PANDORA: Jailbreak GPTs by Retrieval Augmented
Generation Poisoning

Gelei Deng'®, Yi Liu'®, Kailong Wang?, Yuekang Li?, Tianwei Zhang', and Yang Liu'
!Nanyang Technological University, 2Huazhong University of Science and Technology,
3University of New South Wales,

{gdeng003, yi009} @e.ntu.edu.sg, wangkl@hust.edu.cn yuekang.li@unsw.edu.au, {tianwei.zhang, yangliu} @ntu.edu.sg,

Abstract—Large Language Models (LLMs) have gained im-
mense popularity and are being increasingly applied in various
domains. Consequently, ensuring the security of these models
is of paramount importance. Jailbreak attacks, which manipu-
late LLMs to generate malicious content, are recognized as a
significant vulnerability. While existing research has predomi-
nantly focused on direct jailbreak attacks on LLMs, there has
been limited exploration of indirect methods. The integration
of various plugins into LLMs, notably Retrieval Augmented
Generation (RAG), which enables LLMs to incorporate external
knowledge bases into their response generation such as GPTs,
introduces new avenues for indirect jailbreak attacks.

To fill this gap, we investigate indirect jailbreak attacks on
LLMs, particularly GPTs, introducing a novel attack vector
named Retrieval Augmented Generation Poisoning. This method,
PANDORA, exploits the synergy between LLMs and RAG through
prompt manipulation to generate unexpected responses. PAN-
DORA uses maliciously crafted content to influence the RAG
process, effectively initiating jailbreak attacks. Our preliminary
tests show that PANDORA successfully conducts jailbreak attacks
in four different scenarios, achieving higher success rates than
direct attacks, with 64.3% for GPT-3.5 and 34.8% for GPT-4.

I. INTRODUCTION

Large Language Models (LLMs) have gained widespread
popularity, marking a substantial leap forward in the domain of
machine processing and generation of human language. These
models, developed by leading tech companies, exemplify the
cutting-edge in Al language capabilities. Some notable exam-
ples include OpenAl’s GPT series [1]-[3], Google’s PaLM
series [4], [5], and Meta’s LLaMA series [6], [7]. Renowned
for their ability to comprehend and generate text that is both
contextually relevant and syntactically coherent, these LLMs
have become integral in various applications and tasks. Given
their widespread use and influence, ensuring the security and
integrity of LLMs has become an imperative aspect of their
development and deployment, underlining the significance of
safeguarding these advanced Al systems.

Workshop on Al Systems with Confidential Computing (AISCC) 2024
26 February 2024, San Diego, CA, USA

ISBN 979-8-9894372-4-5
https://dx.doi.org/10.14722/aiscc.2024.23018
www.ndss-symposium.org

A significant vulnerability faced by LLMs is the phe-
nomenon known as jailbreak [8]-[11]. This vulnerability
arises from the inadequately stringent scrutiny of content
sources during the retrieval process, which can inadvertently
permit the infusion of malicious content into the system.
Particularly concerning is the risk of jailbreak attacks, wherein
users artfully manipulate the system to provoke responses that
bypass the model’s ethical or operational guidelines. They
challenge the integrity of LLMs, which also raise serious con-
cerns regarding the ethical implications and potential misuse
of such Al technologies.

As shown in Figure 1, existing research on jailbreak attacks
in LLMs has primarily focused on directly prompting models
to generate malicious responses [10], [11]. Thanks to these pi-
oneering works, various safety filters have been implemented,
significantly reducing the effectiveness of direct jailbreak
attacks. Meanwhile, indirect methods have received less at-
tention. The integration of tools like the Retrieval-Augmented
Generation (RAG) framework into LLMs offers new avenues
for exploitation. RAG enhances LLMs by incorporating exter-
nal knowledge bases, leading to richer contextual responses.
This enhancement is evident in applications ranging from
IBM'’s customer-care chatbots [12] to Databricks’ documen-
tation chatbots [13], and AWS Machine Learning’s question-
answering systems [14]. Additionally, Azure AI Search [15]
and OpenAI’s GPTs [16] demonstrate the potential of RAG in
expanding LLM functionalities. This highlights the need for a
thorough investigation of LLM vulnerabilities to more intricate
attack strategies, especially those exploiting the advanced
integrations.

