Aligning Confidential Computing
with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono,
Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva,
Mengmei Ye, Niteesh Dubey, and Tobin Feldman-Fitzthum
IBM Research

Abstract—Developers leverage machine learning (ML) plat-
forms to handle a range of their ML tasks in the cloud, but
these use cases have not been deeply considered in the context
of confidential computing. Confidential computing’s threat model
treats the cloud provider as untrusted, so the user’s data in use
(and certainly at rest) must be encrypted and integrity-protected.
This host-guest barrier presents new challenges and opportunities
in the ML platform space. In particular, we take a glancing look
at ML platforms’ pipeline tools, how they currently align with
the Confidential Containers project, and what may be needed to
bridge several gaps.

ML pipelines are a programming abstraction for executing
multiple steps in a typical ML development flow. These
“pipelines” are in fact directed acyclic graphs (DAGs), where
each node is some computation, and the edges represent
dependencies. For example, the nodes may represent Python
scripts for data cleaning, training, hyperparameter tuning,
evaluation, deployment, monitoring, etc.; and the edges signify
their input/output dependencies. ML platforms may expose
pipeline support to the programmer via Python libraries (e.g.
in Azure ML Pipelines or AWS SageMaker Pipelines) or
decorators (e.g. in Kubeflow or Metaflow). Regardless, the
programmer is responsible for specifying the input/output
edges of the DAG and the functions/computations of the nodes.

The Confidential Containers (CoCo) [1] project has shown
how one can set up and run ML workloads in the cloud
[2], but there is no consideration yet for ML pipelines. In
fact, CoCo is yet to release a v1.0, but there are already
several usage assumptions taking shape. In rough terms, the
Kubernetes control plane (which CoCo leverages) is assumed
to be untrusted and part of the cloud provider’s software
stack. The Kubernetes operator pattern, however, allows CoCo
to deploy its custom container technology (based on Kata
Containers [3]), which is ultimately responsible for jump-
starting the secure pods within a trusted execution environment
(TEE).

We outline several challenges and considerations at the
confluence of CoCo and ML pipeline technologies:

1) CoCo requires hardware, firmware, and kernel support.

Workshop on Al Systems with Confidential Computing (AISCC) 2024
26 February 2024, San Diego, CA, USA

ISBN 979-8-9894372-4-5
https://dx.doi.org/10.14722/aiscc.2024.23014
www.ndss-symposium.org

2) CoCo deployments run each pod inside of a Kata VM in
a Kubernetes deployment. This (a) assumes Kubernetes
is used with a custom operator and (b) poses challenges
when the Kubernetes control plane itself is virtualized.

3) ML pipelines do not currently expose any way for users

to indicate a confidential environment.

4) An ML pipeline’s interface and features may require

restrictions when confidentiality is a first-class concern.

5) Most importantly, ML pipelines are not designed to work

with protected nodes and edges in their DAGs.

Any ML pipeline framework would of course need to
deploy on CPUs with confidential computing features (e.g.
Intel TDX or AMD SEV-SNP technology) and associated
kernel support; for GPUs, such support is still novel, but it
would be a smaller concern with wider-spread adoption (1).
CoCo currently supports a “peer pods” feature to handle nested
virtualization issues (2). Thus, launching an ML pipeline on
virtualized Kubernetes would require compatibility with this
kind of CoCo feature. Regarding (3), CoCo users specify a
confidential environment as part of their deploymet YAML.
ML pipelines need some minimal configuration support to
match this. Any ML pipeline-specific features would require
careful vetting (4). For example, AWS SageMaker allows users
to cache pipeline steps, and Google Vertex Al Pipelines allows
users to leverage “predefined components.” Such features may
need to be dropped or modified for confidential computing-
enabled pipelines. Lastly, all ML pipelines would need to
secure the computations and data (5). For example, specify-
ing mounts in a pipeline step’s source code must result in
encrypted mounts (data edges); all computations (nodes) must
be encrypted before they are uploaded to the cloud provider;
and such (trusted, client-side) library support would need to be
open to the user. Thus, in a “CoCo-enlightened ML pipeline,”
each compute node in the DAG could be a container image;
each of these would interact with a relying party for attestation
and decryption; and the I/O dependencies would be encrypted.

REFERENCES

[1] Confidential containers. Accessed: 2024 Jan 8. [Online]. Available:
https://confidentialcontainers.org/

[2] Confidential containers for enhancing ai workload security in
the public cloud. Accessed: 2024 Jan 8. [Online]. Avail-
able: https://www.redhat.com/en/blog/enhancing-ai-workload-security-in-
the-public-cloud

[3] Kata containers. Accessed:
https://katacontainers.io/

2024 Jan 10. [Online]. Available:



