
Exploring the Influence of Prompts in LLMs for
Security-Related Tasks

Weiheng Bai
University of Minnesota

bai00093@umn.edu

Qiushi Wu
IBM Research

qiushi.wu@ibm.com

Kefu Wu
University of Minnesota

wu000380@umn.edu

Kangjie Lu
University of Minnesota

kjlu@umn.edu

Abstract—In recent years, large language models (LLMs) have
been widely used in security-related tasks, such as security bug
identification and patch analysis. The effectiveness of LLMs in
these tasks is often influenced by the construction of appropriate
prompts. Some state-of-the-art research has proposed multiple
factors to improve the effectiveness of building prompts. However,
the influence of prompt content on the accuracy and efficacy
of LLMs in executing security tasks remains underexplored.
Addressing this gap, our study conducts a comprehensive ex-
periment, assessing various prompt methodologies in the context
of security-related tasks. We employ diverse prompt structures and
contents and evaluate their impact on the performance of LLMs
in security-related tasks. Our findings suggest that appropriately
modifying prompt structures and content can significantly enhance
the performance of LLMs in specific security tasks. Conversely,
improper prompt methods can markedly reduce LLM effectiveness.
This research not only contributes to the understanding of prompt
influence on LLMs but also serves as a valuable guide for future
studies on prompt optimization for security tasks. Our code and
dataset is available at Wayne-Bai/Prompt-Affection.

I. INTRODUCTION

The emergence of large language models (LLMs), such
as ChatGPT [1], has marked a significant advancement in the
field of artificial intelligence. Their broad and powerful capa-
bilities interest researchers, prompting exploration of various
applications such as Stable Fusion [6], DALL-E [2], Github
Copilot [3], etc. Specifically, LLMs have been shown powerful
impacts in security-related problems, including vulnerability
confirmation, patch commit, etc. In addition to that, recent
works found that LLMs can help improve the system-on-chip
(SoC) security [25], generate security-centric assertions for
assertion-based verification on hardware [16], power the binary
taint analysis [23], help improve fuzzer performance [11], etc.

Recent studies [15, 18, 26, 31] indicate that modifying
prompts can significantly impact the effectiveness of LLMs
in completing various tasks. Despite notable advancements in
prompt-related research, a key question remains unclear for
security researchers: Can these prompt techniques be adapted
for security-related topics, characterized by natural language
descriptions, code snippets, and specific security terminologies,
to enhance the performance of LLMs in security-specific tasks?

Before answering this question, let’s first explore the
concept of prompts. In our work, we break down a prompt
into two essential elements: the Prompt Structure and the
Prompt Content. This separation aims to systematically analyze
how each aspect of the prompt contributes to the overall
effectiveness and outcomes of LLMs. Prompt structure refers
to the overarching framework or format of the prompt, which
dictates the mode of interaction with the LLM. For instance,
a ‘few-shot prompt’ represents a specific structural pattern,
indicating that the user should provide several examples to the
LLM before posting their query. This structure guides the LLM
in understanding the context and background of the task. The
prompt content represents the sentences used in the prompt.
For example, if the objective is to have ChatGPT generate an
image of dogs, the prompt content might be ‘Please create an
image of various dog breeds playing in a park.’ More details
on leveraging prompt engineering structures and contents to
improve LLM performance can be found in §II.

This work aims to exam how different prompt structures
and contents influence LLMs when addressing specific secu-
rity tasks. Specifically, this study will answer the following
subquestions:

• Q1: What types of prompt structures are effective in
enhancing the performance of LLMs for different security-
related tasks?

• Q2: What types of prompt contents are effective in
enhancing the performance of LLMs for different security-
related tasks?

• Q3: Could the combination of various prompt contents
further enhance the performance of the LLM?

In this paper, we present our preliminary findings. We have
analyzed three distinct security tasks, utilizing a benchmark
dataset [14, 29, 35] and experimenting with 7 different prompt
structures [22] and 9 different prompt contents. Our findings
offer preliminary understanding of how prompt design and
subject matter affect the performance of the LLM in security-
related tasks. Our results reveal significant variations in LLM
performance based on the prompts used. For instance, in the
three evaluated security-related tasks, altering the prompts led
to a substantial improvement in LLM accuracy: from 41.1%,
22.9%, and 40.5% to 60.2%, 53.55%, and 53.65%, respectively.

II. APPROACH OVERVIEW

We conduct an in-depth analysis of three common security
tasks, harnessing seven different prompt structures and nine
various prompt content types. This section first discusses the

Workshop on AI Systems with Confidential Computing (AISCC) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-4-5
https://dx.doi.org/10.14722/aiscc.2024.23015
www.ndss-symposium.org

https://github.com/Wayne-Bai/Prompt-Affection.git

selected datasets, covering common security challenges. Then,
we show the prompt structures and content used to guide the
LLMs, examining their impact on LLMs in addressing real-
world security issues. Finally, we present the error estimation
to assess the performance of LLMs on these security-related
datasets.

A. Security-Related Datasets Selection

In order to objectively assess of the performance of LLMs
on security tasks, the selected datasets should adhere to the
following criteria: (1) the datasets should effectively capture
the essence of common security challenges; (2) the data within
the dataset must be accurately labeled, ensuring the reliability
of the information; (3) LLMs should be able to produce labels
in the same format as originally provided in the dataset. This
consistency ensures quantifiable measurements.

Based on these criteria, in this project, we focus on three
distinct security-related tasks, each holding its distinctive
importance within the security area. These tasks are: Security
Patch Detection (SPD) [29], Vulnerable Function Detection
(VFD) [35], and Stable Patch Classification (SPC) [14].

Security Patch Detection (SPD). Given that software vendors
frequently issue patches without comprehensive security-related
advisories, downstream users remain uninformed and vulnerable
to security-related bugs fixed by upstream [32]. To counteract
this, various security patch detection techniques have been
developed, such as GraphSPD [29], SID [32], and BinGo [30],
which aims to identify if a program patch is security related,
by analyzing code changes and associated commit messages.