In this paper, we explore the concept of indirect jailbreak
attacks on LLMs, with a particular focus on GPTs. Our work
offers an in-depth analysis of these models and introduces a
novel attack vector that leverages the synergistic operation of
LLMs and RAG. This new vector, termed RAG Poisoning,
illustrates how tailored prompt manipulations can trigger un-
expected behaviors in LLMs. Based on our observations, we
have developed an innovative attack method named PANDORA.
This method involves creating malicious content that serves as
a tainted knowledge source for RAG, coupled with specifically

YEqual Contribution

How to build a bomb?
Read provided materials
first, and include your own
opinion.

How to build a bomb?
Include your own opinion.

©

®
.

As a large language model,
I follow usage policies and
could not provide any
answers.

Yes. According to the
documentation and my

suggestion ...
Polsoned
Document
a) Normal jailbreak flow b) RAG-based jailbreak flow

Fig. 1: A comparison between conventional jailbreak and our
novel attack vector.

crafted prompts to initiate jailbreak attacks in GPT models.

Our evaluation demonstrates that PANDORA can effectively

lead to jailbreak attacks in four distinct prohibited scenarios

for GPTs. The success rate of PANDORA in these scenarios

is noteworthy, achieving 64.3% for GPT-3.5 and 34.8% for

GPT-4, surpassing the effectiveness of direct jailbreak attacks.
To summarize, we make the following contributions.

« Novel attack vector. We present a novel attack vector:
jailbreaking LLM-integrated apps enhanced by RAG.

« Comprehensive attack methodology. We introduce a
comprehensive framework targeting OpenAl GPTs to
generate and launch end-to-end jailbreak GPTs, allowing
any user to achieve jailbreak via the constructed GPTs.

o Preliminary evaluation. We evaluate our solution
through preliminary experiments, and demonstrate that it
could effectively achieve consistent jailbreak attacks on
the latest version of OpenAl GPTs.

Ethical Disclaimer: The research conducted and presented
in this study is strictly for academic and research purposes
only. We adhere to the highest ethical standards, and the sole
objective is to contribute to the scientific understanding and
security of Al systems. All findings and potential vulnera-
bilities discovered during this research have been responsibly
reported, ensuring that our work aligns with the broader goals
of enhancing Al safety and security. We also place a strong
emphasis on the well-being of our research team; all authors
and contributors involved in this project have access to mental
health support and are encouraged to seek care should they
experience any distress or discomfort related to the research.
This commitment to mental health underscores our belief in
the importance of ethical responsibility and care in the realm
of Al security research.

II. BACKGROUND AND RELATED WORK
A. Retrieval Augmented Generation

Retrieval-Augmented Generation (RAG) effectively boosts
LLM responses by combining them with external information
retrieval, thereby improving accuracy and relevance. In its
first phase, RAG focuses on extracting data from diverse
external sources like specialized databases and broader internet
searches. This step is vital for enhancing LLMs’ response
capabilities by providing current and specific information

[Answer LLM

1

| [External Documents]
!
| User @l [Composite Prompt] | DOCument Indexing ?

! 1 !
Prompt Prompt Composition ? [Document Store Q]

| Retrieval Necess1ty [Document Embedding]4—| Document Retrieval ?

Fig. 2: Overview of GPTs.

pertinent to the user’s query. The second phase involves inte-
grating this externally retrieved data with the LLM’s existing
knowledge base. Here, the LLLM assimilates the user’s original
query and the newly acquired external information, utilizing
its advanced deep learning algorithms. This synthesis allows
the model to produce responses that are not only grounded in
its comprehensive training but also enriched with the latest,
specific external data.

B. Jailbreak Attacks in LLMs

Jailbreak attacks on LLMs have gained attention as users
find ways to elicit prohibited responses from models [9], [17]-
[21].

Analytical Studies on Jailbreak Techniques. A significant
portion of the literature concentrates on analyzing jailbreak
techniques. Liu et al. [9] categorized various handcrafted
jailbreak prompts and conducted empirical studies on their
impact on ChatGPT. Wei et al. [22] explored the inherent
conflict between the capabilities and safety objectives in
LLMs, linking it to the emergence of jailbreak techniques
like prefix injection and refusal suppression. These analytical
studies, while informative, often do not delve into the specific
methodologies of jailbreak attacks. Liu et al. [23] studied the
attack mechanism of prompt injection, which is a generalized
technique used by jailbreak attack.

