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Abstract—Efficient prediction of default risk for bond-issuing
enterprises is pivotal for maintaining stability and fostering
growth in the bond market. Conventional methods usually rely
solely on an enterprise’s internal data for risk assessment. In
contrast, graph-based techniques leverage interconnected cor-
porate information to enhance default risk identification for
targeted bond issuers. Traditional graph techniques such as label
propagation algorithm or deepwalk fail to effectively integrate
a enterprise’s inherent attribute information with its topological
network data. Additionally, due to data scarcity and security
privacy concerns between enterprises, end-to-end graph neural
network (GNN) algorithms may struggle in delivering satisfactory
performance for target tasks. To address these challenges, we
present a novel two-stage model. In the first stage, we employ
an innovative Masked Autoencoders for Heterogeneous Graph
(HGMAE) to pre-train on a vast enterprise knowledge graph.
Subsequently, in the second stage, a specialized classifier model
is trained to predict default risk propagation probabilities. The
classifier leverages concatenated feature vectors derived from the
pre-trained encoder with the enterprise’s task-specific feature
vectors. Through the two-stage training approach, our model
not only boosts the importance of unique bond characteristics
for specific default prediction tasks, but also securely and
efficiently leverage the global information pre-trained from other
enterprises. Experimental results demonstrate that our proposed
model outperforms existing approaches in predicting default risk
for bond issuers.

I. INTRODUCTION

Bond issuer default risk, a critical aspect of financial anal-
ysis, refers to the likelihood that the enterprise which issues
a bond will become unable to fulfill its financial obligations,
leading to a default [1]. To make informed investment deci-
sions and maintain market stability, it is crucial to comprehend
and assess this risk. When assessing default risk for a bond
issuer, traditional methods usually utilize its own operational
data for prediction. However, real-world risk encompasses
various factors such as the issuer’s financial health, market
conditions, industry-specific risks, and overall economic sta-
bility, etc. There are often intricate interconnections among
enterprises, leading to the spread of risks across the bond
issuer landscape [2].

⋆ Equal contribution. † Corresponding author.

To effectively utilize information from associate enterprises
to assist in assessing default risk for a target enterprise, a
common approach is to employ graph-based risk propagation
methods such as label propagation algorithm. However, these
algorithms merely propagate known risk labels across the
graph without effectively incorporating the inherent charac-
teristics of each enterprise into the comprehensive prediction.
To address this issue, one solution is to leverage graph embed-
ding information besides the enterprises’ own features when
predicting risk propagation probabilities. While this approach
merges the enterprises’ inherent traits with their relational
topology to some extent, it awkwardly combines these two
types of information without fully capturing the dynamic
propagation and evolution effects of the enterprises’ features
upon the entire corporate network structure.

The recently popular graph neural network (GNN) methods
such as GAT or Graphsage can well learn the diffusion pattern
of node features in the graph [3]. However, there are several
problems with directly using end-to-end GNN algorithms for
our scenario. On the one hand, the performance of existing
GNNs significantly suffers when distribution shifts occur
between training and testing data, or when data scarcity is
present. Bond issuers, typically large or even listed enterprises,
possess a wealth of business information. However, other
non-bond enterprises in the massive graph often lack such
detailed features. GNN algorithms struggle to learn effective
information from this kind of graph for training specific risk
propagation tasks, because they cannot fully leverage the
differences between bond issuers and other enterprises. On the
other hand, in terms of security and privacy, it is not advisable
for some information providers to disclose detailed operational
information of related enterprises to business parties.

In this paper, we present a two-stage framework that uti-
lizes graph pre-training techniques to predict the propagation
probability of default risks among bond issuers. Initially, our
model is pre-trained on a comprehensive enterprise knowledge
graph (EKG). Subsequently, the embedding from the pre-
trained encoder is combined with the unique information of
the bond-issuing enterprise to train the default risk prediction
model. The main contributions are summarized as follows:
• The proposed two-stage method can not only safely and
effectively utilize the encrypted information from the massive
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EKG, but also fully leverage the abundant features of bond-
issuing enterprises for risk prediction tasks.
• We also introduce a novel Masked Autoencoders for Het-
erogeneous Graph (HGMAE) model to learn a better repre-
sentation during the pre-training of heterogeneous graphs.
• Extensive experiments show that our method outperforms
the state-of-the-art baselines in the risk dataset, indicating
the effectiveness of the two-stage framework, as well as the
HGMAE model.

II. RELATED WORKS

Pre-trained Graph Embeddings. The first-generation pre-
trained graph models aim to produce effective graph embed-
dings for diverse tasks [4]. DeepWalk, a pioneer in this field,
introduced the concept of graph embedding by treating the
paths traversed by random walks over graphs as sentences.
It utilizes skip-gram to learn latent node representations.
Following in DeepWalk’s footsteps, Node2vec developed a
flexible approach to define a node’s network neighborhood and
designed a biased random walk procedure to efficiently explore
diverse neighborhoods. Furthermore, several researchers have
also attempted to learn embeddings for heterogeneous graphs,
sub-graphs, and molecular graphs, such as sub2vec [5], sub-
graph2vec, etc.

