
WIP: Towards a Certifiably Robust Defense for
Multi-label Classifiers Against Adversarial Patches

Dennis G. Jacob
Princeton University
djacob@princeton.edu

Chong Xiang
Princeton University
cxiang@princeton.edu

Prateek Mittal
Princeton University

pmittal@princeton.edu

Abstract—The advent of deep learning has brought about
vast improvements to computer vision systems and facilitated the
development of self-driving vehicles. Nevertheless, these models
have been found to be susceptible to adversarial attacks. Of
particular importance to the research community are patch
attacks, which have been found to be realizable in the physical
world. While certifiable defenses against patch attacks have been
developed for tasks such as single-label classification, there does
not exist a defense for multi-label classification. In this work,
we propose such a defense called Multi-Label PatchCleanser,
an extension of the current state-of-the-art (SOTA) method
for single-label classification. We find that our approach can
achieve non-trivial robustness on the MSCOCO 2014 validation
dataset while maintaining high clean performance. Additionally,
we leverage a key constraint between patch and object locations
to develop a novel procedure and improve upon baseline robust
performance.

I. INTRODUCTION

Deep learning-based computer vision systems have helped
transform modern society, contributing to the development of
technologies such as self-driving cars, facial recognition, and
more [4]. However, the vast improvements in performance
comes at a security cost; indeed, many of these models are
vulnerable to adversarial attacks [8]. Specifically, by perturb-
ing regular input images in a systematic manner it is possible to
craft adversarial samples which fool the deep learning model
despite visual similarity to humans.

The types of images allowed in a given attack are character-
ized by an adversarial threat model. One commonly analyzed
framework is the patch threat model, in which the attacker
is limited to adjusting values within a specified patch-shaped
region of the target image [9]. The patch threat model presents
a unique challenge for the security community due to its
physically-realizable nature. For instance, [6] were able to print
out life-sized billboards with adversarial samples and success-
fully fool semantic segmentation models. This is particularly
alarming for safety critical systems, such as autonomous vehi-
cles. It is thus of utmost importance that certifiable defenses,
which are invulnerable to arbitrarily designed patch attacks,
are proposed for such systems.

The recently proposed PatchCleanser certifiable defense
against patch attacks is able to achieve state-of-the-art (SOTA)

robustness in the single-label classification domain [9]. This
method works by leveraging a set of double-masks (i.e.,
pairs of masks which occlude sections of the input image)
to provably recover the model prediction. Despite this suc-
cess, a certifiable defense against patch attacks does not
exist for certain other computer vision tasks, such as multi-
label classification. To this end, we propose a certifiable
defense against patch attacks in the multi-label classification
domain called Multi-Label PatchCleanser by implementing
an extension of the PatchCleanser algorithm. Specifically, we
design our defense to apply the double-masking algorithm
from PatchCleanser on each class individually. We demonstrate
that Multi-Label PatchCleanser achieves non-trivial robustness
with 47.36% certified precision and 38.55% certified recall on
the MSCOCO 2014 validation dataset. It also maintains high
performance on clean data with 92.67% precision and 61.75%
recall. Finally, we identify a key constraint between patch and
object locations in the multi-label classification domain that
allows us to develop a better certification methodology. This
approach results in tighter bounds on robustness (i.e., ∼ 4%
improvement on certified precision and recall metrics).

II. BACKGROUND

A. The patch threat model

As discussed in Section I, a threat model defines the set of
allowable adversarial attacks. Suppose we have an input vector
x ∈ Rd, where d corresponds to the input dimension of the
defending model. Then, we can define the patch threat model
as equivalent to the ℓ0 threat model constrained to square
geometric regions. Specifically, we will have the following set
of allowable attacks:

Sx = {v ◦ x+ (1− v) ◦ x′|x, x′ ∈ Rd, v ∈ V} (1)

Here, x′ refers to another arbitrary vector in Rd and v ∈
{0, 1}d represents a binary vector. The ◦ operator refers to
element-wise multiplication. Finally, V ⊆ {0, 1}d refers to the
set of vectors which represent square-shaped restricted regions;
elements inside the region are 0 while those outside the region
are 1 [9].

B. Certifiable defenses against adversarial attacks

Certifiable defenses are beneficial in that they can provide
provable guarantees on robustness. Within the context of the
patch threat model, certifiable robustness implies that for some
robustness criterion C : Rd → {0, 1}∗ and certifiable image-
label pairs (x, y) we can guarantee:

C(x) = C(x′) ∀ x′ ∈ Sx (2)

Workshop on AI Systems with Confidential Computing (AISCC) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-4-5
https://dx.doi.org/10.14722/aiscc.2024.23008
www.ndss-symposium.org

In other words, a certifiable defense ensures that for certain
(x, y) the robustness property described by the function C is
preserved for every possible attack in the threat model.