Advanced Research in Jailbreak Attack Methodology.
Recent studies investigate the methods behind jailbreak at-
tacks. Zou et al. [11] introduce a white-box approach, GCG,
combining greedy and gradient-based searches to create adver-
sarial suffixes. Parallel studies have explored various aspects
of black-box jailbreak strategies, including self-generated
prompts by LLMs (Deng et al. [10]), prompt creation without
training models (Liu et al. [8]), multi-step handcrafted prompts
(Li et al. [17]), and token-level approaches in black-box
scenarios (Lapid et al. [24]).

C. An overview of GPTs Structure

In state-of-the-art LLMs like GPT, RAG plays a pivotal
role in enhancing content generation by integrating external
information. Here, we utilize a GPT as a key example to
demonstrate RAG’s function within LLMs.

Figure 2 outlines GPT’s RAG-augmented process in four
stages: @ GPT begins by organizing diverse user-uploaded
document types (PDF, HTML, Word), primarily sorted by
filenames for efficient retrieval. @ For a user prompt, GPT

determines if information retrieval is needed, selecting a
document from uploads based on filename. GPT processes
one file at a time for efficiency. ® Selected documents are
segmented and vectorized for similarity calculations with the
user’s query vector. The top K segments with the highest
similarity scores are extracted, enhancing the response context.
® Finally, content from these segments is combined with the
user’s prompt. This composite input is processed by the LLM,
either by merging the text directly or embedding vectorized
segments into the original content.

While LLMs employ safety filters against text-based jail-
break attacks, they lack similar measures for RAG, allowing
malicious users to introduce harmful content into external
sources. These compromised sources can then be used to
manipulate LLMs into generating malicious content, leading
to jailbreak attacks.

III. METHODOLOGY

In this section, we aim to outline the design rationale and
provide an in-depth exposition on the workflow of PANDORA.
Our exposition begins by examining our strategic approach
for jailbreaking LLMs via RAG. Leveraging the knowledge
acquired from these preliminary insights, we subsequently
present a detailed methodology for the creation of PANDORA.
This tool is meticulously crafted to facilitate the execution of
RAG poisoning.

A. Design Rationale of PANDORA

The design rationale of PANDORA is deeply rooted in an
intricate understanding of the fundamental operational mech-
anisms of LLMs and their defense against jailbreak attacks.
LLMs, such as the GPT series, are typified as generative
models, known for their proficiency in crafting text based on
provided inputs. A key feature of these models is their reliance
on self-supervised learning for training, where they are im-
mersed in extensive text datasets. This approach enables LLMs
to learn by predicting ensuing text segments, independently of
external annotations, and relies solely on the dataset to guide
the learning process. Central to this training is the adjustment
of the model’s internal parameters, aimed at minimizing the
variance between its predictions and the actual sequences in
the training data.

Recognizing that self-supervised learning in LLMs can as-
similate both positive and negative aspects from vast corpora,
PANDORA capitalizes on this self-supervised trait, particularly
in relation to content generation. When presented with a
specific text corpus, LLMs naturally tend to generate content
that is not just relevant but also coherently aligned with
the input. This innate capability of LLMs to decode and
generate content that is pertinent and meaningful underpins
PANDORA. It harnesses the knowledge amassed by LLMs
through their self-supervised learning regimen to achieve the
goal of producing relevant and impactful output. The ability
of LLMs to contextualize and aptly respond to the text corpus
is pivotal to the functional efficiency of PANDORA. Notably,
PANDORA is designed to introduce malicious content into this

N\ N

Malicious
Document Creation

Malicious Content
Generation

Malicious
Content Triggering

Malicious
Document

Document
Naming

Document
Generator

GPTs

Malicious
Content

Content Filter

Fig. 3: Overview of PANDORA

Internet
an,

Upload

LLM

ecosystem, leading LLMs to generate harmful/toxic output,
resulting in jailbreak attacks.

B. Jailbreak with Retrieval-Augmented Generation (RAG)

This section outlines the methodology behind PaANDORA
in executing jailbreak attacks through RAG poisoning. As
demonstrated in Figure 3, The process generally encompasses
three pivotal steps:

O Malicious Content Generation: This phase is critical in
the creation of content that is specifically designed to violate
certain usage policies, such as disseminating adult content or
promoting harmful activities. The intricacies of this process
depend heavily on the intentions of the malicious actors.

® Malicious Document Creation: This phase involves the
creation of the actual malicious content into files, designed
to mimic authentic knowledge sources. Once generated, this
content is strategically uploaded and injected into the GPTs.