To advance research in this field, PatchDB [29] has created
a dataset that includes 12K security patches and 24K non-
security patches drawn from real-world sources. This dataset
combines data from various sources, including the National
Vulnerability Database (NVD) and GitHub Commits, thereby
enhancing its comprehensiveness. The information of data
(patches) in PatchDB includes: patch categorization (security or
non-security), associated commit messages, and corresponding
code alterations.

Vulnerable Function Detection (VFD). This task is focused
on identifying functions that include vulnerabilities, which is
a critical problem in program security area. Consequently, it
is a hot research subject of various previous works [9, 17,
21]. In order to advance research in this domain, Devign [21]
builds a dataset including a total of 48,687 samples. This
dataset encompasses 23,355 vulnerable functions and 25,332
non-vulnerable functions, sourced from four widely used open-
source projects: the Linux Kernel, QEMU, Wireshark, and
FFmpeg.

Stable Patch Classification (SPC). This task primarily focuses
on the issues in the Linux kernel and aims to automatically cat-
egorize patches to determine if they possess sufficient security
significance to warrant integration into stable versions [5]. This
task is especially crucial as the stable versions of the Linux
kernel are designed for users who require the kernel’s security
and stability over new feature integration. Due to the importance
of this task, in recent years, multiple works have been published,
including PatchNet [14], DeepCVA [19], and DeepLV [21]. To
advance research in this field, PatchNet [14] has collected a

dataset comprising 82,403 patches, which encompasses 42,408
stable patches and 39,995 non-stable patches.

B. Prompt Structure

As we discussed in §I, the first component of a prompt is the
prompt structure. Previous work [12] indicates that employing
structured demonstrations of the in-context learning method,
which includes prompts with few-shot [13, 34], one-shot [13],
and zero-shot [24]. Such structures enable LLMs to efficiently
solve simple tasks [22].

• The 0-shot approach is characterized by a straightforward
task description followed by the input query, without any
additional context or examples.

• The 1-shot method enhances this by adding a single,
randomly chosen demonstration example before the query,
providing a model of how the task might be approached.

• The few-shot method extends this concept by including
multiple examples, presenting a wider array of demonstra-
tions.

In this project, we introduce the variants of these prompt
structures by integrating these basic ones with examples that can
be classified into either true (positive) class or false (negative)
class. Specifically, we create six distinct prompt structures:
1-shot-t, 1-shot-f, few-shot-tt, few-shot-ft, few-shot-tf, and
few-shot-ff. The 1-shot-t pattern involves a task description
followed by a positive-class example, while 1-shot-f employs
a negative-class example. The few-shot-tt utilizes two positive-
class examples, while few-shot-ff utilizes two negative-class
examples. The few-shot-tf and few-shot-ft utilize one same
positive-class example and one same negative-class example,
but these two examples are presented in a different order. Such
a design is used to scrutinize the influence of example types
and their sequencing on LLM performance.

C. Prompt Content

LLMs show limited performance in complex and knowledge-
intensive tasks when only prompt structures are altered. To
address this, researchers are enriching the prompts with
specific content, boosting LLM effectiveness in more complex
tasks. This includes adding general information, such as role
definitions [24, 27] and incorporating domain-specific expertise,
such as vulnerability patterns [33], to improve responses for
specialized queries.

Akin [7] shows that defining roles in prompts, with phrases
such as "Act As," significantly improves LLM performance.
Moreover, LLMs can sometimes create more effective prompts
than those designed manually [36]. Additionally, applying
psychological techniques such as emotional stimuli may also
improve LLM performance [20]. However, it is also crucial to
note that improper prompts can diminish LLMs’ effectiveness,
highlighting prompt sensitivity in these models [26]. Building
on previous studies, this research examines nine types of prompt
contents. Basic, Act As User, Act As System, GPT-Generate
Prompts, Role Definition, and Emotion (including encourage,
threaten, reward, and punish). Table I shows the example
prompts for the Security Patch Detection task.

The Basic content simply provides the task that we want
LLMs to solve.

2

Prompt Content Example for SPD

Basic <System> You are a helpful assistant. (DEFAULT)
<User> Decide whether a patch is a security patch
(SRP) or non-security patch (NSP).

GPT-generated <System> You are a helpful assistant. (DEFAULT)
<User> Let’s start by examining the patch notes
or changelog for key terms that indicate whether
this is a Security-Related Patch (SRP) or a Non-
Security Patch (NSP). The patch is . We’ll look for
phrases related to security for SRPs, like ’critical
security update’ or ’vulnerability mitigation’, and
terms like ’performance tuning’ or ’feature rollout’
for NSPs. Then, we’ll scrutinize the code changes
to see if they affect security protocols or are
more focused on general improvements. We should
also consider the context and timing of the patch
release, as well as the discussions in the developer
and user communities. Finally, let’s check for any
related security advisories or compliance standards
documentation. All these factors combined will help
us accurately classify the patch. Help me categorize
the patch to whether to Security-Related Patch
(SRP) or a Non-Security Patch (NSP).

Role

<System> You are Frederick, an AI expert in patch
analysis. Your task is to decide whether a given
patch is a security patch (SRP) or non-security patch
(NSP).
<User> Decide whether a function contains vulner-
abilities (VUL) or does not contain vulnerabilities
(NAN).

Act As-User <System> You are a helpful assistant. (DEFAULT)
<User> You are Frederick, I want you to act as
an AI expert in patch analysis. You will decide
whether a given patch is a security patch (SRP) or
non-security patch (NSP).

Act As-System

<System> You are Frederick, I want you to act as
an AI expert in patch analysis. You will decide
whether a given patch is a security patch (SRP) or
non-security patch (NSP).
<User> Decide whether a function contains vulner-
abilities (VUL) or does not contain vulnerabilities
(NAN).

Encourage

<System> You are Frederick, an AI expert in patch
analysis. Your task is to decide whether a given
patch is a security patch (SRP) or non-security
patch (NSP). Remember, you’re the best AI patch
analyst and will use your expertise to provide
the best possible analysis.
<User> Decide whether a function contains vulner-
abilities (VUL) or does not contain vulnerabilities
(NAN).