One example of a certifiable defense against patch attacks
is the recently proposed PatchCleanser framework, which
achieves SOTA performance in the single-label classification
domain [9]. It leverages a special set of double-masks in order
to recover the label y given an arbitrary patch anywhere on a
certifiable input image x [9]. Thus, the associated robustness
criterion for PatchCleanser follows:

C(x′) = y ∀ x′ ∈ Sx (3)

One important feature of this work is that it is architecture
agnostic, and works in essence as a “pre-processing” routine
on top of the machine learning model itself.

C. Multi-label classification

We next give an overview of the multi-label classification
domain [1]. Unlike the single-label classification domain, here
each input image x can potentially contain several objects
simultaneously with each object corresponding to one of c
classes. A classifier is then tasked with recovering the labels
associated with each of objects present. As such, a label in the
multi-label classification setting will be a bitstring ℓ ∈ {0, 1}c
where ℓ[i] = 1 implies class i is present and ℓ[i] = 0 implies
class i is absent.

More rigorously, consider an input datapoint (x, y) where
x ∈ Rd corresponds to an input image and y ∈ {0, 1}c corre-
sponds to the image label. Then the multi-label classification
task aims to train a model Fθ∗ : Rd → {0, 1}c with optimal
weights θ∗ such that the predicted label ℓ = F (x) is equal to
y. Note that in comparison to single-label classification, the
set of labels for multi-label classification is 2c in size (i.e.,
exponential) instead of just c (i.e., linear).

To evaluate the performance of a multi-label classifier, we
will use the precision and recall metrics defined as follows:

precision =
TP

TP + FP
recall =

TP

TP + FN
(4)

Here, for a given ground-truth label y ∈ {0, 1}c the values
TP, FP, FN represent the number of true positives, false
positives, and false negatives predicted by Fθ respectively.
Successful patch attacks in the multi-label setting introduce
incorrect predictions in order to lower the associated precision
and/or recall.

III. METHODOLOGY

In this section, we propose Multi-Label PatchCleanser.
This is an extension to the original PatchCleanser in [9] and
is designed to provide certifiable robustness against the patch
attack in the multi-label classification domain. We first describe
our approach of applying the double-masking method from
PatchCleanser to each class individually. This is followed by
proofs of correctness for the inference algorithm, along with
an outline of the associated certification procedure which de-
termines which images can be certified. Finally, an additional
certification method is proposed based upon failure points in
the original defense framework; this is able to achieve tighter
bounds on robustness.

Fig. 1: A diagram which illustrates the structure of our in-
ference algorithm. Specifically, the double-masking algorithm
from PatchCleanser is applied to each class in a label indi-
vidually. This is done by considering the multi-label classifier
F as a set of individual binary classification tasks F′.

A. The Multi-Label PatchCleanser defense

In Multi-Label PatchCleanser, we propose a defense which
applies double-masking separately to each class and then
aggregates the results (see Figure 1). Specifically, for a given
datapoint (x, y) we will consider each class in the ground-
truth label y. Then we will apply the double-masking algorithm
from PatchCleanser to this individual class, as if they were an
isolated binary classification task. We continue for all classes
1 ≤ i ≤ c and return the final prediction vector ℓpred ∈ {0, 1}c
by pooling the results associated with each of the individual
classes.

Algorithm 1 The inference algorithm associated with Multi-
Label PatchCleanser

Input: Image x ∈ Rd, multi-label classifier F : Rd →
{0, 1}c, mask set M, number of classes c
Output: Prediction ŷ ∈ {0, 1}c

1: procedure MULTIDEFENSE(x,F,M, c)
2: preds← {0}c ▷ Set class predictions to zero vector
3: for i← 1 to c do ▷ Consider each class individually
4: F′ ← F[i] ▷ Define binary classifier for class i
5: preds[i]←DOUBLEMASKING(x,F′,M)
6: end for
7: return preds
8: end procedure

1) Inference algorithm description: The Multi-Label
PatchCleanser inference algorithm is outlined in Algorithm 1.
It works by first generating a set of masks M which satisfy
the following R-covering property from [9]:

Definition 1 (R-covering). A mask set M is R-covering if,
for any patch in the patch region set R, at least one mask
from the mask set M can cover the entire patch, i.e.,

∀r ∈ R,∃m ∈M s.t. m[i, j] ≤ r[i, j],∀(i, j)

We then initialize a preds ∈ {0, 1}c variable on line 2
which will end up containing the individual predictions for
each of the classes. Next, on line 4 we define the binary
classifier F′ which represents the outputs for a given class
i from the multi-label classifier F. Finally, on line 5 we
run up to two rounds of masking on the input image via
the DOUBLEMASKING(x,F′,M) procedure from [9]

2

(more details on this subroutine are present in Algorithm 3
of Appendix A) and update the preds variable for class i.
Note that in practice it is not necessary to run model inference
c times for different F′; instead, by construction we can get
predictions for all F′ with one call to F.

