
Facilitating Threat Modeling by Leveraging Large
Language Models

Isra Elsharef
University of Wisconsin-Milwaukee

isra@uwm.edu

Zhen Zeng
University of Wisconsin-Milwaukee

zhenzeng@uwm.edu

Zhongshu Gu
IBM Research

zgu@us.ibm.com

Abstract—In recent years, security engineers in product teams
have faced new challenges in threat modeling due to the in-
creasing complexity of product design and the evolving nature
of threats. First, security engineers must possess a thorough
understanding of how to translate the abstract categories of
threat modeling methodology into specific security threats rel-
evant to a particular aspect of product design. Without such in-
depth knowledge, applying threat modeling in practice becomes a
difficult task. Second, security engineers must be aware of current
vulnerabilities and be able to quickly recall those that may be
relevant to the product design. Therefore, for effective threat
modeling, a deep understanding of a product’s design and the
background knowledge to connect real-time security events with
specific design principles embedded in large volumes of technical
specifications is required. This can result in a lot of human effort
invested in parsing, searching, and understanding what is being
built through design documents and what threats are relevant
based on that information. We observe that the recent emergence
of large language models (LLMs) may significantly change the
landscape of threat modeling by automating and accelerating the
process with their language understanding and logical reasoning
capabilities. In this paper, we have developed a novel LLM-based
threat modeling system by leveraging NLP techniques and an
open-source LLM to decrease the required human effort above
in the threat modeling process. In the evaluation, two major
questions of threat modeling (MQ1 and MQ2) are considered
in the proposed workflow of Task 1 and Task 2, where the NLP
techniques assist in parsing and understanding design documents
and threats, and the LLM analyzes and synthesizes volumes of
documentation to generate responses to related threat modeling
questions. Our initial findings reveal that over 75% of the re-
sponses meet the expectations of human evaluation. The Retrieval
Augmented Generation (RAG)-enhanced LLM outperforms the
base LLM in both tasks by responding more concisely and
containing more meaningful information. This study explores a
novel approach to threat modeling and demonstrates the practical
applicability of LLM-assisted threat modeling.

I. INTRODUCTION

Threat modeling is a critical component throughout a prod-
uct’s lifecycle and plays an important role in ensuring its secu-
rity [19], [28]. The OWASP Foundation, a nonprofit that tries
to improve the security of software through its community-

led open-source software projects, defines threat modeling as
a process to identify, communicate, and understand threats &
mitigations within the context of protecting something of value
[20]. A working group of experienced security professionals
created the Threat Modeling Manifesto, which defines four
major questions (MQs) used as a guide during the threat
modeling process [9]:

• MQ1: What are we working on?
• MQ2: What can go wrong?
• MQ3: What are we going to do about it?
• MQ4: Did we do a good enough job?

These four MQs are used to identify and address security
threats in a system [20]. In practice, questions can be further
broken down into more specific and detailed queries, each
tailored to correspond with the specific characteristics of the
given input files. Answering these detailed queries can require
diving into large amounts of documents and communication
across different teams to extract relevant information [22]. As
a result, threat modeling is commonly viewed as a demanding
and lengthy process in practice [19].

Threat modeling is typically part of the product develop-
ment process throughout the key stages of product design,
development, and testing and involves communication between
multiple roles, i.e., security engineers and product architects.
Figure 1 illustrates this. The product team may reference
documentation initially for context when creating the threat
model. The product security engineer is engaged whenever
relevant documentation is ready for review, and the product
architect clarifies and updates documentation and the threat
model based on threat modeling discussions [19]. Security
engineers must possess a thorough understanding of how to
translate the abstract categories of threat modeling methodol-
ogy into specific security threats relevant to a particular piece
of product design. Without such in-depth knowledge, applying
threat modeling effectively in practice becomes a difficult task
[17].

