
WIP: Enhancing Security Event Detection on Twitter
with Graph-based Tweet Embedding

Jian Cui
Indiana University Bloomington

cuijian@iu.edu

Abstract—Twitter has been recognized as a highly valu-
able source for security practitioners, offering timely updates
on breaking events and threat analyses. Current methods for
automating event detection on Twitter rely on standard text
embedding techniques to cluster tweets. However, these methods
are not effective as standard text embeddings are not specifically
designed for clustering security-related tweets. To tackle this, our
paper introduces a novel method for creating custom embeddings
that improve the accuracy and comprehensiveness of security
event detection on Twitter. This method integrates patterns of
security-related entity sharing between tweets into the embedding
process, resulting in higher-quality embeddings that significantly
enhance precision and coverage in identifying security events.

I. INTRODUCTION

The ever-growing and increasing threats raise the need for
security practitioners to stay current with timely and accu-
rate information. Social networks, particularly Twitter (now
referred to as X), have consistently served as an invaluable
resource for security practitioners. Twitter has been substan-
tiated as a valuable tool for security practitioners, aiding
in vulnerability monitoring, threat intelligence gathering, and
more, as indicated by a study conducted by TrendMicro [25].
Moreover, Twitter has played an important role in a variety of
security applications, including vulnerability disclosure [19],
IOC gathering [22], [16], and DDoS forecasting [29].

While the importance of extracting security events from
Twitter is widely acknowledged, the sheer volume and inherent
noise in human-crafted tweets pose significant challenges for
security event detection on the platform.

Although many text embedding methods are available,
such as Word2Vec [14] or BERT [6], directly clustering the
embeddings generated by these models is unlikely to produce
clusters that can effectively distinguish events. In Figure 1,
three tweets relate to two events occurring on September 15th,
2022. Two tweets (Te1 , T

′
e1) discuss the WhatsApp 0-day bug

(event e1), while another tweet (Te2) related to the Microsoft
Exchange vulnerability (event e2). Surprisingly, the BERT
embedding distance between tweets Te1 and Te2 belonging
to event e1 is greater than that between tweets Te1 and Te2 .
This can be attributed to the similarity in syntactic patterns and
semantics, causing BERT embedding to inaccurately suggest
proximity.

Warning!! New WhatsApp
Zero-Day Bug Let Hackers
Control The App …

New and actively exploited
Microsoft Exchange RCE —
disclosed, but not yet …

New WhatsApp 0-Day Bug
Let Hackers Execute a
Code; Take Full App…

Tweet in event <latexit sha1_base64="T3KIyWN0ZkvBuFx7bes1GNcsjQo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2NABI8RzQOSJcxOepMhs7PLzKwQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0gD2vV664VXcGsky8nFQgR71X/ur2Y5ZGKA0TVOuO5ybGz6gynAmclLqpxoSyER1gx1JJI9R+Njt1Qk6s0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/2MyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2RC8xZeXSfOs6l1WL+7PK7XbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gDy1o2a</latexit>e1
<latexit sha1_base64="T3KIyWN0ZkvBuFx7bes1GNcsjQo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2NABI8RzQOSJcxOepMhs7PLzKwQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0gD2vV664VXcGsky8nFQgR71X/ur2Y5ZGKA0TVOuO5ybGz6gynAmclLqpxoSyER1gx1JJI9R+Njt1Qk6s0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/2MyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2RC8xZeXSfOs6l1WL+7PK7XbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gDy1o2a</latexit>e1

Tweet in event <latexit sha1_base64="YtBLvpzaYbvWyAXXjX+S+KIIy+g=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xgQwWNE84BkCbOT3mTI7OwyMyuEJZ/gxYMiXv0ib/6Nk2QPmljQUFR1090VJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6wF61Vyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Njt1Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/2MyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2hC8xZeXSbNa8S4rF/fn5dptHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gD0Wo2b</latexit>e2
<latexit sha1_base64="YtBLvpzaYbvWyAXXjX+S+KIIy+g=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xgQwWNE84BkCbOT3mTI7OwyMyuEJZ/gxYMiXv0ib/6Nk2QPmljQUFR1090VJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6wF61Vyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Njt1Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/2MyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2hC8xZeXSbNa8S4rF/fn5dptHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gD0Wo2b</latexit>e2