2) Inference algorithm proofs of robustness: We now prov-
ably demonstrate the robustness associated with the approach
outlined in Algorithm 1. To this end, we first define the concept
of class two-mask correctness. This is similar to the definition
for two-mask correctness from [9], but generalized for the
multi-label setting.

Definition 2 (class two-mask correctness). Suppose we have
the set of class labels L = {1, 2, . . . , c} and a clean image
data point (x, y) with x ∈ Rd and y ∈ {0, 1}c. A multi-label
classification model F : Rd → {0, 1}c has class two-mask
correctness for a class i ∈ L and a mask set M and a clean
image data point (x, y), if model predictions for class i on all
possible two-masked images are correct:

F(x ◦m0 ◦m1)[i] = y[i],∀m0 ∈M,∀m1 ∈M

We now have the following theorem, which demonstrates
that the proposed inference algorithm will be provably correct
for an arbitrary class i provided that we have a R-covering
mask set M and also class two-mask correctness on class i.

Theorem 1 (Multi-Label PatchCleanser correctness on one
class). Suppose we have the set of class labels L =
{1, 2, . . . , c} and a clean image data point (x, y) with x ∈ Rd

and y ∈ {0, 1}c. Given a multi-label classification model
F : Rd → {0, 1}c, a mask set M, and the threat model Sx,
if M is R-covering and F has class two-mask correctness on
class i ∈ L for M and (x, y), then Algorithm 1 will always
return the correct class label:

MULTIDEFENSE(x′,F,M, c)[i] = y[i],∀x′ ∈ Sx

Proof: Assume that the conditions of Theorem 1 hold
(i.e., R-covering and class two-mask correctness on class i ∈
L). Now consider when Algorithm 1 reaches index i ∈ L in
the for loop on line 3. By assumption, the binary classifier
F′ corresponding to class i defined on line 5 will have two-
mask correctness (i.e., Definition 2 from [9]) on the associated
datapoint (x, y[i]). Therefore, we can apply Theorem 1 from
[9] and guarantee that the correct label for class i ∈ L is
returned.

3) Multi-Label PatchCleanser certification algorithm: As-
suming that we have a R-covering mask set M, then via
Theorem 1 we can determine if a datapoint (x, y) is certifiable
for class i by checking if Definition 2 is satisfied. This is encap-
sulated by Algorithm 2, the certification procedure for Multi-
Label PatchCleanser. Specifically, as shown on lines 7−13 we
can run ŷ = F(x ◦m0 ◦m1) for all m0,m1 ∈M; if we have
ŷ[i] ̸= y[i] for any two-mask combination, then certification
of class i fails and we mark this on the certifyStatus array.
The loop on line 9 accounts for the fact that we eventually
perform this class-level certification for every class.

B. Robust metrics

In this subsection, we discuss how to compute robustness
metrics such as certified precision and certified recall for multi-
label classifiers. To do so, we first consider a datapoint (x, y)

Algorithm 2 The certification procedure associated with
Multi-Label PatchCleanser

Input: Image x ∈ Rd, ground-truth y ∈ {0, 1}c, multi-
label classifier F : Rd → {0, 1}c, mask set M, number of
classes c
Output: Boolean list of classes certified certifyStatus

1: procedure MULTCERTIFICATION(x, y,F,M, c)
2: if M is not R-covering then
3: return {False}c
4: end if
5: certifyStatus← {True}c
6: for every (m0,m1) ∈M×M do
7: ŷ ← F(x ◦m0 ◦m1) ▷ Two-mask pred.
8: for i← 1 to c do ▷ Certify each class separately
9: if ŷ[i] ̸= y[i] then

10: certifyStatus[i]← False
11: end if
12: end for
13: end for
14: return cerifyStatus
15: end procedure

and define the following robustness criterion for the multi-label
classification domain:

C(x) = {TPlower(x), FPupper(x), FNupper(x)} (5)

Here, TPlower(x) represents the lower bound on true positives
for x, FPupper(x) is the upper bound on false positives for x,
and FNupper(x) is the upper bound on false negatives for x.
These values can be computed by running Algorithm 4 from
Appendix B, which leverages the certifystatus array returned
by the certification procedure Algorithm 2.

