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Abstract—The robustness of deep learning models against ad-
versarial attacks remains a pivotal concern. This study presents,
for the first time, an exhaustive review of the transferability aspect
of adversarial attacks. It systematically categorizes and criti-
cally evaluates various methodologies developed to augment the
transferability of adversarial attacks. This study encompasses a
spectrum of techniques, including Generative Structure, Semantic
Similarity, Gradient Editing, Target Modification, and Ensemble
Approach. Concurrently, this paper introduces a benchmark
framework TAA-Bench, integrating ten leading methodologies
for adversarial attack transferability, thereby providing a stan-
dardized and systematic platform for comparative analysis across
diverse model architectures. Through comprehensive scrutiny, we
delineate the efficacy and constraints of each method, shedding
light on their underlying operational principles and practical
utility. This review endeavors to be a quintessential resource for
both scholars and practitioners in the field, charting the complex
terrain of adversarial transferability and setting a foundation for
future explorations in this vital sector. The associated codebase
is accessible at: https://github.com/KxPlaug/TAA-Bench

I. INTRODUCTION

In recent years, adversarial attacks have emerged as a
significant research direction for artificial intelligence and
machine learning, especially in the context of the security
of deep learning. It originates from the observation that deep
neural networks (DNNs) are sensitive to subtle perturbations in
input data. Even imperceptible to the human eye, such changes
can lead to incorrect output results [3]. Adversarial attacks
can be categorized into two types based on the availability
of model data: white-box attacks and black-box attacks [1],
[18], [6], [19]. White-box attacks assume the model’s internal
information are accessible, such as its parameters, structure,
and training data. In contrast, black-box attacks occur without
knowledge of the internal information of the attacked model,
which aligns more closely with real-world scenarios, as attack-
ers often have constraints in access operation.

From the technical perspective, black-box attacks can be
classified into two categories: query-based attacks and trans-
ferable adversarial attacks. The former, although unable to
directly access the model’s content, requires multiple requests
to the target model [23]. Thus, attackers can infer and construct
an approximate model to launch the attack. A limitation is
that it necessitates regular and extensive access to the target
model, thereby reducing the stealthiness of the attack. On the
contrary, our emphasis is on a more practical form of attack,

‘Workshop on Al Systems with Confidential Computing (AISCC) 2024
26 February 2024, San Diego, CA, USA

ISBN 979-8-9894372-4-5
https://dx.doi.org/10.14722/aiscc.2024.23017
www.ndss-symposium.org

namely transferable adversarial attacks (TAA). This method
involves the use of a surrogate model, which, while distinct
from the target model, shares similar features or functionalities.
Adversarial samples generated on this surrogate model are
then used to attack the target model [22]. Owing to certain
generalization properties inherent in deep learning models,
these adversarial samples often successfully mislead the target
model, different from the surrogate, thus facilitating a transfer
attack. The key advantage of this method lies in the ability to
operate without direct access or querying of the target model,
thereby enhancing the stealth and practicality of the attack.

Despite the widespread research on transferable adversarial
attacks in recent years, it lacks a comprehensive and systematic
retrospective study. Thus, this paper aims to systematically
review and categorise the existing classical and latest TAA
methods. For the first time, we investigate TAA methods
from multiple dimensions, categorising existing approaches
into generative architecture, construction of semantic similar-
ity, gradient editing types, modification of attack targets and
ensemble types. Additionally, we benchmark baseline methods
for comparison. Moreover, we reproduce 10 representative
methods of transferable adversarial attacks and integrated
these methods into an open-source benchmark framework,
which is published on GitHub TAA-Bench, facilitating related
researches. Our main contributions are:

e  We thoroughly collate existing methods of transferable
adversarial attacks, and systematically analyse their
implementation principles.

e We present an extensible, modular and open-source
benchmark TAA-Bench that includes implementations
of different types of transferable adversarial attacks to
facilitate research and development in this field.

II. PROBLEM DEFINITION

In the study of transferability in adversarial attacks, our
objective is to generate a slightly perturbed input sample 2/,
causing misclassification of a black-box target deep learning
model while keeping these changes imperceptible to human
observers. Specifically, consider a surrogate deep learning
model f with parameters 0, a black-box target deep learning
model f’, a representative input sample z along with its
corresponding true label y, and a small perturbation magnitude
€. Our goal is to find a perturbation 0 such that 2’ = x + ¢
satisfies two conditions: 1) the target model f’ does not
output the true label y when predicting the input sample z’,
ie, f'(z') # y; 2) the magnitude of the perturbation § is
constrained to be within a given threshold ¢, ensuring that x’
remains indistinguishable from original sample x to human.