Pre-trained Graph Encoders. With the emergence of expres-
sive GNNs and Transformer, recent methods have embraced a
transfer learning setting where the goal is to pre-train a generic
encoder that can deal with different tasks. Compared to the
pre-trained graph embedding methods, pre-trained graph en-
coders can provide a better model initialization, which usually
leads to a better generalization performance and speeds up
convergence on the target tasks. In addition, the modern mod-
els are usually trained with larger scale database, more pow-
erful or deeper architectures, and new pre-training tasks [4],
[6]. Their architectures broadly fall into two categories: graph
neural networks (e.g., GIN, HAN) [7] and hybrid of GNNs
and Transformer (e.g., MPG, HGT) [8]. Their pre-training
strategies can be widely divided into supervised and unsu-
pervised ones. Although the supervised pre-training brings
remarkable improvements, they often require domain-specific
knowledge which significantly limits their wider applications.
More importantly, some supervised pre-training tasks might
be unrelated to the downstream task of interest and can even
hurt the downstream performance. As for unsupervised graph
pre-training, it can be mainly divided into four categories:
1) Graph autoencoders: typical models such as GAE, VGAE,
SIGVAE use self-supervised graph reconstruction for learning
discriminative representations [9]. 2) Graph autoregressive
modeling: typical models such as GPT-GNN, MGSSL perform
the autoregressive reconstruction on given graphs iteratively
instead of reconstruct the graph all at once [10]. 3) Masked
components modeling: typical model such as GROVER [11]
masks out some components from the graph and then trains the
model to predict them. 4) Graph contrastive learning: typical
models such as InfoGraph [12], GMI [13] use deep infoMax

method for node and graph-level representation learning, while
other models such as SimGRACE [14], GraphCL [15] and
CCA-SSG [16] use instance discrimination method for con-
trastive learning.

III. METHODOLOGY

Our objective is to predict the defaulting probability of a
target bond issuer enterprise when its associated source bond
issuer defaults. To achieve this goal, we have employed the
following strategies.

Construct Enterprise Knowledge Graph. To begin, we
develop an extensive enterprise knowledge graph (EKG) as a
foundation for graph pre-training [17]. This EKG connects var-
ious enterprises through diverse edge types, including “parent-
subsidiary”, “share-investor”, “share-manager”, “share-legal-
person” and “invest-by”, etc. Each enterprise node within
this graph is characterized by a set of common properties.
These properties range from fundamental business information
(such as registered capital and number of employees) to
basic operating information like net profit and net income.
Furthermore, historical risk features are also involved (such
as the number of administrative penalties received and the
number of litigations).

Graph Pre-training. Subsequently, we proceed to implement
graph pre-training on the meticulously constructed EKG. Fol-
lowing the approach of GraphMAE [18], we adopt feature
reconstruction as the core training objective. Specifically,
we propose a HGMAE model for heterogeneous graph pre-
training. This method entails masking certain features within
the graph and then challenging the model to accurately predict
and reconstruct these masked attributes, thereby enhancing its
understanding and representation capabilities. The backbones
of the encoder and decoder for HGMAE can be any type of
GNNs and we use GAT [3] here.

Formally, we implement a procedure where we select a
subset of nodes and apply a masking technique by replacing
each of their features with the designated mask token [MASK].
The core objective is to accurately reconstruct the masked node
features based on the partially observed node signals and the
provided input adjacency matrix. We use the scaled cosine
error (SCE) for measuring the reconstruction performance.
Different from GraphMAE, our model not only implement the
feature reconstruction on the whole graph, but also involves
the reconstruction for each isomorphic subgraph. As shown in
Fig. 1, different edge types are shown in different colors. The
first workflow of calculating the reconstruction error LSCEo

for the original graph is the same to that of GraphMAE.
For each edge type ek, we obtain its corresponding subgraph
Gk = (Vk, Ak, Xk) where Vk is the vertex collection, Ak is
the adjacent matrix and Xk is the feature vector. Then we
sample a subset of nodes V̂k ∈ Vk and mask each of their
features with a mask token [MASK].

To identify the nodes for masking, we employ a uniform
random sampling technique which is instrumental in maintain-
ing an unbiased enhancement and recovery of features within
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Fig. 1: The main framework of our two-stage risk propagation prediction method. The right part shows the details for the proposed HGMAE
model. Different Colors for HGMAE indicate different edge types.