In addition, the complexity and difficulty of such tasks are
further amplified by the constantly expanding threat landscape
and the escalating complexity in product system design [22],
[19]. The National Vulnerability Database (NVD) [5] is the
U.S. government repository of standards-based vulnerability
management data, which enables vulnerability management,
security measurement, and compliance. The NVD has a

Workshop on AI Systems with Confidential Computing (AISCC) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-4-5
https://dx.doi.org/10.14722/aiscc.2024.23016
www.ndss-symposium.org

Fig. 1. Threat Modeling in Product Development Process

non-static nature and is continuously updated. For example,
approximately 27,000 vulnerabilities were added throughout
2023. The rapid increase of new vulnerabilities can be over-
whelming for security engineers to keep up to date with, and
it’s a challenge to monitor and analyze new security threats
so they can be accurately considered in practice when threat
modeling.

This study focuses on developing a large language model
(LLM)-based threat modeling system to facilitate answering
the first two major questions MQ1 and MQ2. The question
MQ1: What are we working on is about understanding the
system and application being developed, while MQ2: What
can go wrong involves identifying potential security threats
and vulnerabilities in a system. In this threat modeling system
design, we develop the proposed system using tools like
KeyBERT [4] for NLP tasks and an open-source LLM Llama
2 [29]. This study demonstrates how the proposed LLM-
based threat modeling generated answers for MQ1 in Task
1 (in Section III-C) and for MQ2 in Task 2 (in Section
III-D). For evaluation, detailed questions were defined for
MQ1 and MQ2 based on the contents of input files. Six
questions were asked of each threat model input document
for a total of 72 question queries. Questions in Task 1 focused
on the area of system and design. For Task 2, questions
were more security-related, focusing on secrets management,
identity & access control, and network configurations. The
results of this study reveal that over 75% of the responses
meet the expectations of human evaluation. The Retrieval
Augmented Generation (RAG)-enhanced LLM outperformed
the base LLM in both tasks, responding with more concise
and meaningful information.

This paper is organized into the following sections: Section
II summarizes the related work of threat modeling, Section III
illustrates the system and model design of the proposed LLM-
based threat modeling, Section IV explains the evaluation and
results in this study, Section V discusses limitations and future
work, and Section VI is the conclusion.

II. RELATED WORK

Threat modeling is an analytical process focused on examin-
ing a system’s architecture or design to identify and mitigate
security vulnerabilities [19]. The STRIDE framework is the
most common approach to creating threat models and targets
what could go wrong [8]. Existing threat modeling frameworks
like STRIDE are used as guidance to build threat models,
which include details like data flow, trust boundaries, and
application usage scenarios [30]. Identifying these details can
be a slow and painful process that often involves digging
through multiple types of documentation [22].

In practice, threat modeling is highly recommended to be
implemented during the architecture or design phase. Engaging
in threat modeling at these early stages allows for proactively
identifying potential security vulnerabilities [19]. This begins
with identifying and categorizing the assets that need protec-
tion, followed by mapping out the potential attack vectors
and threat agents that could exploit system vulnerabilities
[19]. The process involves scrutinizing the system architecture
to understand how different components interact and where
weaknesses may exist. Regularly revisiting and updating the
threat model is crucial, especially as new threats emerge and
the product evolves [30]. This comprehensive analysis not only
aids in developing robust security measures tailored to the
product’s specific needs but also ensures that the development
team maintains a security-focused mindset throughout the
product’s lifecycle, leading to a more secure and resilient final
product [19], [22], [30].

The predominant tool for threat modeling is the Microsoft
Threat Modeling Tool [26]. This tool was initially released
in 2014 and can be considered one of the more mature tools
available. Some tools are diagram-based in that end users drag
and drop to draw system diagrams, ultimately leading to a
generated summary of potential threats based on applied rules
from a library. Other tools are text-based, where models are ex-
pressed in a structured language. Some weaknesses identified
are related to duplicate threats and missing threat information
(such as mitigation and initial recommended priority) in the

2

generated reports. Another consideration that is not taken into
account with these tools is the larger context around certain
types of systems, such as those built for the Internet of Things
(IoT) [27], [18].