TABLE 1.

COMPARATIVE ANALYSIS OF ADVERSARIAL ATTACK STRATEGIES

Strategy Description E

Advantages

Disadvantages

Generative Architecture | Generates perturbations via a dedicated network 15], [24]

Fast attack execution

Requires extra network training, complex training process

Semantic Similarity Uses semantically similar samples in attacks 16], [7], [9], [14], [11], [25]

Simple to deploy and motivate

High-quality sample generation can be chall

Gradient Editing Aims to reduce gradient overfitting 2], [20], [24]

Independent of target attack characteristics

Can reduce attack accuracy, limited transferability

Target Modification Focuses on common features in different models 131, [21], [4], [10]

Exploits model similarities

Relies on model feature commonalities, difficult to implement

Ensemble Approach I multiple models for attacks 18], [17]

Enhances transferability and robustness

More computationally intensive, requires multiple model integration

III. SYSTEMIZATION OF KNOWLEDGE

In this section, we provide a comprehensive summarisation
to a variety of existing transferable attack methods, each
enhancing the transferability of adversarial attacks from dif-
ferent perspectives. The first category is for baseline methods,
which, while not specifically optimised for attack transfer-
ability, utilize classic white-box attack methods to assess
the effectiveness of other transferable methods. As depicted
in Table I, we categorise the transferable attacks into five
types: Generative Architecture, Semantic Similarity, Gradient
Editing, Target Modification, and Ensemble Approach.

A. Baseline approaches

To study transferable adversarial attacks, the selection of a
suitable baseline method is essential for benchmarking attack
techniques. In this work, we select the Iterative Fast Gradient
Sign Method (I-FGSM) as the baseline [2], [16]. As an en-
hancement of FGSM, I-FGSM applies iterative refinements to
generate more effective adversarial samples. Its lack of specific
optimisation for transferability provides unified context for
assessing other methods. Superior performance over I-FGSM
in transferability is indicative of enhanced attack efficacy.

The principle of I-FGSM involves iterative applications of
the Fast Gradient Sign Method. Starting with an input z,
each iteration computes the loss function gradient L relative
to the current sample x;, aiming to maximize loss and induce
misclassification. Adjustments are based on the gradient sign,
following z;41 = x; + € - sign(V,L(0,z;,y)), where ¢
controls perturbation magnitude, 6 denotes model parameters,
and y the true label. The update size is consistent across
pixels, guided by the gradient direction. The process concludes
after a predetermined number of iterations or upon achieving
misclassification.

B. Generative Architecture

This category of methods employs Generative Adversarial
Networks (GANSs) to produce adversarial samples. The core
idea of these methods lies in using generative models to
mimic the decision boundaries of the target attack models,
thereby generating efficient transferable adversarial samples.
The advantage of such methods is that once the Generator is
trained, adversarial samples can be quickly generated without
further querying the model. Examples of this type of attack
include AdvGAN [15] and GE-AdvGAN [24].

1) AdvGAN [15]: The main principle of AdvGAN is based
on Generative Adversarial Networks (GANSs), which include
a generator and a discriminator. The generator creates slight
perturbations and adds them to the original input data, generat-
ing counterfeit samples. The discriminator learns to distinguish
between fake and real samples, which are then assessed by the
target neural network to evaluate the classification effect of
the perturbed samples. The adversarial samples generated by

AdvGAN aim to deceive the target network into making in-
correct classifications while remaining imperceptible to human
observers. This method effectively combines the generative
capabilities of GANs with the requirements of adversarial
attacks, functioning efficiently in both semi-white-box and
black-box attack scenarios.

The overall objective of AdvGAN is to find a balance
between generating adversarial samples and deceiving the
model. Thus, the total loss is the sum of the discriminator
loss and the generator’s impact on the target model:

ming maxp Eq y~aallog D(z)+log(1-D(G (2)))+AL(f(G(2)), y)]

, where )\ is a weight coefficient used to balance the two objectives.
Through this method, AdvGAN can generate adversarial samples that
are as similar to real samples as possible but can mislead the target
model.