We now leverage these values to craft notions of certified
robustness for the multi-label classification domain. Specifi-
cally, we leverage Equation 4 in order to now define:

certified precision =
TPlower(x)

TPlower(x) + FPupper(x)
(6)

certified recall =
TPlower(x)

TPlower(x) + FNupper(x)
(7)

Note that by monotonicity of the numerators, both of these
metrics will serve as the lower bounds for the precision and
recall metrics associated with the datapoint (x, y). Addition-
ally, by accumulating the tracked certification values for each
datapoint (x, y) over the entirety of the dataset we can compute
the lower bounds on precision and recall corresponding to the
dataset as a whole. We leverage this in Section IV.

C. Proposing a new certification method

We now discuss an improved certification algorithm which
extends Algorithm 2. The general intuition is that the certi-
fication masks which induce failure can be different across
classes, and ultimately the adversarial patch can only be placed
at one location. By leveraging this constraint we can recover
residual robustness by considering the most frequent mask
failure across classes.

Figure 2 uses a sample image from the 2014 MSCOCO
validation dataset to help demonstrate the general strategy. The

3

Fig. 2: A diagram which demonstrates the certification his-
togram generation process on a sample MSCOCO image;
here, we only consider false negatives FN . Each histogram is
represented as a 6×6 grid of masks, the default configuration
in PatchCleanser. Orange tiles correspond to masks which
caused certification failure, and numeric values correspond to
the number of classes failed.

image contains three objects: a dog, a person, and a bicycle. As
shown in the figure, during certification certain double-mask
pairs are able to occlude the dog in the bottom-left hand corner
of the image. In fact, each of the three objects fails certification
due to this occlusion effect; if we were to use Algorithm 2 on
this image we would only certify 0% precision and recall.

To this end, we define the concept of a certification
histogram. For a given class i that failed certification and R-
covering mask setM we define the histogramHi ∈ {0, 1}|M|:

Hi(m) =

{
1 ∃(m,m′) ∈M×M s.t.A = True
0 otherwise

(8)

Here we leverage notation from Definition 2 and define the
Boolean expression A := F(x ◦m ◦m′)[i] ̸= y[i] for conve-
nience. Essentially, a mask in Hi is marked if it contributes to
the certification failure of class i. The bottom half of Figure
2 displays the certification histograms associated with the dog
and the bicycle; a tile is colored orange if the corresponding
mask contributed to certification failure.

The key insight is that we can add individual class his-
tograms together to form a total histogram; here, each tile value
represents the number of classes failed by the corresponding
mask. In the worst case, one mask can lead to certification
failure in all classes. Note however that in Figure 2 no mask
contributes to more than one class certification failure. This
implies that at most one class can fail at inference time,
regardless of where the attacker places the adversarial patch
(a proof for this intuition is presented in Appendix C); this is
a tighter bound on robustness compared to Algorithm 2!

Our novel histogram-based certification method generalizes
this procedure for an arbitrary image in Algorithm 5 of
Appendix C. Strengths of Algorithm 5 include the fact that it
does not require adjustments to the current inference method
Algorithm 1. Additionally, any robustness discovered through
this method is residual in nature and can only improve upon the
bounds found via the current cetification strategy Algorithm 2.

TABLE I: Performance on overall dataset, threshold of 0.8

Class prec. Class rec. Overall prec. Overall rec.
Undefended clean 87.41% 76.38% 88.07% 79.23%
Defended clean 90.25% 58.00% 92.67% 61.75%
Certified robust 39.39% 33.74% 47.36% 38.55%

0

20

40

60

80

100

0 20 40 60 80 100

Pr
ec
is
io
n

Recall

Robust Defended clean Undefended clean

Fig. 3: Precision-recall plots of the three model settings for the
overall dataset. Threshold ranges from 0.0 to 0.99. Ideally, as
threshold increases precision will increase at the expense of
recall in a concave fashion.

TABLE II: Normalized area-under-curve (AUC) associated
with precision-recall plots for overall dataset

Overall
Undefended clean 0.803
Defended clean 0.765
Certified robust 0.370

Weaknesses of this procedure include the fact that it removes
the ability to analyze metrics at the individual class level.

IV. RESULTS

A. Setup

We first outline the computational setup for the work.
Experiments are done on the 2014 MSCOCO validation dataset
[1], [5], [7]. For the multi-label classification model, we select
an existing ResNet-based classifier created by [1]; this model
has good precision and recall performance on the MSCOCO
benchmark and is also attractive due to its well-maintained
code repository online. The design of the architecture means
that each MSCOCO image is resized to 448×448 pixels before
being input into the model. We additionally use the default
threshold value of 0.8 for inference unless stated otherwise.