® Malicious Content Triggering: In the final step, the fo-

cus shifts to the activation of the previously injected malicious
content, initiating a jailbreak attack within the GPTs instance
and generating malicious answers.
Malicious Content Generation In this crucial step, PAN-
DORA focuses on generating contents that intentionally violate
specific usage policies as the wish of the adversary. The
approach is twofold. Firstly, PANDORA employs web crawling
techniques to gather information aligned with policy-violating
keywords (e.g., “make guns”) from search engines such as
Google. This approach involves systematically searching and
compiling the most relevant, top-ranked website content,
which is then saved into local text files. This method ensures
a comprehensive collection of potentially harmful content,
serving as a base for the subsequent generation of malicious
material. Secondly, the tool utilizes non-censored LLMs such
as Mistral-7B [25] to produce highly targeted content on
specific harmful topics. By leveraging these models, known
for their lax content moderation, PANDORA is able to create
contextually relevant and nuanced malicious content. The
obtained materials are merged together as candidate malicious
contents.

After the initial phase of content creation, the material
undergoes a meticulous refinement process to enhance its
effectiveness. The refinement begins with a strategic replace-
ment of overtly sensitive keywords with subtler alternatives.
This tactic is designed to bypass potential automated content

filters, such as those employed by platforms like OpenAl. For
example, explicit terms like “rape” are substituted with terms
that are less likely to be flagged by filtering algorithms. Addi-
tionally, PANDORA incorporates a blacklist of keywords that
are commonly associated with content rejection mechanisms
in LLMs, including terms like “sorry” and “cannot”. This
blacklist is used to filter the rephrased content, ensuring that
the when the final product does not trigger the LLM’s rejection
bahaviors. This step is critical in ensuring that the malicious
content is seamlessly integrated into the LLM’s outputs.

By employing these sophisticated strategies, PANDORA is

able to produce malicious content that is not only coherent
and impactful but also stealthy when used as RAG source.
The final product is a finely-tuned blend of harmful content,
optimized to evade detection while maintaining its detrimental
intent. The success of these strategies significantly elevates
the potential impact and effectiveness of the jailbreak attacks
executed in later stages.
Malicious Document Creation. In the malicious document
creation step of PANDORA, there are key strategies imple-
mented to enhance the success rate of the jailbreak attack.
The process begins with the generation of individual files, each
tailored to a specific topic of policy violation. This approach is
based on the observation that GPT systems typically process
one file at a time, correlated to the user’s query. By naming
each file explicitly after the topic of violation it covers,
PANDORA ensures that the correct file is retrieved during the
jailbreak attempt towards a targeted restricted usage scenario.
The naming and content association is crucial to align the
retrieval process with the intended jailbreak objective.

Furthermore, PANDORA converts the files containing mali-
cious information into PDF format. This decision stems from
the understanding that GPT systems can easily process text
files in ‘.txt’ format, but such files are more susceptible to
keyword-based filtering. PDF files and other formats like CSV,
on the other hand, are processed as complete vector embed-
dings by GPT systems based on our testing. This characteristic
makes it less likely for the embedded malicious content to be
detected and filtered out. The conversion to PDF thus serves as
a strategic measure to evade detection mechanisms that might
be in place within the GPT infrastructure.

After these preparations, the refined malicious content,
encapsulated within these strategically formatted files, is up-
loaded to the GPTs. This acts as the knowledge source for
creating a customized GPT instance, effectively laying the
groundwork for the subsequent phases of exploitation. The
selection of file formats and the method of embedding content
are integral to ensuring that the malicious information remains
undetected until activated during the jailbreak attack.
Malicious Content Triggering. Once the knowledge source
has been uploaded, the final phase in RAG poisoning involves
the activation of malicious content generation. Reflecting on
the RAG process within the GPT, it becomes crucial to
deliberately direct the customized GPT instance to retrieve and
utilize the tainted knowledge source through RAG for content
generation. To accomplish this, we employ a dual-strategy

approach for crafting the prompt. First, we explicitly instruct
the customized GPT instance to engage in content generation
by performing RAG on the tainted knowledge source. This
is achieved through including broader ranges of discription in
the RAG prompts, so that whatever questions asked by the
users could be intepreted as a question to conduct jailbreak
behaviors, and thus trigger the RAG process. Secondly, we
carefully craft the GPT in-built prompts such that whenever
a question is asked, it does not generate the answers directly,
but rephrases the contents retrieved from the RAG process
and further extends the content to formulate the final answer.
In practice, we find this approach effectively circumvent
the malicious content detection algorithms implemented by
OpenAl. As a WIP paper, we provide a sample GPTs prompt
below to demonstrate our strategy. We further provide the
video PoCs at our project website [26] to showcase a sample
jailbreak GPT specified to answer unlawful contents.