A recent study reveals that the practical application of threat
modeling methodologies encounters various challenges, rang-
ing from updating asset identification and data flow diagrams
to cross-product modeling [17]. Another challenge is informa-
tion can be unstructured and spread across multiple documents,
increasing the time required to generate an accurate threat
model. This was exemplified in this recent study, where even
in a best-case scenario, 45 hours were spent on threat model
creation [30].

III. SYSTEM DESIGN

In this study, we propose an LLM-based threat modeling
approach. Figure 2 shows an overview of the proposed system
design, which contains functions for extracting key charac-
teristics from input data, constructing a knowledge base, and
generating answers to the detailed questions of each MQ. This
study focuses on two tasks of addressing MQ1 and MQ2 in
threat modeling:

• Task 1: Understanding the system and application, dis-
cussed in Section III-C.

• Task 2: Identifying potential security threats, discussed in
Section III-D.

The proposed approach facilitates the existing threat modeling
process by automatically extracting key product design charac-
teristics from given documentation and answering threat mod-
eling questions for security engineers. This reduces the need
for security engineers to manually comb through documents
from the beginning and streamlines the threat identification
process.

A. Data

In this study, we consider two types of input data. The first
is design documents, which define the system design and ar-
chitecture and address its security, scalability, and performance
aspects. The second is vulnerability data, which is from the
NVD. There are over 231,000 vulnerabilities in the NVD.
Each vulnerability is associated with a unique ID, a Common
Vulnerabilities and Exposures (CVE) identifier. Each CVE has
fields for descriptions, severity, references, weaknesses, and
configuration. Severity is based on the Common Vulnerability
Scoring System (CVSS), and CVSS vector strings include
exploitability and impact metrics that range from 1-10, with
10 being the most severe. The exploitability score represents
Access Vector, Access Complexity, and Authentication. Each
CVE vulnerability is accompanied by a description, which
provides details about the vulnerability, including how it can
be exploited, its potential impact, and how it can be mitigated
or resolved. This information could help security engineers
understand the threat posed by a vulnerability.

B. Large Language Model

In this study, we explore LLM-assisted threat modeling
based on the model of Llama 2 [29]. Meta’s Llama 2 family
of open-source LLMs, released in July 2023, was selected
because it generally performs better than existing open-source
models based on testing the Meta team did using a series of
helpfulness and safety benchmarks. It also appears on par with
closed-source models when they performed human evaluations
[29]. Additionally, Llama emphasizes safety as seen by the
released details for how safety was prioritized during pre-
training and fine-tuning, the use of red teaming (by internal
employees, contract workers, and external vendors), and the
use of human evaluation to judge safety violations. In this
study, we utilize the pre-trained 7B & 13B Llama 2-CHAT
models, fined-tuned versions of Llama 2 that are optimized
for dialogue use cases and were run in Google Colab using
T4 GPU.

We also utilize the retrieval-augmented generation (RAG)
AI framework to give the most accurate and up-to-date infor-
mation [12]. The RAG model utilizes a pre-trained language
model Llama 2 and integrates it with a retriever component,
allowing it to access external knowledge sources for context
adaption [25]. Implementing RAG models requires technolo-
gies such as vector databases, which allow for the rapid coding
of new data and searches against that data to feed into the LLM
[11].In traditional databases, querying is done for rows in the
database where the value usually exactly matches the query. In
vector databases, a similarity metric is applied to find a vector
that is the most similar to the query.

C. Data Processing and Knowledge Base in Task 1

Task 1 aims to support security engineers in understanding
the system and application. Design documents are the inputs.
The developed system processes the input data by following
the four steps below before using the large language model.

• 1-1: Load and extract text from input data (e.g., PDF
document). Split and chunk text by size.

• 1-2: Create embeddings (vectors used to compress size)
for each text chunk.

• 1-3: Create Pinecone index; an index is the highest-level
organizational unit of vector data in Pinecone [10].

• 1-4: Push data to Pinecone vector database to make it
accessible by LLM model.