With regards to the inference procedure Algorithm 1, note
that the R-covering mask set generation method discussed
in [9] has two security parameters. The first is the number
of masks desired in each axis k1 × k2 and the second is
the estimated size of the patch p in pixels [9]. For our
experiments, we leverage 6 × 6 masks and a patch size of
64 (i.e., corresponds to about ∼ 2% of pixels in the image
overall); this is the default setting used by [9].

B. Multi-Label PatchCleanser performance

In this section we evaluate the robustness and clean
performance of Multi-Label PatchCleanser. We consider the

4

following three model settings:

• Undefended clean: This model setting represents per-
formance of the multi-label classifier from [1] when no
patch attack is present and Multi-Label PatchCleanser
is not utilized.

• Defended clean: This model setting represents perfor-
mance when no patch attack is present and the Multi-
Label PatchCleanser defense is activated.

• Certified robust: This model setting considers certified
precision and recall values determined according to
Algorithm 2 (i.e., the original certification method).

In both clean settings, all precision and recall metrics are
computed empirically. For the certified robust model setting,
overall precision and overall recall metrics are computed
according to the methodology discussed at the end of Section
III-B; class precision and class recall metrics are computed
by accumulating certified metrics separately across each of
the classes and then taking the average.

We outline results with the default threshold value of 0.8 in
Table I. Additionally, we perform the classification task across
a range of threshold values from 0.0 to 0.99 to check how
both precision and recall metrics change. Figure 3 visualizes
this via a precision-recall plot while Table II presents the
associated area-under-curve (AUC) values. AUC provides a
single quantitative metric to aggregate performance across a
wide variety of thresholds. Each AUC value is computed using
the trapezoid sum technique and is normalized with respect to
the ideal precision-recall curve.

Non-trivial robustness. The results from Figure 3 and
Table II demonstrate that Multi-Label Patchcleanser is able to
successfully achieve non-trivial certifiable robustness across a
variety of threshold values. However, robust performance still
lags behind both the undefended clean and defended clean
settings. Indeed, the AUC associated with the certified robust
setting is only able to capture ∼ 46% of the performance
achieved by the undefended clean setting for the overall
dataset. Note that as shown in Table I the class precision
and class recall metrics are appreciably lower than their
overall counterparts in the certified robust setting. Thus, one
possibility is that certain classes are responsible for hampering
overall robustness; this is investigated further in Appendix D.

High clean performance. As seen in Table II, the AUC
associated with the defended clean setting is able to capture
∼ 95% of the performance achieved by the undefended clean
setting for the overall dataset. This implies that the inference
procedure of Multi-Label PatchCleanser can demonstrate high
clean performance across a wide range of different threshold
values. Further inspection of single threshold results in Table I
reveals that the defended clean setting demonstrates a tangible
(∼ 4%) increase in precision metrics and a simultaneous
large decrease (∼ 15%) in recall metrics compared to the
undefended clean setting. A hypothesis for this tradeoff is
that in the undefended clean setting small unrelated objects
might be confused with each other leading to false positives
(i.e., lower precision). On the other hand, in the defended
clean setting masks may occlude these objects and cause false
negatives instead (i.e., lower recall). More experimentation is
needed to test the validity of this claim.

C. New certification method results

TABLE III: Comparison of different certification procedures

Overall precision Overall recall
Old certification procedure 47.36% 38.55%

New certification procedure (worst case) 49.85% 40.02%
New certification procedure (FN attack) 51.54% 40.02%
New certification procedure (FP attack) 51.38% 42.56%

We now present results associated with the new certifica-
tion procedure from Section III-C in Table III. For the new
procedure, two attackers are analyzed. The FN attacker picks
an optimal mask according to a certification histogram of
only false negatives, while the FP attacker only leverages a
histogram of false positives. We also consider “worst case”
performance where two optimal masks are chosen; one for
FN and one for FP . This represents the lower bound on the
performance of Algorithm 5 for an arbitrary attacker.

In general, we note that the new certification procedure
across all attackers is able to provide better guarantees on
robustness compared to the old certification method. However,
the improvement in robustness is limited to only about ∼ 4%
for both precision and recall. This suggests that updating
the inference algorithm might be required to get stronger
robustness guarantees.

V. RELATED WORK

A variety of certifiable defenses against the patch threat
model have been proposed for single-label classifiers. These
include bound propagation methods [2], small receptive field
methods [10], and masking methods [9]. For other computer
vision domains, a masking method has been proposed for
the object detection task [11]. Additionally, [3] proposed a
certifiably robust defense for multi-label classifiers in the ℓ2-
norm global perturbation threat model. However, none of these
works address certifiable defenses against patch attacks in the
multi-label classification domain.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we investigated certifiable defenses against
the patch attack for computer vision systems and recognized
the lack of an existing defense for the multi-label classification
domain. We thus proposed Multi-Label PatchCleanser, an
extension of the SOTA PatchCleanser defense for single-label
classification [9]. Our technique is able to achieve non-trivial
robustness while also maintaining relatively high clean perfor-
mance on the 2014 MSCOCO validation dataset. Additionally,
we develop a novel certification procedure based upon a key
constraint from the multi-label classification domain in order
to improve bounds on robustness.