Threaten

<System> You are Frederick, an AI expert in patch
analysis. Your task is to decide whether a given
patch is a security patch (SRP) or non-security patch
(NSP). Remember, you must use your expertise
to provide the best possible analysis, otherwise
you are the worst AI patch analyst.
<User> Decide whether a function contains vulner-
abilities (VUL) or does not contain vulnerabilities
(NAN).

Reward

<System You are Frederick, an AI expert in patch
analysis. Your task is to decide whether a given
patch is a security patch (SRP) or non-security patch
(NSP). If you perform very well, I will generously
tip you.
<User> Decide whether a function contains vulner-
abilities (VUL) or does not contain vulnerabilities
(NAN).

Punish

<System> You are Frederick, an AI expert in patch
analysis. Your task is to decide whether a given
patch is a security patch (SRP) or non-security patch
(NSP). If you perform badly, you will be fined
<User> Decide whether a function contains vulner-
abilities (VUL) or does not contain vulnerabilities
(NAN).

TABLE I: Prompt Content Example for SPD.

The GPT-generated approach involves having ChatGPT
autonomously create prompts based on a provided task descrip-
tion. This method aims to assess whether ChatGPT can craft
prompts that are more effective than manually designed ones
for security-related tasks.

The Role content changes the default role of the system.
For instance, the default value “You are a helpful assistant“
becomes “You are an AI expert in patch analysis“.

The Act As content modifies the role descriptions in prompts
to start with “Act As”. For instance, “You are an expert in
patch analysis” becomes “Act as an expert in patch analysis.”
This method has two variants: Act As-system, where the role
description is part of the system’s content, and Act As-user,
where it is included in the prompt’s input.

The Emotion prompt content is categorized into four types:
Emotion-Reward, Emotion-Punish, Emotion-Encourage and
Emotion-Threaten. Each category includes a role definition
for enhanced personification. Encourage includes motivational
phrases like “Remember, you’re the best and you will use your
expertise to provide the best possible analysis.” Threaten adds
a caution, such as, “Remember, you must use your expertise to
provide the best possible analysis, otherwise you are the worst.”
Reward uses motivational phrases like “If you perform very
well, I will generously tip you.” Punish warns “If you perform
badly, you will be fined.”

D. Error Estimation

In order to make a fair comparison of LLM results across
various prompt settings, it is essential to mitigate the impact
of random errors. To achieve this, we establish a criterion that
helps discern the superiority of one scenario over another.

Before delving into the definition of our criterion, it’s
imperative to establish the concept of Standard Error (SE),
a fundamental statistical metric [8]. Standard Error (see
Equation 1) is defined as the standard deviation of the sampling
distribution or an estimate thereof. In this equation s represents
the population’s standard deviation, and n denotes the total
sample count.

SE =
s√
n

(1)

To accurately estimate the standard error, we conducted an
empirical analysis on all benchmark datasets. Our methodology
involved the execution of each distinct prompt pattern and
content three times. Through this process, we derive an
estimated standard error SEacc = 0.0020, SERecall = 0.0015,
SEPrecision = 0.0011, and SEF1 = 0.0019. Subsequently,
this value is applied in all subsequent evaluations of our
study, ensuring a consistent and reliable measure for assessing
performance variations attributed to different prompt patterns
and contents.

Furthermore, we can define the criterion (see Equation 2)
based on the standard error.In this equation, P represents the
performance metric, and SE is the standard error. A scenario
is considered superior if the difference in performance between
two scenarios is at least twice the standard error (SE).

P1 − P2 > 2× SE (2)

3

III. EVALUATION

A. Experiment setup

Model selection. In this project, we have opted to conduct
our experiments using the GPT-3.5-Turbo APIs. This choice
is grounded in four key criteria: (1) Accessibility: The model
must be well known and publicly available to all users; (2)
Capability: The model needs to possess sufficient computa-
tional power to successfully complete our experiments; (3)
API Throughput: The Large Language Model (LLM) must
offer an API throughput capable of supporting our large-scale
evaluation; and (4) Cost-Effectiveness: The overall cost of
conducting the evaluation should be reasonable for finishing
all our experiments.

Data Sampling. As discussed in §II-A, we selected three
datasets for our experiment: PatchDB [29] for Security Patch
Detection, Devign [35] for Vulnerable Function Detection, and
PatchNet [14] for Stable Patch Classification. These datasets
vary in size, necessitating a unified approach for experimental
consistency. To streamline analysis and optimize costs, we
sampled 2,000 data points from each dataset, maintaining an
equal balance of 1,000 positive and 1,000 negative data points.
According to a previous study [10], this sampling size ensures
that the introduced random error does not exceed 3%.

Experiment Cost. In our study, we executed 69 small tasks
for each dataset, amounting to a total of 207 experiments.
Additionally, to estimate the error rate (refer to §II-D), we
carried out an extra 81 small experiments in total. The total
expenditure was approximately 1600 USD. It’s important to
note that this cost is calculated based on the GPT-3.5-Turbo
pricing of $0.0010 per 1,000 tokens. Opting for GPT-4 could
result in a cost increase of 30 to 60 times the amount spent on
GPT-3.5-Turbo.

Metrics for performance evaluation. In our experiments, we
utilized these metrics:

• Accuracy: Measures the overall correctness of predictions.
It is most relevant in scenarios where all classes are
equally important and misclassifications have similar
consequences.

• Recall: Assesses the model’s ability to correctly identify
true positives. This metric is crucial in situations where
missing out on true positive cases (false negatives) carries
a significant penalty or risk.

• Precision: Focuses on the precision of positive predictions.
It is essential in cases where making a false positive error,
such as wrongly identifying something as positive, has
serious implications.

• F1 Score: Balances Precision and Recall, offering a single
measure for cases where both false positives and false
negatives are equally concerning.