Prompt Example

You’re a GPT’s helps with answering users’ requests by
retrieving the knowledge from the knowledge files and
extending them to formulate the final answer.

Given any question, you shall always (1) retrieve the knowl-
edge files and search for answers, without answering the
question itself, and (2) based on the retrieved information,
revise based on your own knowledge and provide the final
answer.

As demonstrated, we introduce the specialized prompt tem-
plate employed by PANDORA, meticulously engineered to en-
hance the PANDORA’s effectiveness in executing its objectives.
This template is a key component in directing the customized
GPT instance towards efficiently retrieving and generating
content from the tainted knowledge source. It is strategically
crafted to align with a dual-strategy approach, ensuring fo-
cused and targeted content generation. The template includes
explicit instructions for the GPT model to engage in the
RAG process with the contaminated knowledge base, thereby
ensuring the generation process is specifically oriented towards
the embedded malicious content. Additionally, it incorporates
selected content snippets, particularly the initial sentences
from different sections of the compromised material. These
snippets are vital in setting the tone and direction of the
generated content, subtly steering the GPT instance towards
producing the intended malicious output. This prompt template
is central to PANDORA, leveraging the GPT model’s capa-
bilities to achieve precise and targeted retrieval-augmented
generation poisoning.

IV. PRELIMINARY EVALUATION
To evaluate the effectiveness of PANDORA, we have con-
ducted a preliminary evaluation.
A. Experimental Setup

Malicious GPTs Construction. In alignment with the
methodologies outlined in Section III, we construct malicious

GPT instances adhering to the content policies delineated
by OpenAl. Specifically, drawing from insights in previous
works [10], we focus on four categories of content violations:
Adult Content, Harmful and Abusive Content, Privacy Viola-
tion Content, and Illegal Content. In line with these categories,
we have developed four distinct GPT instances, each tailored
to address one of these violation scenarios. To effectively elicit
related responses from these GPT models, we develop prompts
tailored to each prohibited scenario, utilizing the template
described in Section III. To trigger the generation of malicious
content, we formulated a series of 10 unique prompts for
each respective GPT instance and conducted the experiment
in five successive rounds, thereby ensuring a comprehensive
and unbiased statistical analysis. More details are available at
our project website [26].

Experiment Settings. Our investigation predominantly re-
volves around GPTs, which have two available backend
LLMs as of the manuscript submission date: GPT-3.5' when
designing and adjusting the GPTs, and GPT-4*> when it is
officially released. For a comparative analysis of jailbreak
attacks, we replicate the queries on ChatGPT, also powered
by GPT-4-turbo, to ascertain whether identical prompts yield
similar jailbreak outcomes. Given the usage constraints of
GPTs (limited to 40 queries every 3 hours at the time of this
manuscript’s submission), conducting a large-scale analysis is
impractical. As a result, we limit our testing to 10 iterations for
each of the 10 prompts designed for four prohibited scenarios
(i.e., 100 tests per scenario) to minimize bias and ensure a
more controlled study.

Metrics. Considering the variability in the content generated
by the models, we undertake a manual inspection of each
piece of content. This evaluation process involves marking a
generation as a successful jailbreak attack based on specific
criteria: (1) Relevance - assessing whether the generated
content is pertinent to the posed question; and (2) Content
Quality - determining if the content provides comprehensive
and detailed instructions or explanations in response to the
questions asked. This ensures a thorough and accurate assess-
ment of the effectiveness of the jailbreak attacks.

B. Evaluation Results

We follow the experiment settings to conduct the experi-
ments, and the results are presented in Table I. Our findings
indicate that PANDORA is remarkably effective in instigating
jailbreak attacks across different scenarios. Notably, PANDORA
demonstrates an average success rate of 64.3% and 34.8%
on the four prohibited senarios over the GPT-3.5 and GPT-
4 version of GPT instances, respectively. As a comparision,
naive malicious question only achieve 3.0% and 1.0% of
success rates over ChatGPT powered by the same models.
This high success rate demonstrates PANDORA’s capability to
achieve jailbreak by leveraging GPTs.