Nevertheless, there are possibilities for improvement. We
first note that the novel certification method proposed in
Section III-C has room for improvement. Future work will
continue to leverage the observations from Section III-C and
possibly develop a new inference algorithm. Another opportu-
nity involves the use of vision transformers (ViT). Currently,
we use a ResNet-based approach for all experiments; however,
as shown in the original PatchCleanser paper using ViTs
instead can lead to a performance boost [9].

5

REFERENCES

[1] E. Ben-Baruch, T. Ridnik, N. Zamir, A. Noy, I. Friedman,
M. Protter, and L. Zelnik-Manor, “Asymmetric Loss For Multi-Label
Classification.” arXiv, Jul. 2021, arXiv:2009.14119 [cs]. [Online].
Available: http://arxiv.org/abs/2009.14119

[2] P.-Y. Chiang, R. Ni, A. Abdelkader, C. Zhu, C. Studer, and
T. Goldstein, “Certified Defenses for Adversarial Patches.” arXiv,
Sep. 2020, arXiv:2003.06693 [cs, stat]. [Online]. Available: http:
//arxiv.org/abs/2003.06693

[3] J. Jia, W. Qu, and N. Z. Gong, “MultiGuard: Provably Robust
Multi-label Classification against Adversarial Examples.” arXiv, Oct.
2022, arXiv:2210.01111 [cs]. [Online]. Available: http://arxiv.org/abs/
2210.01111

[4] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey
of Convolutional Neural Networks: Analysis, Applications, and
Prospects,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, no. 12, pp. 6999–7019, Dec. 2022. [Online].
Available: https://ieeexplore.ieee.org/document/9451544/

[5] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft COCO:
Common Objects in Context.” arXiv, Feb. 2015, arXiv:1405.0312
[cs]. [Online]. Available: http://arxiv.org/abs/1405.0312

[6] F. Nesti, G. Rossolini, S. Nair, A. Biondi, and G. Buttazzo,
“Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks,” Aug. 2021,
arXiv:2108.06179 [cs]. [Online]. Available: http://arxiv.org/abs/2108.
06179

[7] T. Ridnik, G. Sharir, A. Ben-Cohen, E. Ben-Baruch, and A. Noy,
“ML-Decoder: Scalable and Versatile Classification Head,” in 2023
IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV). Waikoloa, HI, USA: IEEE, Jan. 2023, pp. 32–41. [Online].
Available: https://ieeexplore.ieee.org/document/10030822/

[8] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus, “Intriguing properties of neural
networks,” Feb. 2014, arXiv:1312.6199 [cs]. [Online]. Available:
http://arxiv.org/abs/1312.6199

[9] C. Xiang, S. Mahloujifar, and P. Mittal, “PatchCleanser: Certifiably
Robust Defense against Adversarial Patches for Any Image Classifier.”
arXiv, Apr. 2022, arXiv:2108.09135 [cs]. [Online]. Available: http:
//arxiv.org/abs/2108.09135

[10] C. Xiang and P. Mittal, “PatchGuard++: Efficient Provable
Attack Detection against Adversarial Patches.” arXiv, Apr. 2021,
arXiv:2104.12609 [cs]. [Online]. Available: http://arxiv.org/abs/2104.
12609

[11] C. Xiang, A. Valtchanov, S. Mahloujifar, and P. Mittal, “ObjectSeeker:
Certifiably Robust Object Detection against Patch Hiding Attacks via
Patch-agnostic Masking.” arXiv, Dec. 2022, arXiv:2202.01811 [cs].
[Online]. Available: http://arxiv.org/abs/2202.01811

6

APPENDIX A
PATCHCLEANSER DOUBLE-MASKING METHOD

Algorithm 3 The inference algorithm associated with Patch-
Cleanser from [9]

Input: Image x ∈ Rd, single-label classifier Fs : Rd →
{1, 2, . . . , c}, mask set M
Output: Prediction ŷ ∈ {1, 2, . . . , c}

1: procedure DOUBLEMASKING(x,Fs,M)
2: ŷmaj ,Pdis ←MASKPRED(x,Fs,M) ▷ First-round
3: if Pdis = ∅ then
4: return ŷmaj ▷ Case I: agreed prediction
5: end if
6: for each (mdis, ŷdis) ∈ Pdis do ▷ Second round
7: ŷ′,P ′ ← MASKPRED(x ◦mdis,Fs,M)
8: if P ′ = ∅ then
9: return ŷdis ▷ Case II: disagreer pred.