2) GE-AdvGAN [24]: GE-AdvGAN, compared to AdvGAN,
has been optimized in terms of transferability and has also improved
the efficiency of the algorithm. The core idea is the optimization
of the gradient update method during the generator training process.
GE-AdvGAN introduces a novel Gradient Editing (GE) mechanism,
utilizing frequency domain exploration to determine the direction
of gradient editing. This method enables GE-AdvGAN to generate
highly transferable adversarial samples while significantly reducing
the execution time to generate these samples.

Specifically, in AdvGAN, the Generator’s loss is divided into
three components: Ladv, Lgan, and Lpinge. These respectively
represent the loss functions for the attack, generation, and control of
perturbations. The portion controlling the attack can be decomposed
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xy, are samples generated using frequency domain exploration.

C. Semantic Similarity

The core concept of this category of methods is to find a
sample and construct samples that are semantically related to it, and
simultaneously attack these semantically related samples, thereby ex-
panding the transferability of adversarial attacks. Such attack methods
are represented by Diverse Input Fast Gradient Sign Method (DI-
FGSM) [16], Scale-Invariant Nesterov Iterative Fast Gradient Sign
Method (SI-NI-FGSM) [7], Spectrum Simulation Attack (SSA) [9],
Centralized Perturbation Attack (CPA) [14], Feature Disruptive Uni-
versal Adversarial Attack (FDUAA) [11], and Structure Invariant
Attack (SIA) [12].

1) DI-FGSM [16]: The core principle of the DI-FGSM is to
introduce input diversity in the process of generating adversarial
samples to find Semantic Similarity. This is achieved by applying
random transformations (such as resizing and padding) to the input
image in each iteration. These variations create diverse input patterns,
helping to prevent overfitting to specific network parameters, thereby
enhancing the effectiveness of the generated adversarial samples
against different models.

Assume the original input image is x, and the adversarial sample
is initialized as x(, = x. For each iteration i, a random transformation
T is applied to the current adversarial sample x}, resulting in the



transformed sample Z; = 7(z;). Then, the gradient of the loss
function L(f(Z%),y) with respect to Z} is computed, where ¥ is the
target label. The adversarial sample is updated using this gradient:

DEN)

Here, ¢ is the step size, and the sign function returns the sign
of the gradient. By repeating this process, DI-FGSM increases the
transferability of the adversarial samples, making them more likely
to be effective on unknown models.

Tipr =xi+ e sign(Va; L(f(Z

2) SI-NI-FGSM [7]: The SI-NI-FGSM is an adversarial attack
algorithm that integrates Scale Invariance (SIM) and the Nesterov
Iterative Method (NIM). This method enhances the effectiveness and
transferability of adversarial samples by introducing NIM and SIM
on top of the Fast Gradient Sign Method (FGSM). SI-NI-FGSM
first utilizes NIM to predict future changes in the gradient for more
precise updates of the adversarial samples. It then maintains scale
invariance by adjusting the scale of the input image, thus improving
the transferability of the attack across different models.

Specifically, SI-NI-FGSM initially pre-updates the input sample
using the Nesterov method, calculated with the formula ' = z+a-v,
where x is the current sample, v is the accumulated gradient, and
« is the pre-update step length. It then calculates the gradient at
the pre-update point g = V,L(0,z’,y) and updates the momentum
v = p-v+g. Finally, the sample is updated using x = z+€-sign(v).
During the generation of adversarial samples, the scale of the input
image is adjusted to ensure that the generated perturbation maintains
the same effect on images of different scales.

3) SSA [9]: The core principle of SSA is to simulate diverse
models in the frequency domain, thereby enhancing the transferability
of samples. The specific operation includes using DCT and inverse
DCT to transform the spectral signature of the input image, gener-
ating diverse spectral saliency maps, which indicate the diversity of
substitute models. The approach further includes randomly masking
features in the frequency domain to identify and exploit similar
semantics, thereby accomplishing transferability in the attack.

Specifically, SSA first uses DCT to transform the input image
from the spatial domain to the frequency domain. This process
can be mathematically represented as D(z) = Az AT, where A
is an orthogonal matrix. Subsequently, SSA introduces a Spectrum
Saliency Map, defined as the response of the spectrum of the input
image to the Egradlent of the model’s loss function, expressed as
Sy = 8L(D§D (f) ¥i%) Here Dz is the inverse DCT transform,
used to convert frequency domain data back to the spatial domain.
Finally, SSA employs a random spectral transformation 7 (-), which
can be expressed as T (x) = Dz(D(x) + D(§) © M), where ©
denotes the Hadamard product, and £ and M are variables randomly
sampled from Gaussian and uniform distributions, respectively. This
transformation produces diverse spectral saliency maps, thereby sim-
ulating different substitute models and enhancing the transferability
of adversarial samples.