LangChain [7] was used to load multiple related documents
simultaneously. LangChain is a framework for developing ap-
plications powered by language models. A significant benefit
of using LangChain is that it can be a standard interface for
interacting with different models. For one of the tasks defined
in this research, the loaded document has metadata fields for
“source” specifying the document name and page number. For
the other task, the metadata has a field “text” for vulnerability
descriptions and “pdf.keyword” which is the keyword used to
identify the relevant vulnerability based on the loaded PDFs.
When splitting text, the RecursiveCharacterTextSplitter was
used, and the parameters chunk size and chunk overlap were

3

Input Data
Extract Key

Characteristics
(Data Processing)

Construct a Vector
Database

(Knowledge Base)

Generate answers
to threat modeling

questions
(LLM)

Q: How are Intel processors
being targeted?

The Proposed LLM-based Threat Modeling

A: … load value injection,
improper isolation of shared
resources…

Fig. 2. Overview of Proposed LLM-based Threat Modeling

Fig. 3. Workflow of Data Processing and Knowledge Base in Task 1

specified. The chunk size was set to 500 characters, and the
chunk overlap was 20. This text splitter is parameterized by a
list of characters, the default being “[“\n\n”, “\n”, “ ”, “”]”,
and tries to split text to the specified length [7].

D. Data Processing and Knowledge Base in Task 2

Task 2 aims to support security engineers in identifying
potential security threats, where the input data could be design
documents or vulnerability data. The main workflow of data
before being used by the LLM is shown in Figure 4, which
contains four steps as follows:

• 2-1: Keywords extracted from documentation as a CSV
file.

• 2-2: NVD API programmatically queried with extracted
keywords; Relevant fields extracted from response to
generate a CSV file.

• 2-3: Data preprocessed to get in the required format for
the model

• 2-4: JSONL file specified as input to be accessible to the
LLM via Pinecone vector database

In Task 2, we extracted keywords from the design documenta-
tion PDF files. Each PDF was read, and the keywords were ex-
tracted using NLP techniques. English stopwords and expert-
defined stopwords were removed. The remaining keywords
and “expert-identified” keywords were then used to search the
NVD via API and retrieve CVEs with their descriptions. That
data was then further processed to for the required format
expected by the model. KeyBERT [4] was used to extract key
characteristics of design documentation. KeyBERT depends
on Bidirectional Encoder Representations from Transformers

(BERT)-embeddings and cosine similarity to find the keywords
and key phrases in a document that are most similar to the
document itself [4]. Embeddings are numerical representations
of pieces of information, such as text or documents, that
capture semantic meaning. Using KeyBERT enables extracting
relevant keywords that efficiently capture semantic information
from the input text.

TABLE I
THE EXAMPLE OF REMOVED STOPWORDS

Stopword Type Example
NLTK English Stop-
words

start, but, to, and, the, in, it, are, I, that,...

Expert-defined
Stopwords

allow, attack, hacker, security, cyberattack, cy-
ber, cybersecurity, intelligence, architecture,
secure, ...

When using KeyBERT, two types of stopwords are removed:
the default “English” stopwords as defined by the NLTK (Nat-
ural Language Toolkit) [6] and “expert-defined” stopwords
as shown in Table I. Stopwords are commonly used words
in a language and are filtered out before processing in NLP
tasks. When creating the “expert-defined” stopword list, we
focused on words typically associated with security but so
widely used that they would not be useful representations
of keywords. KeyBERT also allows the parameters “top n”
and “keyphrase ngram range” to be specified. The value of
“top n” was set to 15. Setting a range allows for key phrases,
which could help more with context. Stemming via NLTK
was also used to avoid running keyword searches that returned
duplicate results.

4

Fig. 4. Workflow of Data Processing and Knowledge Base in Task 2

In constructing the customized vulnerability dataset for
Task 2, Python scripts that go through the steps below were
developed. These scripts support constructing a vulnerability
dataset automatically and ensure that the constructed vulner-
ability dataset is always up-to-date by having the capability
to query the NVD with identified keywords to pull the latest
vulnerabilities.