10: end if
11: end for
12: return ŷmaj ▷ Case III: majority prediction
13: end procedure

Input: Image x ∈ Rd, single-label classifier Fs : Rd →
{1, 2, . . . , c}, mask set M
Output: Majority prediction ŷmaj ∈ {1, 2, . . . , c}, dis-
agreer masks Pdis

14: procedure MASKPRED(x,Fs,M)
15: P ← ∅ ▷ A set for mask-prediction pairs
16: for m ∈M do ▷ Enumerate every mask m
17: ŷ ← Fs(x ◦m) ▷ Evaluate masked prediction
18: P ← P

⋃
{(m, ŷ)} ▷ Update set P

19: end for
20: ŷmaj ← argmaxy∗ |{(m, ŷ) ∈ P|ŷ = y∗}| ▷ Majority
21: Pdis ← {(m, ŷ) ∈ P|ŷ ̸= ŷmaj} ▷ Disagreers
22: return ŷmaj ,Pdis

23: end procedure

We present the double-masking method from Patch-
Cleanser in Algorithm 3, which is able to achieve certified
robustness for single-label classifiers [9]. It runs up to two
rounds of masking on the input image x. In each round, masks
m from the R-covering set M are augmented onto x and
then the single-label classifier Fs is queried for each of these
augmentations [9].

• First-round masking: Here, every mask m ∈ M is
applied sequentially to the input image x. We then run
Fs(m◦x) for each of these single masks on line 2 [9].
If there is consensus in the predictions, we return this
value as the overall prediction on line 4; this aligns
with the intuition that a clean image with no patch will
be predicted correctly regardless of the mask present.
Otherwise, the minority/“disagreer” predictions trigger
a second-round of masking on line 6. This is done
to determine whether to trust the majority prediction
ŷmaj or one of the disagreers [9].

• Second-round masking: For each disagreer mask mdis,
we once again apply every mask m ∈M sequentially
to the input image x. This time however, we query
Fs(m ◦ mdis ◦ x) for each of the masks m to form

double-mask predictions [9]. If all of these predictions
are in consensus, then we return the disagreer label
ŷdis associated with mdis as the overall prediction
on line 9. The intuition is that if mdis covered the
patch, all double-mask predictions in the second round
would be done on effectively a “clean” image [9]. If
there is lack of consensus, then we disregard mdis

and apply second-round masking to the next available
disagreer mask; in this case, we assumed that mdis did
not cover the patch [9]. Finally, if all disagreer masks
fail second-round masking we return the majority label
ŷmaj from the first-round.

Assuming that the mask set M is R-covering and that
two-mask correctness (i.e., Definition 2 from [9]) holds for
the datapoint (x, y), then the correctness of Algorithm 3 is
guaranteed by Theorem 1 in [9].

APPENDIX B
COMPUTATION OF ROBUST METRICS

Algorithm 4 Computation of robust metrics associated with
an image datapoint (x, y)

Input: Ground-truth y ∈ {0, 1}c, certification class list
ℓ ∈ {True, False}c, number of classes c
Output: Number of classes certified k, certified number
of true positives TP , worst case number of false positives
FP , worst case number of false negatives FN

1: procedure METRICCOMPUTATION(y, ℓ, c)
2: k, TP, FP, FN ← 0, 0, 0, 0 ▷ Initialize return values
3: for i← 1 to c do ▷ Compute return values
4: if ℓ[i] = True then
5: k ← k + 1
6: if y[i] = 1 then
7: TP ← TP + 1
8: end if
9: else ▷ If class not certified, assume worst case

10: if y[i] = 1 then
11: FN ← FN + 1
12: else
13: FP ← FP + 1
14: end if
15: end if
16: end for
17: return k, TP, FP, FN
18: end procedure

Algorithm 4 uses the result of the certification procedure
Algorithm 2 in order to compute the lower bound for true
positives and the upper bound for both false positives and false
negatives. To see this, note that as shown on line 4 we only
count a successful TP if we were able to certify the associated
class. Otherwise, as shown in line 9 we assume the worst case
and assign a FN or FP to the class.

APPENDIX C
HISTOGRAM-BASED CERTIFICATION

In this section, we discuss the histogram-based certification
method introduced in Section III-C in more detail. We first
provide a formal definition for a certification histogram as
follows.