4) CPA [14]: The principle of CPA [14] is to enhance the
transferability of adversarial attacks through precise perturbation
optimization in the frequency domain on DNNs. This method first
employs DCT to decompose data into the frequency domain, thereby
facilitating the exploration of similar semantics. Then, it reduces
unnecessary perturbations by quantizing each Y/Cb/Cr channel and
focuses the optimization on the main frequency coefficients that influ-
ence model predictions. Finally, the differential quantization matrix
is optimized through backpropagation, ensuring that perturbations are
concentrated in the dominant frequency areas. The key to this method
lies in effectively centralizing and optimizing perturbations, thereby
improving the transferability of adversarial samples and their ability
to bypass defense mechanisms.

5) FDUAA [11]: The core principle of the FDUAA is to
generate universally transferable adversarial perturbations (UAPs)
by disrupting features that are not dependent on specific model
architectures, such as edges or simple textures. Specifically, this
method weakens important channel features while enhancing less
significant ones, as determined by a specific strategy, through a target
function. Additionally, the method iteratively updates UAPs using the
average gradient of small-batch inputs to capture local information. It
also introduces a momentum term to accumulate gradient information
from iterative steps, sensing the global information of the entire
training set.

6) SIA [12]: The principle of the SIA is based on applying a
series of random transformations to an image, aiming to create diverse
adversarial samples with structural characteristics. The SIA method
processes the image in blocks, applying random image transforma-
tions such as rotation and scaling to each block, thereby increasing the
diversity of the samples and finding similar semantics. This method
maintains the basic structure of the original image while generating
challenging adversarial samples capable of effectively deceiving deep
neural networks. The key to SIA lies in its ability to enhance the
transferability of the samples by introducing transformations, while
simultaneously maintaining the structural integrity of the image.

7) FSPS [25]: The FSPS method is a novel algorithm designed
to enhance the transferability of adversarial attacks in machine
learning. This approach is centered around two fundamental concepts:
identifying stationary points on a loss curve and executing frequency-
based searches from these identified points. The process is initiated by
pinpointing stationary points on the loss curve, defined as locations
where the derivative of the loss function is zero. These identified
points serve as the starting points for the attack. Subsequently, FSPS
applies a frequency-based search methodology to scrutinize the most
effective adversarial directions in the vicinity of these stationary
points.

D. Gradient Editing

This category of methods focuses on modifying or optimizing gra-
dient information to generate adversarial samples. These techniques
often rely on a deep understanding and manipulation of gradients
in surrogate models, to make the generated samples effective on
target models. Representative methods include Momentum Iterative
Fast Gradient Sign Method (MI-FGSM) [2], Token Gradient Reg-
ularization (TGR) [20], Frequency-based Stationary Point Search
(FSPS) [25], and the previously mentioned GE-AdvGAN [24]. Since
GE-AdvGAN has already been discussed earlier, it will not be
elaborated upon in this section.

1) MI-FGSM [2]: The MI-FGSM integrates a momentum term
in its iterative process to stabilize the update direction and escape
from local maxima, thereby generating more transferable adversarial
samples. In each iteration, it accumulates a velocity vector in the
direction of the loss function gradient, aiding in optimizing stability
and avoiding suboptimal local maxima.

In MI-FGSM, an adversarial perturbation rate « is set, propor-
tional to the total perturbation limit € and the number of iterations
T'. The method starts with the original input = and initializes a zero
vector g as the starting value for momentum. In each iteration, it first
calculates the gradient of the loss function V. L(x¢,y) for the current
adversarial sample x;, then combines this gradient with the previous
momentum g;, weighted by the momentum factor p, to adjust
the direction of the next update. The momentum is updated using
Ji+1 = - gt + ﬁ The role of momentum is to maintain
directionality throughout the optimization process and effectively
circumvent falling into local optima. Finally, the new adversarial
sample x4 1 is iteratively generated using z;41 = x¢+«a-sign(ge+1).