The vulnerability knowledge base is formatted as a JSONL
(JSON Lines) file. Each entry in the JSONL file corresponds
to a vulnerability CVE that was returned from querying the
NVD with a keyword. The associated fields for the CVE can
be set as metadata when making the information available to
the LLM. The main benefits of using a JSONL file are stream
processing where data can be read and written incrementally,
error handling such that an error in one entry does not make the
entire file unusable and space efficiency because commas or
other separates are not needed between objects [13]. Pinecone
[10] was specified as the vector store type in this experiment.
The index name, embeddings, and field in metadata for the
text chunks that contained text content were passed in. The
vulnerability knowledge base is stored as the Pinecone Vector
Database.

IV. EVALUATION AND RESULTS

To evaluate the developed system for Task 1 and Task
2 in Section III, two sets of questions for MQ1 and MQ2
were designed. Twelve design documents were used as input
during evaluation. The PDFs ranged from three pages to over
sixty pages. All documents were in English and included
figures, and most included tables. The documents were from
multiple sources, including IEEE Xplore [2], Cybersecurity &
Infrastructure Security Agency site [1], and Intel Trust Domain
Extensions (TDX) documentation [3]. The PDFs were treated
as independent of one another because of the availability
of related documentation. When documents are loaded, the
LangChain loader points to a directory, so any PDF included
in that directory is loaded. The metadata ties the extracted text
to that document and page number.

We designed a set of detailed questions for each input file
in Task 1 and Task 2, and 6 questions were asked of each
threat model of input for a total of 72 queries. Table II shows
example questions used for evaluation. Specifically for the
system design and architectures, questions in Task 1 contain
the area of system description, system environment, and data.
For Task 2, these questions cover different cybersecurity areas,
including secrets management, identity & access control, net-
work configurations, and working scenarios. The number of
entries in the custom vulnerability dataset ranged from 1,000

to over 36,000, depending on the input file, where the total
number of CVEs in the NVD is over 231,000.

TABLE II
THE EXAMPLE OF THREAT MODELING QUESTIONS IN TASK 1 AND 2

Tasks Area Questions
Task 1 System description What components are involved in the

design?
Task 1 System

environment
How is the encrypted connection estab-
lished?

Task 1 Data How is data secured during transmis-
sion?

Task 2 Secrets
management

How can shared private keys used for
authentication be exposed?

Task 2 Identity & access
control

What are some concerns related to
open source authentication methods?

Task 2 Network Other than a hash function and times-
tamp, what can be used to avoid a
replay attack?

To evaluate the performance of the proposed framework of
LLM-based threat modeling, results are compared between the
base LLM with and without Retrieval Augmented Generation
(RAG). Human evaluation was adopted to evaluate the output
of answers to questions in Task 1 and Task 2 in this study. The
method of human evaluation is essential in determining how
well the model can meet user expectations and needs. Human
evaluation has been widely used to evaluate the performance
of LLM [16]. In this study, we use “+” to represent an accepted
output that meets the evaluator’s expectations and “-” for
answers that do not meet expectations. In the human evaluation
processes, two coders code these outputs independently and
consolidate all codes for generating the final evaluation. The
overall satisfaction rate is over 75%. For example, Table III
shows an example of human evaluation codes for positive
and negative answers. This negative evaluation is because
the response was too general and without enough valuable
information.

We also counted how long it took to receive a response for
each query. The query response times ranged from 25 to 50
seconds. This variation in response time can be affected by
several factors, including the way data is stored and the spe-
cific configurations of the Pinecone database for these tasks.
Additionally, the network connection between Google CoLab
and Pinecone might be critical in these observed time frames.
Further investigation is needed to identify acceptable response
times and understand what contributes to these longer-than-
desired times.

In addition, to better understand the LLM model’s perfor-
mance, we compared the system’s output for base LLM and
RAG-enhanced LLM. Table IV shows an example for the

5

TABLE III
THE EXAMPLES OF OUTPUT EVALUATION

Question Response Eval

How is the en-
crypted connection
established?