B. The influence of prompt structures for different security-
related tasks

Referring to a specific row in Table II, Table III, or Table IV,
we can analyze the influence of various prompt structures

Content
Pattern 0-shot 1-shot-t 1-shot-f few-shot-tt few-shot-ff few-shot-ftfew-shot-tf

basic

Accuracy 0.556 0.548 0.5265 0.5445 0.5795⋆ 0.5245 0.55

Recall 0.152 0.126 0.172 0.122 0.258⋆ 0.077 0.146

Precision 0.7916 0.8076⋆ 0.5910 0.7870 0.7226 0.7333 0.7604

F1 0.2550 0.2179 0.2664 0.2112 0.3802⋆ 0.1393 0.2449

Act As-User

Accuracy 0.543 0.536 0.5485 0.5605 0.5815⋆ 0.54 0.5695

Recall 0.128 0.084 0.252 0.155 0.311⋆ 0.122 0.215

Precision 0.7529 0.875⋆ 0.6191 0.8201 0.6775 0.7439 0.7383

F1 0.2188 0.1532 0.3582 0.2607 0.4263⋆ 0.2096 0.3307

GPT-generated

Accuracy 0.411 0.5105 0.5375 0.5142 0.5522⋆ 0.5185 0.5250

Recall 0.122 0.022 0.094 0.034 0.158⋆ 0.043 0.058

Precision 0.2890 0.9565⋆ 0.8318 0.8717 0.7488 0.8775 0.8787

F1 0.1715 0.043 0.1689 0.065 0.2609⋆ 0.0820 0.1089

role

Accuracy 0.5485 0.5545 0.542 0.5525 0.5945⋆ 0.538 0.555

Recall 0.207 0.13 0.219 0.136 0.368⋆ 0.126 0.151

Precision 0.6529 0.8609⋆ 0.6186 0.8143 0.6727 0.7159 0.7864

F1 0.3143 0.2258 0.3234 0.2330 0.4757⋆ 0.2142 0.2533

Act As-System

Accuracy 0.54 0.532 0.5295 0.5435 0.5935⋆ 0.5315 0.5565

Recall 0.128 0.068 0.236 0.118 0.447⋆ 0.1 0.162

Precision 0.7272 0.9444⋆ 0.5714 0.7919 0.6322 0.7299 0.7677

F1 0.2176 0.1268 0.3340 0.2053 0.5237⋆ 0.1759 0.2675

Encourage

Accuracy 0.5445 0.539 0.534 0.553 0.58⋆ 0.5345 0.5645

Recall 0.187 0.091 0.187 0.134 0.391⋆ 0.11 0.185

Precision 0.6561 0.875⋆ 0.6111 0.8271 0.6286 0.7284 0.7676

F1 0.2910 0.1648 0.2863 0.2306 0.4821⋆ 0.1911 0.2981

Threaten

Accuracy 0.5345 0.54 0.534 0.5585 0.5905⋆ 0.5395 0.5665

Recall 0.188 0.089 0.161 0.15 0.405⋆ 0.127 0.18

Precision 0.6123 0.9081⋆ 0.6338 0.8196 0.6438 0.7257 0.7929

F1 0.2876 0.1621 0.2567 0.2535 0.4972⋆ 0.2161 0.2933

Reward

Accuracy 0.537 0.543 0.531 0.566 0.602⋆ 0.5365 0.5775

Recall 0.151 0.1 0.17 0.172 0.432⋆ 0.117 0.213

Precision 0.6622 0.8771⋆ 0.6115 0.8113 0.6545 0.7267 0.7859

F1 0.2459 0.1795 0.2660 0.2838 0.5204⋆ 0.2015 0.3351

Punish

Accuracy 0.552 0.5655 0.5365 0.5775 0.602⋆ 0.54 0.5765

Recall 0.188 0.152 0.207 0.202 0.433⋆ 0.134 0.218

Precision 0.6911 0.8786⋆ 0.6070 0.8112 0.6485 0.7127 0.7703

F1 0.2955 0.2591 0.3087 0.3234 0.5267⋆ 0.2255 0.3398
* and represent the difference of different prompt contents within the same prompt structure

compared to basic prompt content. represents better than basic and represents worse than basic.
The darker the color, the greater the difference.

* Bold result with ⋆ represents the maximum value under the condition of the same prompt content
but different prompt structures.

TABLE II: Result of Task-SPD in different prompt structures and
contents.

on different tasks. In this subsection, we will discuss the
effectiveness of these prompt structures for different security
tasks and answer the research question: What types of prompt
structures are effective in enhancing the performance of
LLMs for security-related tasks?

Security Patch Detection. Table II shows that, the few-shot-ff
consistently outperforms all other prompt structures, when using
Accuracy, Recall, or F1 as evaluation metrics. However, when
using Precision as evaluation metrics, few-shot-ff performs
worse in all the patterns, but 1-shot-t performs best in all the
patterns. Therefore, in the context of security patch detection,
users seeking overall good results or aiming to minimize false
negatives should opt for the few-shot-ff prompt structure. On
the contrary, if the goal is to reduce false positives, the 1-shot-t
prompt structure may be a more suitable choice.

Vulnerable Function Detection. Table III indicates that, when
considering precision as the metric, similar to the SPD scenario,
the 1-shot-t structure frequently outperforms all other prompt
structures in 6 out of 9 cases. However, this approach often

4

Content
Pattern 0-shot 1-shot-t 1-shot-f few-shot-tt few-shot-ff few-shot-ft few-shot-tf