2) TGR [20]: The TGR is an adversarial attack method specifi-
cally designed for Vision Transformers (ViTs). It enhances the attack
effectiveness by reducing gradient variance during the training pro-
cess. This method leverages the internal structural features of ViTs, di-
minishing the disparity in gradients among tokens, and thereby scaling
the model’s sensitivity to specific adversarial samples. Consequently,
the adversarial samples generated are more likely to mislead different
ViT models when transferred, inducing incorrect judgments. Notably,
TGR demonstrates high efficacy and transferability in adversarial
settings against various ViT and CNN models.

E. Target Modification

This category of methods exploits the characteristic of similarity
among different models, such as attribution (explainability) similarity,
by directly attacking these similar features to achieve transferable
goals. Instead of directly using the model’s cross-entropy, these meth-
ods often target the model’s intermediate layers or attributions, such
as Feature Importance-Aware Attack (FIA) [13], Neuron Attribution-
based Attack (NAA) [21], Double Adversarial Neuron Attribution At-
tack (DANAA) [4], and Momentum Integrated Gradients (MIG) [10].

1) FIA [I13]: The FIA achieves attack transferability by tar-
geting key object-aware functions that significantly impact model
decisions. Unlike traditional methods that indiscriminately distort
features, leading to overfitting and limited transferability, FIA intro-
duces an aggregated gradient approach. This method averages the
gradients of a batch of randomly transformed versions of the image,
emphasizing features related to the object and deemphasizing model-
specific features. Such gradient information guides the generation
of adversarial examples, aimed at disrupting key features, thereby
enhancing transferability across different models.

2) NAA [2]1]: The NAA method first comprehensively attributes
the model output to each neuron in the intermediate layer, then
significantly reduces the computational cost through an approximation
scheme. This scheme is based on two main assumptions: first, the net-
work’s feature extraction layers and decision layers are independent
in most traditional DNN models; second, that the gradient sequences
of these two parts have zero covariance. As a result, NAA can make a
faster and relatively accurate estimation of the importance of neurons.
By weighting the attribution results of the neurons, it attacks the
feature layer, thus generating transferable adversarial examples.

Specifically, NAA first uses the formula A,; = Y (z; —
x}) 01 %(y(xa))g—g(xa)da to calculate neuron attribution. This
formula measures the importance of neuron y; by considering each
input feature x;’s effect on neuron y; and neuron y;’s contribution
to the final output F. Then, using the simplified computational
assumptions, the attribution formula becomes Ay; ~ Ay; - TA(y;).
Here, IA(y;) is the integrated attention, and this approximation
allows for a rapid assessment of neuron importance. Finally, the target
of perturbation generation is to minimize the weighted attribution
WA, = Zij >0 fp(Ay;) =7+ Zij <0 fn(—Ay,). This process
adjusts the input image to reduce the model output’s reliance on posi-
tive features while enhancing the impact of negative features, thereby
improving the performance of transferable adversarial samples.

3) DANAA [4]: The DANAA method (Double Adversarial
Neuron Attribution Attack) is an attack technique based on double
adversarial neuron attribution. Its core principle lies in updating
perturbations via a non-linear path, thereby more accurately assessing
the importance of intermediate-layer neurons. The DANAA method
attributes the model output to intermediate layer neurons, measur-
ing the weight of each neuron and retaining features more crucial
for transferability. This approach, by improving attribution results,
enhances the transferability of adversarial attacks.

4) MIG [10]: MIG utilizes integrated gradient attributions to
generate adversarial perturbations. Compared to traditional gradients,
integrated gradients exhibit higher similarity across different models.
MIG also incorporates a momentum strategy, optimizing the pertur-
bation updates by accumulating integrated gradients from previous
iterations, thus enhancing the attack success rate and transferability.

Specifically, MIG starts by generating an initial zero perturbation
6o = 0. In each iteration, it calculates the gradient of the loss function
of the current input image relative to the model V,L(f(z + 0¢),y).
and then combines this gradient with the momentum accumulated
from previous iterations m;. The momentum update formula is
Mit1 = [ - My + %, where p is the momentum
factor. The current perturbation is then updated using the accumulated
momentum my4 1, following the formula d:11 = ¢ + - sign(me41),
where « is the step size. By iteratively repeating this process, MIG
can gradually construct more transferable adversarial perturbations.