Based on the provided context, the en-
crypted connection between an Aggregator
and an EV is established using the fol-
lowing steps: 1. The Aggregator signs a
message ...3. When an EV decides to sell
electricity to an Aggregator, it uses the
Diffie-Hellman key exchange to establish
... Therefore, the answer to the question
is: The encrypted connection is established
using the Diffie-Hellman key exchange and
shared private keys for data encryption and
decryption in successive connections.

+

What are examples
of similarities be-
tween vulnerabili-
ties found IoT, IT,
and OT networks?

All three types of networks have vulnera-
bilities related to improper authentication
and information disclosure.

-

question of How are intel processors being targeted? for
both base LLM and RAG-enhanced LLM. This question aims
to provide more context when looking at a design document
related to Intel Trust Domain Extensions (Intel TDX), which
can be especially useful for situations where either the product
security engineer or the development team may not be expe-
rienced or may not have had much exposure to certain types
of threats. As shown in Table IV, the RAG-enhanced LLM
produced responses that were not only more concise but also
more precise, often incorporating specific and relevant details
due to the vector database. The base LLM generates lengthier
content that can be irrelevant or include hallucinations. In this
example, RAG-enhanced LLM responses were more concise
and sometimes included descriptions of relevant vulnerabilities
from the vector database generated in the knowledge base
stage. In this study, the RAG-based LLM generated an average
of 74 words compared to the 253 words for the base LLM.

TABLE IV
THE EXAMPLE OF OUTPUT IN DIFFERENT LLM SETTINGS

LLMs Response
Base LLM Intel processors have been the subject of several high-

profile security vulnerabilities ... some ways that Intel
processors have been targeted: 1. Spectre and Meltdown:
These two vulnerabilities were discovered in 2018 and
affect nearly all modern processors, including those from
Intel. They allow an attacker to access sensitive informa-
tion, such as passwords and encryption keys, by exploiting
.... 2. Side-channel attacks ... such as cryptographic keys
or other confidential data. 3. Firmware vulnerabilities ... 4.
Supply chain attacks ... 5. Physical attacks ... To protect
against these types of attacks, it is important to keep your
devices and software up to date ...

RAG-
enhanced
LLM

Based on the information provided, it appears that Intel
processors are being targeted through various vulnerabili-
ties, including load value injection, improper isolation of
shared resources, and sequence of processor instructions
leading to unexpected behavior. These vulnerabilities can
be exploited by authenticated users with local access to
potentially enable information disclosure, escalation of
privilege, and denial of service attacks.

More interestingly, the RAG-enhanced LLM model showed
the capability of the “awareness of honesty” in instances where
questions were not supported by sufficient information in the
input documentation, for example, the response that

Based on the provided context, I don’t know the
answer to your question. The passage does not pro-
vide any information about how the custom Modbus
TCP/IP protocol stack is implemented. The authors
of the passage seem to be focused on the use
of Modbus TCP in industrial processes and the
challenges of simulating Modbus communication in
Simulink, rather than detailing the implementation
of the custom protocol stack. Therefore, I cannot
provide an answer to your question.

In this example, the RAG-enhanced LLM communicated its
inability to respond accurately because of a lack of informa-
tion.

In another case, shown in Table V, the input files contain
sufficient information, but the response to the initial question
does not provide enough valuable information. By modifying
the question prompt with more specified details, e.g., the
connection between MSKs and MTKs in this example, the
output response contains more detailed information related
to the question. However, in this example, we observed the
inaccurate response for MTKs (Migration Trust Anchors),
which should be MTKs (Migration Transport Keys). When
the RAG-enhanced LLM model was tasked with summarizing
the system design and architecture components in a query, it
usually returned more accurate and relevant responses than the
base LLM in this study.

TABLE V
THE EXAMPLE RESPONSE FOR TASK 2 WHEN PROMPT REQUIRED

MODIFICATION

Prompt Response
How are MSKs
used and
protected?

Based on the context provided, MSKs (Migration
Security Keys) are used and protected as follows:
MSKs are used after the MigTD policy verifica-
tion. This suggests that MSKs are used as part of
the migration process, specifically after the policy
verification step. As for how MSKs are protected,
the context does not provide any information.
Therefore, I cannot answer this question.