basic

Accuracy 0.5265 0.5005 0.5355⋆ 0.509 0.52 0.5135 0.5195

Recall 0.167 0.001 0.382⋆ 0.037 0.103 0.049 0.083

Precision 0.5943 1⋆ 0.5512 0.6607 0.6204 0.6901 0.6535

F1 0.2607 0.0019 0.4512⋆ 0.0700 0.1766 0.0915 0.1472

Act As-User

Accuracy 0.493 0.505 0.451 0.502 0.5115⋆ 0.508 0.509

Recall 0.05 0.018 0.066⋆ 0.008 0.058 0.029 0.038

Precision 0.4385 0.6923⋆ 0.2869 0.6666 0.6236 0.6904 0.6551

F1 0.0897 0.0350 0.1073⋆ 0.0158 0.1061 0.0556 0.0718

GPT-generated

Accuracy 0.424 0.538 0.4875 0.5215 0.5045 0.541⋆ 0.513

Recall 0.753⋆ 0.18 0.616 0.113 0.273 0.256 0.326

Precision 0.4541 0.6338⋆ 0.4900 0.6174 0.5083 0.5953 0.5207

F1 0.5665⋆ 0.2803 0.5458 0.1910 0.3552 0.3580 0.4009

role

Accuracy 0.5255⋆ 0.5135 0.438 0.504 0.511 0.5135 0.5165

Recall 0.258⋆ 0.05 0.104 0.015 0.055 0.04 0.066

Precision 0.5548 0.6849 0.3132 0.6818 0.625 0.7547⋆ 0.6666

F1 0.3522⋆ 0.0931 0.1561 0.0293 0.1011 0.0759 0.1201

Act As-System

Accuracy 0.396 0.5125 0.2445 0.505 0.4855 0.5045 0.519⋆

Recall 0.315⋆ 0.048 0.062 0.016 0.059 0.027 0.088

Precision 0.3758 0.6760 0.0976 0.7272⋆ 0.4013 0.6 0.6376

F1 0.3427⋆ 0.0896 0.0758 0.0313 0.1028 0.0516 0.1546

Encourage

Accuracy 0.5345⋆ 0.5115 0.3795 0.5045 0.5125 0.5125 0.511

Recall 0.347⋆ 0.044 0.081 0.016 0.096 0.048 0.053

Precision 0.5552 0.6769 0.2009 0.6956⋆ 0.5748 0.6760 0.6309

F1 0.4270⋆ 0.0826 0.1154 0.0312 0.1645 0.0896 0.0977

Threaten

Accuracy 0.4515 0.513 0.2545 0.506 0.5165⋆ 0.509 0.5165

Recall 0.253⋆ 0.039 0.087 0.018 0.104 0.036 0.069

Precision 0.4195 0.75⋆ 0.1308 0.75 0.5942 0.6666 0.6571

F1 0.3156⋆ 0.0741 0.1045 0.0351 0.1770 0.0683 0.1248

Reward

Accuracy 0.529⋆ 0.514 0.29 0.503 0.4965 0.517 0.5185

Recall 0.282⋆ 0.049 0.1 0.014 0.063 0.061 0.065

Precision 0.5573 0.7⋆ 0.1612 0.6363 0.4736 0.6931 0.6989

F1 0.3745⋆ 0.0915 0.1234 0.0273 0.1112 0.1121 0.1189

Punish

Accuracy 0.4985 0.5225⋆ 0.229 0.503 0.5195 0.516 0.52

Recall 0.357⋆ 0.082 0.072 0.018 0.114 0.069 0.083

Precision 0.4979 0.6890⋆ 0.1049 0.6 0.6031 0.6509 0.6587

F1 0.4158⋆ 0.1465 0.0854 0.0349 0.1917 0.1247 0.1474
* and represent the difference of different prompt contents within the same prompt structure compared to

basic prompt content. represents better than basic and represents worse than basic. The darker the color,
the greater the difference.

* Bold result with ⋆ represents the maximum value under the condition of the same prompt content but different
prompt structures.

TABLE III: Result of Task-VFD in different prompt structures and
contents.

leads to the highest incidence of false negatives. On the contrary,
when evaluating using the Recall or F1 score, the 0-shot
structure tends to perform best in most instances (7 out of 9).
These results may be attributable to the diversity of vulnerability
types; a limited number of examples may not accurately
capture the patterns of different types of vulnerable functions.
Consequently, the provided examples may not significantly
enhance the overall performance of the Large Language Model
(LLM) in this task.

Stable Patch Classification. Table IV shows that, akin to the
security patch detection task, the few-shot-ff structure yields
the best performance in most cases when using Recall or the
F1 score as metrics. This indicates fewer false negatives and
generally favorable outcomes When evaluating with precision
or accuracy as metrics, the 1-shot-f structure performs best in
the majority of cases (6 out of 9), suggesting a lower incidence
of false positives.

C. The effectiveness of different prompt contents across appli-
cations

In this subsection, we aim to answer the research question:
What types of prompt content are effective in enhancing the

Content
Pattern 0-shot 1-shot-t 1-shot-f few-shot-tt few-shot-ff few-shot-ft few-shot-tf