D(Te1
, T ′

e1
) > D(Te1

, Te2
)

Te2

T ′
e1

Te1

Fig. 1: Tweets embedded with BERT. The distance between
embeddings of tweets belonging to the same event is larger
than those belonging to different events. i.e., D(Te1 , T

′
e1) >

D(Te1 , Te2)

While previous studies [4], [7] have leveraged existing
text embedding methods and showed effectiveness in event
detection, they operate under the assumption that distinct
events exhibit different topics, making text embeddings suffi-
cient for effective clustering. However, in the security domain,
it is notable that different events may share similar topics,
such as the emergence of various ransomware strains, and
exhibit similar syntactic patterns, as illustrated by the sample
tweets shown in Figure 1. As such, clustering tweets is not
effective when using text embeddings alone. Therefore, there
is a need to create specialized methods for generating event-
centric tweet representations.

Thus, in this work, we propose a novel security event de-
tection method, Tweezers, that can achieve both high precision
and high coverage security event detection. In order to obtain
tweet embeddings that are specifically tailored for security
event detection, we use a tweet relation graph and a dedicated
event detection objective function. The tweet relation graph
is created by connecting tweets that share the same security
entities, aiming to distinguish tweets belonging to different
events by capturing their different entity-sharing patterns. A
Graph Attention Network (GAT) is utilized to incorporate
tweet relation graphs and other features that are useful in event
detection tasks, including tweet content, security categories,
and temporal information. The experiment result suggests that
our Tweezers shows a promising result in identifying new
events compared to existing baselines.

To summarize, the major contributions of our work are:

• We introduce a tweet relation graph in the generation
of tweet embeddings, thereby enhancing the quality of
the generated embeddings.

Workshop on AI Systems with Confidential Computing (AISCC) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-4-5
https://dx.doi.org/10.14722/aiscc.2024.23002
www.ndss-symposium.org

Te2

T ′
e1

Te1

microsoft

exchange

exchange

microsoft
whatsapp

whatsapp

hackers

rce

hackers exchange

microsoft

0-day

bug

whatsapp

whatsapp

bug

whatsapp

whatsapp

Fig. 2: In the tweet relation graph, the neighbors of tweets
Te1 , T ′

e1 , and Te2—referenced in Figure 1—are illustrated.
Purple and pink dots represent tweets associated with the
corresponding events.

• Our proposed tweet embedding method, optimized for
event detection, outperforms existing text or graph-
based embedding methods.

II. RELATED WORK

The domain of security event detection can be further
categorized into two distinct categories. The first category is
to detect malicious security events or activities through the
analysis of system logs, syscall traces, and similar data sources.
Provenance graphs, which are constructed from auditing logs,
are widely used for detecting malicious behaviors [10], [11],
[9], [26]. Additionally, there are also some prior works dedi-
cated to the automated correlation of these security events [27]
and the prediction of future security events [21], [15].

In another category, researchers focus on detecting emerg-
ing security events from social media, such as new data
breaches, attacks, etc. Previous work employed machine
learning techniques to classify tweets into predefined cat-
egories [18], [30], [33]. However, these methods primarily
categorize tweets and do not identify specific event instances.
Subsequently, Shin et al. [23] and Sceller et al. [13] em-
ployed keyword filtering and clustering techniques on tweet
embeddings to identify specific instances of security events.
These approaches, nevertheless, simply apply the standard text
embedding methods on tweets, leading to less effective event
identification (low event detection coverage) through cluster-
ing compared to dedicated embedding methods we proposed
(shown in Section IV).