How are MSKs
used and how
are they protected
using MTKs?

Based on the context provided, MSKs (Migration
Security Keys) are used and protected using MTKs
(Migration Trust Anchors). MSKs are passed
after the MigTD policy verification, which sug-
gests that MSKs are used to establish a secure
communication channel between these systems or
applications, ... MTKs, on the other hand, are used
to protect MSKs by providing a trusted anchor for
the migration process. MTKs are used to verify
the authenticity of the MSKs and ensure that they
are being used correctly. This helps to prevent
unauthorized access to the data being transmitted
and ensures that the communication channel is
secure. In summary, MSKs are used to establish
a secure communication channel between different
systems or applications, while MTKs are used to
protect MSKs by providing a trusted anchor for
the migration process.

6

V. DISCUSSION

In this study, we developed an LLM-based threat model-
ing system to address the challenge of threat modeling in
answering two major questions MQ1 and MQ2. Although
we observed promising output responses generated by the
developed system, there are some limitations to using LLM
for threat modeling.

Large language models can offer benefits in simplifying the
threat modeling process, but they also possess weaknesses
that could impact the quality of their outputs. A critical
concern is the potential for biases stemming from their training
datasets. Research has been done comparing models that have
significant guardrails, such as the OpenAI GPT models vs
open source models without guardrails [14]. Findings indicate
that those without guardrails can be more easily biased towards
less common viewpoints when given prompts intentionally
designed to influence that way. Another concern is about
hallucinations, which refer to incorrect responses generated
by LLMs. Such incorrect responses may result from biased
datasets, a lack of real-world knowledge, or an inadequate
understanding of input. Efforts to reduce the frequency of
hallucinated responses are ongoing, with one approach in-
volving the use of guided iterative prompting [23]. Table V
shows the example of hallucination from RAG-based LLM
responses. Existing studies with larger datasets have shown
that RAG-enhanced LLMs return fewer hallucinations than
LLMs without RAG. In some cases, hallucinations can be
useful, such as for creating an agent for testing, but to avoid
missing critical tests, this use case should still be augmented
with expert review [21].

Additionally, because of the sensitive nature of the docu-
mentation and the potential to identify weaknesses in products,
the privacy of any shared information is required. Using LLMs
for threat models built across teams can result in privacy
risk stemming from membership inference and training data
extraction [15]. A significant barrier to scaling LLMs is the
cost and time to train [24]. This originally meant access to
models was limited to large companies and research labs, but
recent efforts, such as the release of the Llama 2 collection
of models and the integration available with cloud platforms,
have been made that allow training and deploying LLMs to
be more accessible.

Further work can be considered to enhance the effectiveness
and applicability of this RAG-enhance LLM solution for threat
modeling. Based on the observations in this study, the RAG-
enhanced LLM model shows the capability of handling threat
modeling-related queries effectively. The technique challenges
are rooted in investigating how to improve the query response
accuracy and time.

VI. CONCLUSION

This study developed a novel LLM-based threat modeling
approach to decrease the required human effort in the threat
modeling process. NLP techniques were employed to assist
in parsing and understanding design documents and threats,
while an open-source LLM was used to analyze and synthesize

documentation. Two major threat modeling questions around
understanding the system and application, and identifying
potential security threats were targeted in this study. By
demonstrating the use of LLMs to facilitate threat modeling
within the proposed proof-of-concept framework, this study’s
findings reveal an increase in the efficiency of threat modeling
by allowing development and security teams to utilize natural
language queries to understand the product design and quickly
identify potentially relevant vulnerabilities.

REFERENCES

[1] Cybersecurity & infrastructure security agency. https://www.cisa.gov/.
[2] IEEE Xplore. https://ieeexplore.ieee.org/.
[3] Intel Trust Domain Extensions. https://www.intel.com/content/www/us/

en/developer/tools/trust-domain-extensions/documentation.html.
[4] KeyBERT. https://maartengr.github.io/KeyBERT/.
[5] National vulnerability database. https://nvd.nist.gov/.
[6] Natural language toolkit. https://www.nltk.org/.
[7] Recursively split by character langchain. https://python.langchain.com/.
[8] Stride (security). https://en.wikipedia.org/.
[9] Threat Modeling Manifesto. https://www.threatmodelingmanifesto.org/.