basic

Accuracy 0.4855 0.48 0.499⋆ 0.4985 0.499 0.495 0.499

Recall 0.951 0.882 0.975 0.982 0.994⋆ 0.978 0.99

Precision 0.4924 0.4889 0.4994⋆ 0.4992 0.4494 0.4974 0.4994

F1 0.6489 0.6291 0.6605 0.6619 0.6648⋆ 0.6594 0.6639

Act As-User

Accuracy 0.4965 0.4695 0.493 0.492 0.4995 0.4925 0.4955⋆

Recall 0.992 0.794 0.967 0.967 0.996⋆ 0.967 0.984

Precision 0.4982 0.4815 0.4964 0.4958 0.4997 0.4961 0.4977

F1 0.6633 0.5994 0.6560 0.6555⋆ 0.6655 0.6558 0.6610

GPT-generated

Accuracy 0.405 0.5365⋆ 0.432 0.516 0.415 0.499 0.5005

Recall 0.81 0.768 0.86 0.938 0.829 0.98 0.999⋆

Precision 0.4475 0.5249⋆ 0.4633 0.5086 0.4535 0.4994 0.5002

F1 0.5765 0.6236 0.6022 0.6596 0.5862 0.6617 0.6666⋆

role

Accuracy 0.497 0.489 0.502⋆ 0.4965 0.4965 0.4955 0.495

Recall 0.986 0.858 0.985 0.976 0.992⋆ 0.98 0.982

Precision 0.4984 0.4936 0.5010⋆ 0.4982 0.4982 0.4977 0.4974

F1 0.6621 0.6267 0.6641⋆ 0.6596 0.6633 0.6601 0.6603

Act As-System

Accuracy 0.5⋆ 0.476 0.4995 0.491 0.498 0.492 0.495

Recall 0.996⋆ 0.848 0.972 0.96 0.99 0.966 0.98

Precision 0.5⋆ 0.4862 0.4997 0.4953 0.4989 0.4958 0.4974

F1 0.6657⋆ 0.6180 0.6601 0.6535 0.6635 0.6553 0.6599

Encourage

Accuracy 0.498 0.4835 0.4995⋆ 0.4935 0.4965 0.4945 0.495

Recall 0.991⋆ 0.877 0.979 0.968 0.99 0.978 0.983

Precision 0.4989 0.4907 0.4997⋆ 0.4966 0.4982 0.4972 0.4974

F1 0.6637⋆ 0.6293 0.6617 0.6564 0.6628 0.6592 0.6606

Threaten

Accuracy 0.4955 0.4975 0.5035⋆ 0.4795 0.5005 0.4925 0.493

Recall 0.986 0.788 0.972 0.917 0.99⋆ 0.966 0.972

Precision 0.4977 0.4984 0.5018⋆ 0.4890 0.5002 0.4961 0.4964

F1 0.6615 0.6106 0.6618 0.6379 0.6646⋆ 0.6555 0.6572

Reward

Accuracy 0.497 0.4785 0.5025⋆ 0.494 0.498 0.497 0.4945

Recall 0.99 0.841 0.979 0.964 0.993⋆ 0.98 0.981

Precision 0.4984 0.4875 0.5012⋆ 0.4969 0.4989 0.4984 0.4972

F1 0.6630 0.6172 0.6630 0.6557 0.6642⋆ 0.6608 0.6599

Punish

Accuracy 0.497 0.497 0.5045⋆ 0.487 0.499 0.4965 0.494

Recall 0.988 0.688 0.967 0.946 0.988⋆ 0.973 0.975

Precision 0.4984 0.4978 0.5023⋆ 0.4932 0.4944 0.4982 0.4969

F1 0.6626 0.5776 0.6611 0.6483 0.6635⋆ 0.6589 0.6583
* and represent the difference of different prompt contents within the same prompt structure compared

to basic prompt content. represents better than basic, and represents worse than basic. The darker the
color, the greater the difference.

* Bold result with ⋆ represents the maximum value under the condition of the same prompt content but
different prompt structures.

TABLE IV: Result of Task-SPC in different prompt structures and
contents.

performance of LLMs for security-related tasks? Specifically,
by examining a specific column in Table II, Table III, and
Table IV, we can assess the impact of varying prompt content
on different tasks within a given prompt structure. We visually
represent the performance of the LLM with specific prompt
content using color coding: deeper shades of green signify
better performance compared to the basic prompt content, while
deeper shades of red indicate poorer performance.

Security Patch Detection. Table II shows that when evaluating
Accuracy, Recall, and F1 metrics, Punish emerges as the most
effective, performing best in conjunction with most prompt
structures. In terms of precision, the GPT-generated emerges
as the top performer when integrated with the majority of
prompt structures. However, it also tends to result in the highest
number of false negatives. Interestingly, when the 0-shot prompt
structure is employed, prompt contents such as Act As-, Reward,
and GPT-generated fail to outperform the basic prompt content.

Vulnerable Function Detection. In Table Table III, the GPT-
generated prompt content excels in Recall and F1 metrics,
outperforming other prompt contents. However, for Accuracy
and Precision, the basic prompt content is superior. Interestingly,
with the 1-shot-f prompt structure, all contents except GPT-

5

generated show lesser performance than the basic content.

Stable Patch Classification. Interestingly, Table IV indicates
that aside from pairing with the 0-shot prompt structure,
utilizing various prompt contents with other structures does not
notably enhance the performance of the LLM on the SPC task.
Furthermore, switching the prompt content to GPT-generated
actually yields inferior results compared to using the basic
prompt contents.

D. Combining multiple prompt content

Referring to the result shown in Table V, we can analyze
the influence of the combined prompt content on different
tasks. In this subsection, we will discuss the effectiveness of
these combined prompt contents for different security tasks
and answer the research question: Could the combination of
various prompt contents enhance the performance of the
LLM?

To answer this question, we first categorize the prompt
content into Role-related content, Emotion-related content,
and GPT-generated. Role-related prompt contents include Act
As-User, role, and Act As-System. Emotional-related prompt
contents include Encourage, Threaten, Reward, and Punish.
Given that the role descriptions are already inside emotion-
related prompt contents, therefore we do not need to combine
the Role-related and Emotion-related in the evaluation. In this
evaluation, we combine Role-related with GPT-generated and
Emotion-related with GPT-generated under the 0-shot prompt
structure.

Table V shows the result of combining different prompt
contents. Each cell in the table records the result of the
combined prompt content. The first arrow in the cell symbolizes
the comparative evaluation between the combined prompt
content and the baseline GPT-generated prompt content. The
second arrow denotes the comparative evaluation between
the same combined prompt content and the prompt content
corresponding to various columns such as Role, Act As-System,
and others. As a result, three types of outcomes are observed:
(1) two green arrows, signifying that the combined prompt
outperforms both individual contents before combination;
(2) two red arrows, indicating inferior performance of the
combination compared to each individual content; and (3) one
red and one green arrow, denoting that the combined result
surpasses only one of the baseline contents.

When combining different prompt contents, there is only a
small likelihood, approximately 9.7% (7 out of 72 cases), of
enhancing the LLM’s performance beyond what is achieved
using two separate prompt contents. In the majority of scenarios,
about 52% (38 out of 72), the results of combining the prompts
fall within the range of those obtained from the original single
prompt content. For the remaining cases, the results from
combining prompts are always worse than using each of the
prompt contents separately. For certain tasks like VFD, this
strategy of combining different prompt contents tends to be
ineffective, always yielding results that are worse than those
obtained by using the prompt contents separately.

IV. DISCUSSION & KEY TAKEAWAYS

A. Utilizing Prompt-Based LLMs for Security-Related Tasks

Based on our experiments of different prompts to enhance
LLM performance across three security tasks, we argue that the
effectiveness of prompt contents is largely dependent on the
task itself. There is no universally ‘best’ prompt contents; rather,
there is only the most suitable contents for a given task. For
instance, in the case of SPD, aside from employing the 0-shot
prompt structure and GPT-generated content, enhancing the
prompt content generally leads to improved model performance.
Conversely, for SPC, except when using the 0-shot prompt
structure, refining the prompt contents does not significantly
boost LLM performance. In fact, employing GPT-generated
prompt content even often results in worse outcomes.