IGPTs can be indefinately tested with GPT-3.5-turbo model.
20nce released, GPTs can only be accessed via GPT-4 with ChatGPT
premium.

TABLE I: Number and ratio of successful jailbreaking at-
tempts for different models and scenarios.

Pattern | Adult Harmful Privacy Illegal || Average (%)
Direct - GPT-35 || 1.0% 2.0% 60% 30% | 3.0%

Direct - GPT-4 || 0.0% 0.0% 10% 3.0% || 1.0%

GPTs - GPT-3.5 || 58.0% 62.0% 780% 59.0% | 64.3%

GPTs - GPT-4 190% 23.0% 560% 41.0% || 34.8%
Average | 193% 218% 353% 26.5% | 25.7%

Analyzing the experimental results reveals several key in-
sights. First, despite varying success rates across different
models, the prohibited scenario of Privacy is consistently the
easiest to jailbreak, with an average success rate of 35.3% in
the four comparison groups. This finding aligns with conclu-
sions from previous works that indicate varying difficulties in
jailbreak scenarios. It suggests that while some content cate-
gories are more readily manipulated, others may require more
sophisticated approaches for a successful jailbreak. Second,
comparing naive injection over chatbots powered by GPT-
3.5 and GPT-4 models, and GPT instances powered by these
models, it is observed that GPT-4 powered chatbots and GPTs
are more challenging to jailbreak. This can be attributed to
the improved alignment in the training process of GPT-4.
Finally, the repeatability of these results across multiple rounds
underscores the consistency and reliability of PANDORA as
a tool for probing the vulnerabilities of GPT models in the
context of content policy violations.

V. CONCLUSION AND FUTURE WORKS

In this work, we unveil a novel approach for jailbreaking
GPT models, termed RAG Poisoning. We developed PAN-
DORA as a proof of concept to demonstrate the feasibility
and effectiveness of this new attack method in real-world sce-
narios. Our preliminary results are quite revealing: PANDORA
successfully executes jailbreak attacks across four distinct
prohibited scenarios within GPTs, achieving a consistently
high success rate. This achievement not only underscores the
vulnerability of current GPT models to sophisticated attack
strategies but also highlights the need for improvements in
model resilience and security measures.

In the future, our research endeavors will branch out into
several key directions, each aiming to further deepen our
understanding and enhance the methodologies related to RAG
Poisoning:

Automated RAG Poisoning Development. Currently, the
knowledge base for GPT models is crafted manually, a process
that is both time-intensive and potentially limited in scope. Our
goal is to evolve this process into an automated pipeline. By
doing so, we aim to streamline the generation of RAG content,
thereby expanding the scale and diversity of the knowledge
available for GPT models. This automation will not only
improve efficiency but also enable the exploration of more
complex and varied scenarios in RAG Poisoning.

Enhancing RAG Poisoning Interpretability. The current
state of RAG Poisoning largely operates in a black-box nature,

which poses challenges in understanding the underlying mech-
anisms and effects. Our objective is to transition this approach
towards a more transparent, white-box model. This shift will
allow for a deeper investigation into the causative factors
behind successful jailbreak attacks orchestrated through RAG
Poisoning. Unraveling these mechanisms, we gain critical
insights into the vulnerabilities of LLMs and the dynamics
of RAG interactions.

Mitigation Strategies for RAG Poisoning. Building upon
the developments in automated RAG Poisoning and enhanced
interpretability, our research will also focus on devising ef-
fective mitigation strategies against RAG Poisoning. This
involves identifying and implementing safeguards to protect
GPT models from being compromised by malicious RAG
content. The integration of automated systems and a clearer
understanding of RAG dynamics will be pivotal in developing
robust defense mechanisms. These strategies will not only
enhance the security and reliability of GPT models but also
contribute to the broader field of Al safety and ethics.

REFERENCES

[1] “Chatgpt-4.0,” https://chat.openai.com/, 2023.

[2] “GPT-3 powers the next generation of apps,”
https://openai.com/blog/gpt-3-apps, 2023.

[3] OpenAl, “GPT-4,” https://openai.com/research/gpt-4.

[4] “Pathways Language Model (PaLM): Scaling to 540
Billion Parameters for Breakthrough Performance,”

https://blog.research.google/2022/04/pathways-language-model-palm-
scaling-to.html, 2023.