III. GRAPH-BASED TWEET EMBEDDING GENERATION

A. Method Overview

To overcome the limitation of applying text embeddings,
it is crucial to identify different threat-related information,
such as different threat actors, victim organizations/individuals,
attack patterns, activities, methods, etc. These details provide
a precise description of specific aspects of a security event,
so identifying tweets that share such information is crucial to
distinguishing different security events. To this end, we extract
the entities defined in STIX 2.1 [24] from each tweet, and to
capture tweets that share the same entities, we construct a tweet
relation graph, where each node represents an individual tweet
and connections between nodes are established based on the

te
x
t

GATv2

c
a

te
g

o
ry

te
m

p
o

ra
l

11-03
15:43:32

11-03
15:43:32

11-03
15:43:32

One-hot

Time Elapsed

BERTweet

Initial Features

Tweet Relation
Graph

[e1, e2, …]

entitytweetLLM

Prompt

You are an entity
recognition system.
[STIX Definitions]
…

[e1, e3, …]

[e1, e2, …]

Graph
Construction

Fig. 3: Embedding generation overview

shared entities. Figure 2 shows the one-hop neighbors of the
tweets mentioned in Figure 1. It is worth noting that tweets
belonging to event e1 are mainly connected to other tweets in
the same event, while tweets related to event e2 are connected
to other tweets in event e2.

As such, the tweet relation graph contains entity-sharing
information among tweets, serving as valuable evidence to
distinguish tweets related to different events. Therefore, we in-
corporate this information into tweet embeddings for effective
event detection. To generate tweet embeddings, we employ the
Graph Attention Network (GAT), a deep learning architecture
that processes graph-structure information. The GAT takes
the tweet relation graph and event-related features, such as
tweet content, security categories, and temporal information
associated with each node, as input. GAT is trained with
dedicated objective functions, ensuring the effective integration
of all relevant information into the final output tweet em-
beddings. After training, the GAT can integrate entity-sharing
information presented in the tweet relation graph and event-
related features to generate effective embeddings for event
detection.

B. Event-centric Embedding Generator

In the following, we provide details on the construction
of the tweet relation graph and the derivation of event-related
features, followed by a detailed explanation of our embedding
generation methodology.

Tweet relation graph construction The tweet relation graph
can be described as G = (V, E), where V represents the
nodes (tweets), and E represents the edges in the graph. Tweet
relation graph is constructed so that an edge connects any two
tweets that share the same entities. 13 entities are defined based
on the 18 STIX Domain Objects (SDOs) outlined in STIX
2.1 [24], with the exclusion of non-crucial entities for event
detection, such as Report, Note, Observed data, etc.

The process of extracting these entities from unstructured
text is commonly known as Named Entity Recognition (NER)
in the Natural Language Processing (NLP) domain. While
numerous deep learning models have been proposed and
proven effective in NER tasks, they rely on human labor
to annotate the predefined entities for training these NER
models. However, the success of generative Language Model
Models (LLMs) has simplified the NER task. As indicated

2

by recent studies [1], [31], prompt engineering on generative
LLMs shows superior performance in NER tasks compared
to traditional NER models. Aligned with the methodology
proposed by previous research [1], we incorporate definitions
for 13 security-related entities in the prompt, as shown in
the full prompt in Figure 4 in Appendix. Subsequently, the
extracted entities are used in the construction of the tweet
relation graph.

The constructed Tweet Relation Graph, indicating shared
entities among tweets, serves as alternative information for
generating embeddings in security event detection. Also, the
tweet relation graph is combined with event-related features
defined in the following section, to generate more powerful
embeddings with graph neural networks.

Event-related feature engineering. We identify three criti-
cal pieces of information for event detection: tweet content,
security category, and temporal information. The encoding
details for each piece of information are elaborated below.
The resulting encoded vectors are then concatenated to form
the initial features of the corresponding nodes in the tweet
relation graph.

1) Tweet content: The (text) content of the tweet con-
tains information indicative of the discussed event.
The tweet content is converted into a 768-dimensional
vector by the BERTweet model, which was chosen
for its specialization in the Twitter domain. As noted
previously, embeddings of tweet text alone cannot
provide a comprehensive representation of a tweet’s
information.

2) Security category: Security categories can be useful
to find similar events and distinguish different events.
Security categories are transformed into one-hot vec-
tors, each uniquely representing a specific category.
Due to the page limit, details of how to tag security
categories is not introduced in this paper.

3) Temporal information: Tweets describing the same
event tend to be posted within a similar timeframe.
The temporal information of tweets is utilized as two-
dimensional features (hours and days elapsed since
the beginning of 2020).