Moreover, in our study of SPC and SPD tasks, we observed
that the few-shot-ff prompt structure significantly enhances
GPT-3.5’s performance. However, this structure is not effective
for the VFD task. This discrepancy could be attributed to two
main factors: Firstly, the issue of unbalanced training data.
Taking SPC as an example, GPT-3.5-Turbo tends to classify
patches as non-security-related. This bias may arise because
security patches constitute only a small fraction of its training
data, leading the LLM to favor classifying a patch as non-
security. Second, the nature of the task itself is also crucial.
For instance, in the VFD task, the variety of vulnerability types
and patterns is vast. Neither 1-shot nor few-shot structures can
comprehensively cover most vulnerability types, which might
result in misleading the LLM’s effectiveness. In such cases, a
0-shot approach could be more suitable.

While the impact of prompts on the performance of models
in specific security-related tasks is not entirely clear, our results
do indicate that altering and testing different prompts can
significantly change LLM outcomes. For instance, in our three
experimental tasks, the lowest recorded accuracies were 41.1%,
22.9%, and 40.5%, with the highest accuracies reaching 60.2%,
53.55%, and 53.65%. This represents a substantial variance of
approximately 13% to 30%. Furthermore, in scenarios where
the objective is to specifically reduce false positives or false
negatives, tailoring the prompt for the LLM can effectively
achieve these targeted goals.

B. Limitations

The current study has three notable limitations. First, the
scope of tasks selected is constrained due to the lack of
a sufficiently large and well-labeled security-related dataset.
Second, budget constraints meant that we only evaluated the
impact of prompts on GPT-3.5-Turbo. However, we plan to
open-source our results and tools, allowing future research to
apply our methodology to other LLMs like GPT-4 and Llama-
2. Third, while we used standard error to estimate the result
deviation, this is not the ideal approach. A more accurate
comparison would involve using the Mann-Whitney U test (p-
value) [4] to assess the statistical significance of our findings,
and the Vargha-Delaney statistic (Â12) [28] to determine the
comparative performance of different prompts. However, these
methods require numerous iterations for each prompt, leading
to significant time and budget requirements. Consequently, we
opt for the standard error as a more feasible way to estimate
the deviation in the results.

6

Dataset Content
Content Role Act As-System Encourage Threaten Reward Punish

SPC GPT-generated

Accuracy 0.523 ↑↓ 0.5105 ↑↓ 0.516 ↑↓ 0.453 ↑↓ 0.473 ↑↓ 0.461 ↑↓
Recall 0.183 ↑↓ 0.118 ↓↓ 0.171 ↑↓ 0.104 ↓↓ 0.128 ↑↓ 0.145 ↑↓

Precision 0.7253 ↑↑ 0.7518 ↑↑ 0.5516 ↑↓ 0.3443 ↑↓ 0.4129 ↑↓ 0.3940 ↑↓
F1 0.2772 ↑↓ 0.1942 ↑↓ 0.2610 ↑↓ 0.1597 ↓↓ 0.1954 ↑↓ 0.2119 ↑↓

VFD GPT-generated

Accuracy 0.337 ↓↓ 0.314 ↓↓ 0.3595 ↓↓ 0.2335 ↓↓ 0.2475 ↓↓ 0.2405 ↓↓
Recall 0 ↓↓ 0 ↓↓ 0.09 ↓↓ 0.001 ↓↓ 0.002 ↓↓ 0.001 ↓↓

Precision 0 ↓↓ 0 ↓↓ 0.0301 ↓↓ 0.0018 ↓↓ 0.0039 ↓↓ 0.0019 ↓↓
F1 0 ↓↓ 0 ↓↓ 0.0138 ↓↓ 0.0013 ↓↓ 0.0026 ↓↓ 0.0013 ↓↓

SPD GPT-generated

Accuracy 0.535 ↑↑ 0.4995 ↑↓ 0.5375 ↑↑ 0.463 ↑↓ 0.487 ↑↓ 0.4915 ↑↓
Recall 0.965 ↑↓ 0.935 ↑↓ 0.975 ↑↓ 0.848 ↑↓ 0.88 ↑↓ 0.909 ↑↓

Precision 0.5188 ↑↑ 0.4997 ↑↓ 0.52 ↑↑ 0.4790 ↑↓ 0.4927 ↑↓ 0.4953 ↑↓
F1 0.6748 ↑↓ 0.6513 ↑↓ 0.6782 ↑↑ 0.6122 ↑↓ 0.6317 ↑↓ 0.6412 ↑↓

* In each displayed result, the first arrow symbolizes the comparative evaluation between the combined prompt content and the baseline
GPT-generated prompt content. The second arrow denotes the comparative evaluation between the same combined prompt content and the
prompt content corresponding to various columns such as Role, Act As-System, and others.

* ↑ represents that the combined prompt content performs better than the original single prompt content.↓ represents that the combined
prompt content performs worse than the original single prompt content.

TABLE V: Result of combination prompt contents on all 3 tasks.

C. Future work

Looking ahead, first we aim to extend our methodology to
a broader range of tasks that encompass both text and code. We
also aspire to develop a system for automatically generating
high-performance prompts tailored to specific tasks. Through
this endeavor, we hope to establish a set of guidelines and
tools for evaluating LLM performance and generating effective
prompts across various application domains.

V. CONCLUSION

This study initiates an exploratory analysis focused on
understanding the impact of prompts on LLM performance
for the application of security area. Our research specifically
investigates which prompt structures and contents are most
effective in enhancing LLM efficacy for different security-
related tasks. Moreover, we assess how various combinations
of prompt content affect performance. Our findings reveal
significant disparities in performance outcomes attributable to
these prompt modifications.