GNNs because each node inherently draws upon the attributes
of its neighboring nodes. In order to establish a challenging
self-supervised learning task that generates significant and
resilient node representations, we have set the masking ratio
at 50%. However, the utilization of the [MASK] token can
introduce a potential inconsistency between the training and
inference stages because this token does not naturally appear
during the inference process. To alleviate this issue, rather
than consistently replacing masked features with the explicit
[MASK] token, we have introduced an additional strategy:
there is a 15% probability that a masked feature will be
substituted with a randomly chosen token. This strategic varia-
tion serves to cultivate more diverse and superior-quality node
representations, which in turn boosts the overall performance
of the model. To enhance the encoder’s learning of compressed
representations, we replace the latent vector Hk on masked
node indices with another mask token [RMASK] into H

′

k. This
approach enables the GNN decoder to recover input features
for a node based on a group of nodes rather than just the
node itself. This, in turn, aids in teaching the encoder to
generate high-level latent code. Given the original feature Xk

and reconstructed output Zk from the decoder, we define the
reconstruction error for the kth subgraph as:

LSCEk
=

1

V̂k

∑
vki∈V̂k

(1− xT
kizki

∥xki∥.∥zki∥
)γ (1)

Finally, we merge all the reconstruction errors from original
and all K subgraphs into the entire loss:

LSCE = LSCEo +
η

K

K∑
k=1

LSCEk
(2)

Here γ and η are hyper-parameters and are all set to 1 for
our experiments. For downstream applications, the encoder is
applied to the input graph without any masking in the inference
stage. The generated node embeddings can be used for various
graph learning tasks, such as node classification and graph
classification.

Default risk propagation prediction. We build the task-
related propagation pairs following the corresponding con-
struction steps: 1) Taking the bond issuers who have defaulted
as the black seed nodes. 2) Expand each seed node outward
N rounds through EKG (here we set N to 3), and combine
the target nodes (which also belongs to bond issuers) with
the seed node to form propagation pairs. 3) For these pair
samples, we label the pair as a black sample only when the
target enterprise defaults after the seed node, and the rest are
white samples. 4) Randomly select a certain number of white
sample pairs for balance.

For each enterprise node in the pair, we concentrate its task-
specific feature vector Xt with the output graph embedding
vector Xp from HGMAE as the fusion vector Xm. We
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Pretrain Method Base Model Micro-F1

None Logisti 0.764
None Random Forest 0.785
None GBDT 0.791
None XGBoost 0.794
None GCN 0.792
None GAT 0.806
None GraphSage 0.813

DeepWalk XGBoost 0.798
Node2Vec XGBoost 0.801

GAE XGBoost 0.811
GPT-GNN XGBoost 0.816
GRACE XGBoost 0.814
InfoGCL XGBoost 0.822

GraphMAE XGBoost 0.825
HGMAE XGBoost 0.831

TABLE I: Experimental results for different methods on the risk
dataset.

combine the fusion vectors Xm for the source and target
enterprises as the final merge vector for training a supervised
classification model. This model can be used to predict the
default risk propagation property between bond issuers.

IV. EXPERIMENTS

Dataset. we build the dataset for risk propagation prediction
task using real bond-issuing market information of China.
Firstly, we build the EKG as described in the methodology
section. A total of 6714 bond issue entities are used as
seed enterprises for EKG. After 5 round of expansion using
different relationships, we form the EGK of more than 20
million nodes. The input dimension of the basic features
for graph pre-training is 124. The output embedding size of
the graph pre-training model is set to 256. We obtain 3658
propagation pair samples, with half of them are black. We
divide 80% of them as training set and 20% as test set.
Result discussion. The detailed comparisons between our
method and other baselines are shown in Table I. It can
be found that XGBoost performances the best among the
traditional classification methods. Directly using GNN models
as classifiers does not perform very well. We then use the
XGBoost as the base classifier for the two-stage method.
Compared to solutions that only rely on the basic features
of the enterprise itself, simple graph embedding methods such
as Deepwalk and Node2vec can improve the performance to a
certain extent. Graph embeddings output from the pre-trained
graph models such as GAE and GraphMAE perform better
than that of simple graph embedding. It is because they involve
both node features and graph structures during the pre-training.
Our method HGMAE outperforms all other methods in the
two-stage method. Compared to the previous state-of-the-art
method GraphMAE, HGMAE not only calculate the recon-
struction error for the original graph, but also implement the
mask reconstruction on each separate isomorphic subgraphs.
The importance and data distribution of different relationship
types are not consistent. If we indiscriminately blend all edges
for the purpose of learning, there is a potential that critical
information encapsulated in significant edges with a sparse

count would be easily attenuated or overshadowed by the
sheer volume of other less important relationship-type edges.
HGMAE employs a distinctive approach by categorically
segregating different edge types and individually handling the
reconstruction errors associated with each of them. It helps
learn the feature diffusion better and improves the model
performance.

V. CONCLUSION

In this study, we introduce a two-stage framework for
predicting the default risk propagation among bond issuers.
In the initial phase, we utilize the novel HGMAE model to
implement heterogeneous graph pre-training on the extensive
enterprise knowledge graph. This approach ensures safe and
efficient learning and utilization of the general node represen-
tation from a global perspective. Subsequently, in the second
stage, we integrate task-specific features with the pre-trained
embeddings of both the source and target enterprises to train
the risk propagation prediction model. Extensive experimental
results demonstrate the efficiency of our two-stage framework,
as well as the HGMAE model.
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