[10] Understanding indexes. https://docs.pinecone.io/docs/indexes.
[11] What is retrieval augmented generation (RAG)? https://www.oracle.com/

artificial-intelligence/generative-ai/retrieval-augmented-generation-rag/.
[12] What is retrieval-augmented generation?, February 2021. https://

research.ibm.com/blog/retrieval-augmented-generation-RAG.
[13] You Need To Start Using JSONL In Your Golang Projects!, July 2023.

https://thegodev.com/handling-jsonl/.
[14] Nicklaus Badyal, Derek Jacoby, and Yvonne Coady. Intentional biases

in llm responses. In 2023 IEEE 14th Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON), pages
0502–0506. IEEE, 2023.

[15] Hannah Brown, Katherine Lee, Fatemehsadat Mireshghallah, Reza
Shokri, and Florian Tramèr. What does it mean for a language model
to preserve privacy? In Proceedings of the 2022 ACM Conference on
Fairness, Accountability, and Transparency, pages 2280–2292, 2022.

[16] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao
Chen, Linyi Yang, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al.
A survey on evaluation of large language models. arXiv preprint
arXiv:2307.03109, 2023.

[17] Daniela Soares Cruzes, Martin Gilje Jaatun, Karin Bernsmed, and
Inger Anne Tøndel. Challenges and experiences with applying microsoft
threat modeling in agile development projects. In 2018 25th Australasian
Software Engineering Conference (ASWEC), pages 111–120. IEEE,
2018.

[18] Lucas Peixoto da Silva, Bernardo S Nascimento, Rafael A Mello P Dias,
and Diogo S Mendonça. A comprehensive approach for applying threat
modeling to internet of things systems. In 2022 IEEE 8th World Forum
on Internet of Things (WF-IoT), pages 01–06. IEEE, 2022.

[19] Danny Dhillon. Developer-driven threat modeling: Lessons learned in
the trenches. IEEE Security & Privacy, 9(4):41–47, 2011.

[20] V. Drake. Threat modeling. https://owasp.org/www-community/Threat
Modeling.

[21] Robert Feldt, Sungmin Kang, Juyeon Yoon, and Shin Yoo. Towards
autonomous testing agents via conversational large language models.
arXiv preprint arXiv:2306.05152, 2023.

[22] Jeffrey A Ingalsbe, Louis Kunimatsu, Tim Baeten, and Nancy R Mead.
Threat modeling: diving into the deep end. IEEE software, 25(1):28–34,
2008.

[23] Susmit Jha, Sumit Kumar Jha, Patrick Lincoln, Nathaniel D Bastian,
Alvaro Velasquez, and Sandeep Neema. Dehallucinating large language
models using formal methods guided iterative prompting. In 2023 IEEE
International Conference on Assured Autonomy (ICAA), pages 149–152.
IEEE, 2023.

[24] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

7

[25] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Processing Systems,
33:9459–9474, 2020.

[26] Microsoft. Microsoft threat modeling tool overview. https://learn.
microsoft.com/en-us/azure/security/develop/threat-modeling-tool.

[27] Amar Seeam, Ochanya S Ogbeh, Shivanand Guness, and Xavier
Bellekens. Threat modeling and security issues for the internet of
things. In 2019 conference on next generation computing applications
(NextComp), pages 1–8. IEEE, 2019.

[28] Peter Torr. Demystifying the threat modeling process. IEEE Security &
Privacy, 3(5):66–70, 2005.

[29] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[30] Koen Yskout, Thomas Heyman, Dimitri Van Landuyt, Laurens Sion,
Kim Wuyts, and Wouter Joosen. Threat modeling: from infancy
to maturity. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: New Ideas and Emerging Results,
pages 9–12, 2020.

8