F. Ensemble Approach

This category of methods employs an approach where the attack
process combines multiple models, using queries from multiple mod-
els to enhance transferability. However, these methods have certain
limitations in real-world scenarios, as it is challenging to obtain
multiple surrogate models in practical applications. Methods that
fit this category include Model ensemble attacks [8] and Stochastic
Variance Reduced Ensemble Attack (SVRE) [17].

1) Model ensemble attacks: Liu et al. [8] proposed generating
more transferable adversarial samples by ensembling multiple models.
The core idea of this method is to optimize an ensemble of white-
box models to generate adversarial samples capable of deceiving
other black-box models. Specifically, given k£ white-box models with
softmax outputs J; to Ji, an original image z, and its true label vy,
the ensemble method solves the following optimization problem:

argmin, — log (ZLI aiJi(x)) 1y + Md(z, 2")

Here, y is the target label specified by the attacker, «; J; () represents
the ensemble model, and «; are the ensemble weights (satisfying
Zle « = 1). The goal of this optimization is to generate adversarial
images that maintain their adversarial nature against an additional
black-box model Ji41, retaining transferability for different models.

2) SVRE [17]: The SVRE operates on the principle of re-
ducing gradient variance in model ensemble attacks to improve the
transferability of adversarial samples. In traditional model ensemble
attacks, attackers simply merge outputs from multiple models, but this
approach neglects differences in gradient variance between models,
possibly leading to local optima. SVRE reduces the variance through
a two-level loop approach: the outer loop computes the average
gradient of all models and passes the current sample to the inner loop;
the inner loop performs multiple iterative updates, calculating the
current gradient on a randomly selected model in each iteration, and
adjusting it according to the gradient deviation in the outer loop. This
method results in more accurate gradient updates in the outer loop,
avoiding the issue of overfitting in ensemble model and enhancing
the transferability of adversarial samples to unknown models.

IV. DESCRIPTION OF TAA-BENCH

A. Algorithms Implementation

In TAA-Bench, we consider 10 different types of adversarial
attack methods as the current solution: I-FGSM [5], DI-FGSM [16],
MI-FGSM [2], SI-NI-FGSM [7], NAA [21], DANAA [4], SSA [9],
MIG [10], AdvGAN [15], and GE-AdvGAN [24]. We select the
methods as either classical or state-of-the-art TAA approaches.

Classical methods serve as baselines to measure the advancements
of other newly improved algorithms. Moreover, these methods are



chosen for their practical popularity and reproducibility in related
studies, since some algorithms may involve a large number of
hyperparameters leading to uncertainty in results and difficulties in
implementation. In this case, our benchmark does not include such
methods. The goal of TAA-Bench is to make the usage of TAA
methods as simple and practical as possible to facilitate the in-depth
analysis. We reflect the limitation of TAA-Bench by continuously
including latest research results in our benchmark.

B. Codebase of TAA-Bench

We have constructed an extensible and modular codebase as the
foundation for TAA-Bench, including three modules: configuration,
attack, and network model modules.

The configuration module comprises a YAML file for defin-
ing experimental parameters. This setup facilitates adaptable, repro-
ducible experiments by clearly outlining variables such as network
specifications and algorithm hyperparameters. Ensuring consistency
and ease of modification, this module aligns with the imperative of
reproducibility in scientific research.

The attack module, employing a modular architecture, encap-
sulates all the adversarial attack methods. The module aids future
researchers for code review or extending new methods. Thus, the
module provides a universal, dynamic toolkit to simulate and analyse
the performance of transferable adversarial attack methods.

The network model module incorporates ten classic mod-
els: Inception-v3, Inception-v4, ResNet-50, ResNet-101, ResNet-152,
Inception-ResNet-v2, Inception-v3-adv, Inception-v3-ens3, Inception-
v3-ens4, Inception-ResNet-v2-ens-adv in PyTorch. These models
ensure that all attack methods can be thoroughly tested under the same
structures, ensuring fairness in comparative experiments. Additionally,
specific model structures can be added for assessment and testing.

V. CONCLUSION

In summary, this paper provides an extensive review and bench-
marking of the state-of-the-art techniques in the transferability of
adversarial attacks, offering significant insights into the field of
machine learning security. We have conducted a thorough analysis and
categorization of a variety of methods. Our benchmarking efforts of
TAA-Bench cover ten different adversarial attack methods, providing
a comprehensive assessment of their effectiveness across various
model architectures. In future work, we will expand our benchmark
and incorporate data analysis methodologies, such as interpretability
analysis, to conduct an exhaustive evaluation of all methods.
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