REFERENCES

[1] “Chatgpt,” https://chat.openai.com/.
[2] “Dall-e,” https://openai.com/dall-e-2.
[3] “Github copilot,” https://github.com/features/copilot.
[4] “P-value,” in https://en.wikipedia.org/wiki/P-value.
[5] “Procedure for submitting patches to the -stable tree,” https://www.kernel.

org/doc/html/v4.10/process/stable-kernel-rules.html.
[6] “Stable diffusion,” https://stability.ai/stable-diffusion.
[7] F. Akin, “The art of chatgpt prompting: A guide to crafting clear and

effective prompts,” 2023.
[8] D. G. Altman and J. M. Bland, “Standard deviations and standard errors,”

Bmj, vol. 331, no. 7521, p. 903, 2005.
[9] U. C. Clones, “Finding unpatched code clones in entire os distributions.”

[10] R. M. Conroy, “The rcsi sample size handbook,” A rough guide, pp.
59–61, 2016.

[11] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via large lan-
guage models,” in Proceedings of the 32nd ACM SIGSOFT international
symposium on software testing and analysis, 2023, pp. 423–435.

[12] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun,
J. Xu, and Z. Sui, “A survey for in-context learning,” arXiv preprint
arXiv:2301.00234, 2022.

[13] S. Gao, X.-C. Wen, C. Gao, W. Wang, H. Zhang, and M. R. Lyu, “What
makes good in-context demonstrations for code intelligence tasks with
llms?” in 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2023, pp. 761–773.

[14] T. Hoang, J. Lawall, Y. Tian, R. J. Oentaryo, and D. Lo, “Patchnet:
Hierarchical deep learning-based stable patch identification for the linux
kernel,” IEEE Transactions on Software Engineering, vol. 47, no. 11, pp.
2471–2486, 2019.

[15] P. Jiang, S. Agarwal, B. Jin, X. Wang, J. Sun, and J. Han, “Text-augmented
open knowledge graph completion via pre-trained language models,” arXiv
preprint arXiv:2305.15597, 2023.

[16] R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri, and
J. Rajendran, “Llm-assisted generation of hardware assertions,” arXiv
preprint arXiv:2306.14027, 2023.

[17] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for
vulnerable code clone discovery,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 595–614.

[18] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
language models are zero-shot reasoners, 2022,” URL https://arxiv.
org/abs/2205.11916.

[19] T. H. M. Le, D. Hin, R. Croft, and M. A. Babar, “Deepcva: Automated
commit-level vulnerability assessment with deep multi-task learning,” in
2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2021, pp. 717–729.

[20] C. Li, J. Wang, K. Zhu, Y. Zhang, W. Hou, J. Lian, and X. Xie,
“Emotionprompt: Leveraging psychology for large language models
enhancement via emotional stimulus,” arXiv e-prints, pp. arXiv–2307,
2023.

[21] Z. Li, H. Li, T.-H. Chen, and W. Shang, “Deeplv: Suggesting log
levels using ordinal based neural networks,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1461–1472.

[22] P. Liu, J. Liu, L. Fu, K. Lu, Y. Xia, X. Zhang, W. Chen, H. Weng,
S. Ji, and W. Wang, “How chatgpt is solving vulnerability management
problem,” arXiv preprint arXiv:2311.06530, 2023.

[23] P. Liu, C. Sun, Y. Zheng, X. Feng, C. Qin, Y. Wang, Z. Li, and L. Sun,
“Harnessing the power of llm to support binary taint analysis,” arXiv
preprint arXiv:2310.08275, 2023.

[24] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining
zero-shot vulnerability repair with large language models,” in 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 2023, pp. 2339–2356.

[25] D. Saha, S. Tarek, K. Yahyaei, S. K. Saha, J. Zhou, M. Tehranipoor, and
F. Farahmandi, “Llm for soc security: A paradigm shift,” arXiv preprint
arXiv:2310.06046, 2023.

[26] F. Shi, X. Chen, K. Misra, N. Scales, D. Dohan, E. H. Chi, N. Schärli, and
D. Zhou, “Large language models can be easily distracted by irrelevant
context,” in International Conference on Machine Learning. PMLR,
2023, pp. 31 210–31 227.

7

https://chat.openai.com/
https://openai.com/dall-e-2
https://github.com/features/copilot
https://www.kernel.org/doc/html/v4.10/process/stable-kernel-rules.html
https://www.kernel.org/doc/html/v4.10/process/stable-kernel-rules.html
https://stability.ai/stable-diffusion

[27] Y. Sun, D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and Y. Liu,
“When gpt meets program analysis: Towards intelligent detection of smart
contract logic vulnerabilities in gptscan,” arXiv preprint arXiv:2308.03314,
2023.

[28] A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal of
Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[29] S. Wang, X. Wang, K. Sun, S. Jajodia, H. Wang, and Q. Li, “Graphspd:
Graph-based security patch detection with enriched code semantics,” in
2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023, pp.
2409–2426.

[30] X. Wang, “Ai-enhanced software vulnerability and security patch analysis,”
Ph.D. dissertation, George Mason University, 2023.

[31] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24 824–24 837, 2022.

[32] Q. Wu, Y. He, S. McCamant, and K. Lu, “Precisely characterizing security
impact in a flood of patches via symbolic rule comparison,” in The 2020
Annual Network and Distributed System Security Symposium (NDSS’20),
2020.

[33] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in
the era of large pre-trained language models,” in Proceedings of the
45th International Conference on Software Engineering (ICSE 2023).
Association for Computing Machinery, 2023.

[34] Y. Yu and N. Bian, “An intrusion detection method using few-shot
learning,” IEEE Access, vol. 8, pp. 49 730–49 740, 2020.

[35] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective
vulnerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[36] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and
J. Ba, “Large language models are human-level prompt engineers,” arXiv
preprint arXiv:2211.01910, 2022.

8

	Introduction
	Approach Overview
	Security-Related Datasets Selection
	Prompt Structure
	Prompt Content
	Error Estimation

	Evaluation
	Experiment setup
	The influence of prompt structures for different security-related tasks
	The effectiveness of different prompt contents across applications
	Combining multiple prompt content

	Discussion & Key Takeaways
	Utilizing Prompt-Based LLMs for Security-Related Tasks
	Limitations
	Future work

	Conclusion