Event-centric Embedding Generation The tweet relation
graph and its node features are processed with the enhanced
version of GAT, GATv2 [2]. For a node (tweet) v, the output
embedding h′

v is generated through the following equations.

h′
v =

∑
v′∈N(v)

α ·Whv′ (1)

The attention score α is obtained by:

ev = aT · LeakyReLU(W · [hv ∥ hv′])

α = softmax(ev) =
exp(ev)∑

v′∈Nv
exp(ev′)

(2)

where hv and h′
v are initial features of node v and its neighbor

nodes v′, respectively. W and a are learnable weights of the
GATv2 model. Note that GATv2 utilizes attention to learn
which neighboring nodes should be more influential.

To make GATv2 produce embeddings in a desired manner,
an appropriate objective function must be chosen to optimize
the model. Since the goal is to produce effective embeddings
for clustering, contrastive optimization techniques (which have
proven to be effective in many applications [32], [5]) are
utilized to train the GATv2 model.

To enable clustering, embeddings of tweets belonging to
the same event should be close to each other, while embeddings
of tweets associated with different events should be kept far
apart from each other. This can be optimized using the con-
trastive learning technique of triplet loss [20]. Triplet loss uses
an anchor tweet embedding hei and compares its distances to
embeddings of a tweet of the same event and embeddings of
a tweet of a different event. The formulation of triple loss in
our case is:

Lt = max(∥hei − h′
ei ∥ − ∥ hei − hej ∥+α, 0) (3)

where hei and h′
ei refer to embeddings of two tweets be-

longing to the same event ei and hej refer to embeddings of
a tweet belong to another event, ej . α represents the margin
between positive and negative pairs.

Another contrastive learning method is to manipulate the
distance between tweets on a pairwise basis using the pairwise
loss function [17]. The pairwise loss function is:

Lp = max(∥hei − h′
ei ∥ − ∥ hej − hek ∥+α, 0) (4)

where hei and h′
ei refer to embeddings of two tweets belong-

ing to same event ei, while hej and hek refer to embeddings
of tweets belonging to separate events ej and ek, respectively.

Both loss functions are summed up and utilized as the
objective function to optimize the learnable parameters of the
GATv2 model.

To summarize, a GATv2 model is trained to take complex
graph relationships and node features to generate embeddings
while optimized for clustering.

IV. EVALUATION

This subsection presents an evaluation comparing the per-
formance of our proposed event-centric embedding method
with existing text- and graph-based embedding methods in
clustering security tweets (identifying security events).

Dataset To evaluate the clustering effectiveness of our pro-
posed approach, we create a dataset of cybersecurity event
tweets sorted into each event. We start by finding noteworthy
events by monitoring three different sources: The Hacker
News1, BleepingComputer2, and Hackmageddon3. For each
event, we collect tweets discussing the event through a manual
process of inspecting tweets from the period when the event
was reported. In this study, a total of 138 events were identified
between June 1, 2022, and October 21, 2022. Among these
events, a total of 1,566 tweets were found to be relevant, with
764 unique users participating in the discussion of these events.

Experimental Setup: The dataset is partitioned into training,
validation, and test sets based on distinct time periods, as

1https://www.thehackernews.com
2https://www.bleepingcomputer.com
3https://www.hackmageddon.com

3

TABLE I: Training, validation, test data statistics.

Event # Tweet Period

Training 91 935 2022.06.01 ∼ 2022.09.01
Validation 23 328 2022.09.01 ∼ 2022.09.25
Test 24 353 2022.09.25 ∼ 2022.10.21

detailed in Table I. Embeddings are generated by inputting
tweets from the dataset into each embedding method, and
clustering is subsequently performed using the DBSCAN clus-
tering algorithm.

Evaluation Metric: To evaluate the clustering efficiency,
we use three commonly used clustering evaluation metrics:
Normalized Mutual Information (NMI), Adjusted Mutual In-
formation (AMI), and Adjusted Rand Index (ARI).

(1) Normalized Mutual Information (NMI): NMI is
a normalization of the Mutual Information (MI) score to
scale the results between 0 and 1, with 1 indicating perfect
agreement between clusters.

(2) Adjusted Mutual Information (AMI): AMI is a
chance-corrected variant of the MI metric that accounts for
the expected mutual information. AMI also ranges from 0 to
1, with 1 indicating perfect agreement.