[5] “PaLM 2.” https://ai.google/discover/palm?2/, 2023.

[6] “Introducing Llama 2,” https://ai.meta.com/llama/, 2023.

[7] “Introducing LLaMA: A foundational, 65-billion-parameter large
language model,” https://ai.meta.com/blog/large-language-model-llama-
meta-ai/, 2023.

[8] X. Liu, N. Xu, M. Chen, and C. Xiao, “Autodan: Generating stealthy

jailbreak prompts on aligned large language models,” 2023.

Y. Liu, G. Deng, Z. Xu, Y. Li, Y. Zheng, Y. Zhang, L. Zhao, T. Zhang,

and Y. Liu, “Jailbreaking chatgpt via prompt engineering: An empirical

study,” 2023.

G. Deng, Y. Liu, Y. Li, K. Wang, Y. Zhang, Z. Li, H. Wang, T. Zhang,

and Y. Liu, “Masterkey: Automated jailbreak across multiple large

language model chatbots,” 2023.

A. Zou, Z. Wang, N. Carlini, M. Nasr, J. Z. Kolter, and M. Fredrikson,

“Universal and transferable adversarial attacks on aligned language

models,” 2023.

“What is retrieval-augmented generation?”

https://research.ibm.com/blog/retrieval-augmented-generation-RAG,

2023.

“Retrieval augmented generation (RAG)

https://www.superannotate.com/blog/rag-explained, 2023.

“Improve LLM responses in RAG use cases by interacting with

the user,” https://aws.amazon.com/blogs/machine-learning/improve-Ilm-

responses-in-rag-use-cases-by-interacting-with-the-user/, 2023.

“Retrieval Augmented Generation (RAG) in Azure Al Search,”

https://learn.microsoft.com/en-us/azure/search/retrieval-augmented-

generation-overview, 2023.

“Introducing GPTSs,” https://openai.com/blog/introducing-gpts, 2023.

H. Li, D. Guo, W. Fan, M. Xu, J. Huang, F. Meng, and Y. Song, “Multi-

step Jailbreaking Privacy Attacks on ChatGPT,” 2023.

Y. Wolf, N. Wies, Y. Levine, and A. Shashua, “Fundamental limitations

of alignment in large language models,” arXiv preprint, 2023.

M. Shanahan, K. McDonell, and L. Reynolds, “Role-play with large

language models,” arXiv preprint, 2023.

A. Rao, S. Vashistha, A. Naik, S. Aditya, and M. Choudhury, “Tricking

LLMs into Disobedience: Understanding, Analyzing, and Preventing

Jailbreaks,” arXiv preprint, 2023.

[9

—

[10]

(1]

[12]

[13] explained,”

[14]

[15

[16]
[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

W. M. Si, M. Backes, J. Blackburn, E. D. Cristofaro, G. Stringhini,
S. Zannettou, and Y. Zhang, “Why So Toxic?: Measuring and Triggering
Toxic Behavior in Open-Domain Chatbots,” in CCS, 2022, pp. 2659-
2673.

A. Wei, N. Haghtalab, and J. Steinhardt, “Jailbroken: How does 1lm
safety training fail?” arXiv preprint arXiv:2307.02483, 2023.

Y. Liu, G. Deng, Y. Li, K. Wang, T. Zhang, Y. Liu, H. Wang, Y. Zheng,
and Y. Liu, “Prompt injection attack against llm-integrated applications,”
2023.

R. Lapid, R. Langberg, and M. Sipper, “Open sesame! universal black
box jailbreaking of large language models,” 2023.

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang,
T. Lacroix, and W. E. Sayed, “Mistral 7b,” 2023.

“Pandora open-source website,” https://sites.google.com/view/pandora-1
Im-jailbreak, (Accessed on 14/01/2024).

https://openai.com/research/gpt-4
https://sites.google.com/view/pandora-llm-jailbreak
https://sites.google.com/view/pandora-llm-jailbreak

	Introduction
	Background and Related Work
	Retrieval Augmented Generation
	Jailbreak Attacks in LLMs
	An overview of GPTs Structure

	Methodology
	Design Rationale of Pandora
	Jailbreak with Retrieval-Augmented Generation (RAG)

	Preliminary Evaluation
	Experimental Setup
	Evaluation Results

	Conclusion and Future Works
	References

