2021, pp. 47–60.

[13] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[14] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Cryptography
from anonymity,” in 2006 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’06), 2006, pp. 239–248.

[15] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[16] S. P. Lalley and E. G. Weyl, “Quadratic voting: How mechanism design
can radicalize democracy,” in AEA Papers and Proceedings, vol. 108,
2018, pp. 33–37.

[17] M. Mansouri, M. Önen, W. B. Jaballah, and M. Conti, “Sok:
Secure aggregation based on cryptographic schemes for federated
learning,” Proc. Priv. Enhancing Technol., 2023. [Online]. Available:
https://doi.org/10.56553/popets-2023-0009

[18] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[19] S. Ramaswamy, R. Mathews, K. Rao, and F. Beaufays, “Federated
learning for emoji prediction in a mobile keyboard,” arXiv preprint
arXiv:1906.04329, 2019.

[20] S. T. V. Setty, “Spartan: Efficient and general-purpose zksnarks
without trusted setup,” in Annual International Cryptology Conference,
CRYPTO, ser. Lecture Notes in Computer Science. Springer, 2020.
[Online]. Available: https://doi.org/10.1007/978-3-030-56877-1\ 25

[21] A. Shamir, “How to share a secret,” Commun. ACM, 1979. [Online].
Available: https://doi.org/10.1145/359168.359176

[22] G. Tsaloli, B. Liang, C. Brunetta, G. Banegas, and A. Mitrokotsa,
“sfDEVA: decentralized, verifiable secure aggregation for privacy-
preserving learning,” in Information Security -International Conference,
ISC, ser. Lecture Notes in Computer Science. Springer, 2021. [Online].
Available: https://doi.org/10.1007/978-3-030-91356-4\ 16

[23] D. Wu, M. Pan, Z. Xu, Y. Zhang, and Z. Han, “Towards efficient secure
aggregation for model update in federated learning,” in IEEE Global
Communications Conference, GLOBECOM. IEEE, 2020. [Online].
Available: https://doi.org/10.1109/GLOBECOM42002.2020.9347960

[24] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient
descent with suspicion-based fault-tolerance,” in International Confer-
ence on Machine Learning. PMLR, 2019, pp. 6893–6901.

[25] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in International
Conference on Machine Learning. PMLR, 2018, pp. 5650–5659.

[26] B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage
from gradients,” 2020.

[27] L. Zhao, J. Jiang, B. Feng, Q. Wang, C. Shen, and Q. Li,
“SEAR: secure and efficient aggregation for byzantine-robust federated
learning,” IEEE Trans. Dependable Secur. Comput., 2022. [Online].
Available: https://doi.org/10.1109/TDSC.2021.3093711

[28] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances
in Neural Information Processing Systems(NeurIPS), vol. 32, 2019.

6