(3) Adjusted Rand Index (ARI): Adjusted Rand Index is
a chance-corrected variant of the Rand Index, which measures
the similarity between the cluster assignments by making pair-
wise comparisons. ARI ranges from -1 to 1, where 1 indicates
perfect agreement, 0 indicates random agreement and negative
values indicate disagreement.

Baselines: We compare our methods with the following text
embedding methods:

• TF-IDF: Term frequency-inverse document frequency
(TF-IDF) is a document embedding method that uti-
lizes frequencies of important terms in a document.

• Word2Vec: Word2Vec is a neural network-based
model used to learn word embeddings. We use the
trained model provided by spaCy4 trained with the
Skip-gram architecture.

• PLMs: Encoder PLMs provide contextual representa-
tions of text. The BERT, SecureBERT, and BERTweet
models were tested. The uncased version of BERT was
selected, which means all input texts are converted
into lowercase prior to the tokenization process. The
[CLS] token outputs produced by these models are
used. BERTweet is a PLM specifically tailored to
texts in the Twitter domain, and SecureBERT is a
RoBERTa-based PLM adapted to the cybersecurity
domain.

Following previous social event detection methods [17],
[3], we also compare our embedding methods with graph-
based tweet embedding methods. Prior works use general
entity recognition methods implemented in spacy5 and build

4https://spacy.io
5https://spacy.io/api/entityrecognizer

TABLE II: Tweet Clustering Results. ↑: higher the better

Model AMI (↑) ARI (↑) NMI (↑)

Word-
based

TF-IDF 0.3036 0.0552 0.5147
Word2Vec 0.0463 0.0060 0.1135

PLMs
BERT 0.2389 0.0203 0.4395
SecureBERT 0.3046 0.0324 0.5020
BERTweet 0.3466 0.0676 0.5211

Graph
GCN 0.2806 0.0869 0.4455
GAT 0.3396 0.0988 0.5274
GraphSAGE 0.3164 0.0912 0.5019

Tweezers 0.5919 0.3384 0.7344

graphs based on identified entities. Then, the variations of
GNN, such as GCN, GAT, GraphSAGE are applied to obtain
the tweet embeddings. We use the following three variations
of GNNs in this evaluation.

• GCN [12]: GCN aggregates information from a node’s
direct neighbors using shared weights, capturing local
structures in the graph.

• GAT [28]: GAT introduces attention mechanisms to
node aggregation, assigning different weights to neigh-
bors.

• GraphSAGE [8]: GraphSAGE samples and aggre-
gates information from a node’s neighborhood, allow-
ing scalability.

Results and Discussion: As shown in Table II, the embeddings
generated by Tweezers demonstrate significantly better cluster-
ing performance across all three evaluation metrics compared
to other baselines. The results highlight the limitation of con-
sidering only text when embedding tweets for clustering. While
domain-specific models, such as SecureBERT and BERTweet,
outperform general-domain PLMs, they are still not optimized
to cluster tweets for event detection. Interestingly, TF-IDF
shows a comparable result to PLMs. This can be attributed
to the fact that our dataset only contains security event-related
tweets, mitigating the issue of keyword ambiguity commonly
associated with TF-IDF. Furthermore, graph-based embedding
methods, designed to enhance social event detection, prove
less effective compared to our approach. This inefficiency
stems from their inability to identify security-related entities
in tweets, resulting in graph constructed lack of information
to distinguish different events for each tweets. The superior
performance of Tweezers can be attributed to its ability to in-
tegrate the tweet relation graph and event-related features such
as tweet content, security category, and temporal information.

V. CONCLUSION

In conclusion, our novel method for customizing text
embeddings, incorporating security-related entity-sharing pat-
terns, substantially enhances the accuracy and scope of de-
tecting security events on Twitter. This approach overcomes
the limitations of standard techniques, marking a pivotal step
forward in twitter security event detection.

4

REFERENCES

[1] Dhananjay Ashok and Zachary C. Lipton. Promptner: Prompting for
named entity recognition, 2023.

[2] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph
attention networks? arXiv preprint arXiv:2105.14491, 2021.

[3] Yuwei Cao, Hao Peng, Jia Wu, Yingtong Dou, Jianxin Li, and Philip S
Yu. Knowledge-preserving incremental social event detection via
heterogeneous gnns. In Proceedings of the Web Conference 2021, pages
3383–3395, 2021.

[4] Ashis Kumar Chanda. Efficacy of bert embeddings on predicting
disaster from twitter data. arXiv preprint arXiv:2108.10698, 2021.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hin-
ton. A simple framework for contrastive learning of visual representa-
tions. In International conference on machine learning, pages 1597–
1607. PMLR, 2020.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics.

[7] Ali Mert Ertugrul, Burak Velioglu, and Pinar Karagoz. Word embedding
based event detection on social media. In Hybrid Artificial Intelligent
Systems: 12th International Conference, HAIS 2017, La Rioja, Spain,
June 21-23, 2017, Proceedings 12, pages 3–14. Springer, 2017.

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive repre-
sentation learning on large graphs. Advances in neural information
processing systems, 30, 2017.

[9] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and
Margo Seltzer. Unicorn: Runtime provenance-based detector for ad-
vanced persistent threats. arXiv preprint arXiv:2001.01525, 2020.

[10] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen,
Kangkook Jee, Zhichun Li, and Adam Bates. Nodoze: Combatting
threat alert fatigue with automated provenance triage. In network and
distributed systems security symposium, 2019.

[11] Wajih Ul Hassan, Mohammad Ali Noureddine, Pubali Datta, and Adam
Bates. Omegalog: High-fidelity attack investigation via transparent
multi-layer log analysis. In Network and distributed system security
symposium, 2020.

[12] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[13] Quentin Le Sceller, ElMouatez Billah Karbab, Mourad Debbabi, and
Farkhund Iqbal. Sonar: Automatic detection of cyber security events
over the twitter stream. In Proceedings of the 12th International
Conference on Availability, Reliability and Security, pages 1–11, 2017.

[14] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[15] Mohammad Naseri, Yufei Han, Enrico Mariconti, Yun Shen, Gianluca
Stringhini, and Emiliano De Cristofaro. Cerberus: exploring federated
prediction of security events. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages 2337–
2351, 2022.

[16] Amirreza Niakanlahiji, Lida Safarnejad, Reginald Harper, and Bei-
Tseng Chu. Iocminer: Automatic extraction of indicators of compromise
from twitter. In 2019 IEEE International Conference on Big Data (Big
Data), pages 4747–4754, 2019.

[17] Jiaqian Ren, Lei Jiang, Hao Peng, Yuwei Cao, Jia Wu, Philip S Yu,
and Lifang He. From known to unknown: Quality-aware self-improving
graph neural network for open set social event detection. In Proceedings
of the 31st ACM International Conference on Information & Knowledge
Management, pages 1696–1705, 2022.

[18] Alan Ritter, Evan Wright, William Casey, and Tom Mitchell. Weakly
supervised extraction of computer security events from twitter. In

Proceedings of the 24th international conference on world wide web,
pages 896–905, 2015.

[19] Carl Sabottke, Octavian Suciu, and Tudor Dumitras, . Vulnerability dis-
closure in the age of social media: Exploiting twitter for predicting real-
world exploits. In 24th {USENIX} Security Symposium ({USENIX}
Security 15), pages 1041–1056, 2015.

[20] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 815–823, 2015.

[21] Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, and Gianluca
Stringhini. Tiresias: Predicting security events through deep learning.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 592–605, 2018.

[22] Hyejin Shin, WooChul Shim, Saebom Kim, Sol Lee, Yong Goo Kang,
and Yong Ho Hwang. # twiti: Social listening for threat intelligence.
In Proceedings of the Web Conference 2021, pages 92–104, 2021.

[23] Hyejin Shin, WooChul Shim, Jiin Moon, Jae Woo Seo, Sol Lee, and
Yong Ho Hwang. Cybersecurity event detection with new and re-
emerging words. In Proceedings of the 15th ACM asia conference
on computer and communications security, pages 665–678, 2020.

[24] STIX. 18 STIX Domain Objects (SDOs). https://oasis-open.github.io/
cti-documentation/stix/intro.html#:∼:text=What%20is%20STIX%3F,
contribute%20and%20ask%20questions%20freely.

[25] TrendMicro. Hunting Threats on Twitter: How Social
Media can be used to Gather Actionable Threat Intelli-
gence. . https://www.trendmicro.com/vinfo/es/security/news/
cybercrime-and-digital-threats/hunting-threats-on-twitter, 2019.

[26] Benjamin E Ujcich, Samuel Jero, Richard Skowyra, Adam Bates,
William H Sanders, and Hamed Okhravi. Causal analysis for {Software-
Defined} networking attacks. In 30th USENIX Security Symposium
(USENIX Security 21), pages 3183–3200, 2021.

[27] Thijs Van Ede, Hojjat Aghakhani, Noah Spahn, Riccardo Bortolameotti,
Marco Cova, Andrea Continella, Maarten van Steen, Andreas Peter,
Christopher Kruegel, and Giovanni Vigna. Deepcase: Semi-supervised
contextual analysis of security events. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 522–539. IEEE, 2022.

[28] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks.
arXiv preprint arXiv:1710.10903, 2017.

[29] Zhongqing Wang and Yue Zhang. Ddos event forecasting using twitter
data.

[30] Semih Yagcioglu, Mehmet Saygin Seyfioglu, Begum Citamak, Batuhan
Bardak, Seren Guldamlasioglu, Azmi Yuksel, and Emin Islam Tatli.
Detecting cybersecurity events from noisy short text. In Proceedings of
the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 1366–1372, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics.

[31] Mozhi Zhang, Hang Yan, Yaqian Zhou, and Xipeng Qiu. Promptner: A
prompting method for few-shot named entity recognition via k nearest
neighbor search, 2023.

[32] Rui Zhang, Yangfeng Ji, Yue Zhang, and Rebecca J. Passonneau.
Contrastive data and learning for natural language processing. In
Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies: Tutorial Abstracts, pages 39–47, Seattle, United States,
July 2022. Association for Computational Linguistics.

[33] Shi Zong, Alan Ritter, Graham Mueller, and Evan Wright. Analyzing
the perceived severity of cybersecurity threats reported on social media.
In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1, pages 1380–1390, Minneapolis, Minnesota,
June 2019.

5

Prompt
sys:
"""
You are an entity recognition system.

Defn: An entity is defined as follows:

Attack Pattern:A type of TTP that describes ways that adversaries attempt to compromise targets.
Campaign: A grouping of adversarial behaviors that describes a set of malicious activities or attacks (sometimes called waves) that occur over a period
of time against a specific set of targets.
Course of Action: A recommendation from a producer of intelligence to a consumer on the actions that they might take in response to that intelligence.
Identity: Actual individuals, organizations, or groups (e.g., ACME, Inc.) as well as classes of individuals, organizations, systems, or groups (e.g., the
finance sector).
Indicator: Contains a pattern that can be used to detect suspicious or malicious cyber activity.
Infrastructure: Represents a type of TTP and describes any systems, software services, and any associated physical or virtual resources intended to
support some purpose (e.g., C2 servers used as part of an attack, device or server that are part of the defense, database servers targeted by an attack,
etc.).
Intrusion Set: A grouped set of adversarial behaviors and resources with common properties that are believed to be orchestrated by a single
organization.
Location: Represents a geographic location.
Malware: A type of TTP that represents malicious code.
Malware Analysis: The metadata and results of a particular static or dynamic analysis performed on a malware instance or family.
Threat Actor: Actual individuals, groups, or organizations believed to be operating with malicious intent.
Tool: Legitimate software that can be used by threat actors to perform attacks.
Vulnerability: A mistake in software that can be directly used by a hacker to gain access to a system or network.

Q: Given the paragraph below, identify a list of possible entities.
For each entry explain why it either is or is not an entity. Answer in the format:
1. First Candidate | True | Explanation why the word is an entity (entity_type)
2. Second Candidate | False | Explanation why the word is not an entity (entity_type)
"""

user:
"""
Paragraph:
[TWEET CONTENT COMES HERE]

Answer:
"""

Fig. 4: Prompt used for extracting STIX entities from tweets.

APPENDIX

6