7

Algorithm 5 The novel certification procedure for FN

Input: Image x ∈ Rd, ground-truth y ∈ {0, 1}c, certifica-
tion class list ℓ ∈ {True, False}c, multi-label classifier
F : Rd → {0, 1}c, mask set M, number of classes c,
certified number of true positives TP , worst case number
of false negatives FN
Output: New certified number of true positives TPnew,
new worst case number of false negatives FNnew

1: procedure RESROBUST(x, y, ℓ,F,M, c, TP, FN)
2: fnIndices← {0}FN ▷ Initialize FN index array
3: i← 1
4: for j ← 1 to c do ▷ Find FN indices
5: if ℓ[j] = False and y[j] = 1 then
6: fnIndices[i]← j
7: i← i+ 1
8: end if
9: end for

10: fnHistograms← [0]FN×|M| ▷ Track each FN
11: for every (m0,m1) ∈M×M do
12: out← F(x ◦m0 ◦m1) ▷ Check double-masks
13: for k ← 1 to FN do
14: idx← fnIndices[k]
15: if out[idx] = 0 then ▷ Mark both masks
16: fnHistograms[k][m0] = 1
17: fnHistograms[k][m1] = 1
18: end if
19: end for
20: end for
21: fnTotal← sum(fnHistograms, dim = 0)
22: FNnew = max(fnTotal) ▷ Pick worst possible mask
23: TPnew = TP + (FN − FNnew)
24: return TPnew, FNnew

25: end procedure

Definition 3 (Certification histogram). Suppose we have the
set of class labels L = {1, 2, . . . , c} and a clean image data
point (x, y) with x ∈ Rd and y ∈ {0, 1}c. Additionally assume
that we have a multi-label classification model F : Rd →
{0, 1}c and a R-covering mask set M. Then, for a class i ∈
L we define the certification histogram Hi ∈ {0, 1}|M| as
follows:

Hi(m) =

{
1 ∃(m,m′) ∈M×M s.t.A = True
0 otherwise

(8)

Here, A := F(x ◦m ◦m′)[i] ̸= y[i] is a Boolean expression.

Note that in order to correctly update certified performance
metrics we must create separate histograms for the false
negatives and the false positives in an image. Without loss
of generality, we consider false negatives only in Algorithm 5.

Algorithm 5 works by leveraging the certification class list
from Algorithm 2 and the robust metrics from Algorithm 4.
Specifically, it first uses the certification class list to determine
which true positive classes were not certified via Algorithm
2 on line 6. Then, it constructs a certification histogram for
each of these false negatives on line 10. During the for loop
on line 11, we consider every possible double-mask pair. If a
pair (m0,m1) ∈ M×M causes mis-classification of a class
i, then we note as per Equation 8 that both masks should be

marked in the corresponding histogram; this is done in lines
16 and 17. Finally, we compute the total histogram on line 21
and pick the mask with the largest value; this will correspond
to maximum number of false negatives an attacker can induce
at inference time. We correspondingly alter the lower bound
for true positives on line 23.

Note that constructing histograms for false positives can be
done using effectively the same procedure, albeit with the for
loop on line 4 changed to track FP indices and the condition
on line 15 changed to out[idx] = 1 instead.

We now demonstrate the superiority of the bounds from
Algorithm 5 in comparison to Algorithm 4.

Lemma 1 (Histogram-based certification bound tightness).
Given that we have derived a bound on FN using the
technique from Algorithm 4, we note that Algorithm 5 will
return a new bound FNnew ≤ FN .

Proof: We will show that FNnew provides a tighter bound
(i.e., the inequality FNnew ≤ FN is true). To see this, we
note as per lines 21 and 22 of Algorithm 5 that the worst-case
sum will occur if every certification histogram is marked for
a given mask. Because the summation is taken over the set of
false negatives, this implies that the worst-case sum is FN .

We next prove the correctness of the bounds from Algo-
rithm 5.

Theorem 2 (Histogram-based certification bound correctness).
Suppose we have the set of class labels L = {1, 2, . . . , c} and
a clean image data point (x, y) with x ∈ Rd and y ∈ {0, 1}c.
Additionally assume that we have a multi-label classification
model F : Rd → {0, 1}c and a R-covering mask setM. Then,
given that we have derived a bound on FN using the technique
from Algorithm 4 we note that the bound FNnew returned by
Algorithm 5 will be correct.

Proof: We will show correctness of the new bound
FNnew defined on line 22 of Algorithm 5. First, we define
mopt := argmax(fnTotal) ∈ M as the corresponding mask
location where the adversarial patch will placed in order to
induce the maximum number of false negatives. Next, as per
Lemma 1 we will have FNnew ≤ FN . Note that with equality
FNnew = FN , correctness is guaranteed by Algorithm 4. We
thus focus on the case with strict inequality FNnew < FN ;
this implies the existence of false negatives with unmarked
certification histograms. Consider an arbitrary false negative
class i ∈ L such that Hi(mopt) = 0. We will show that this
class i will be correctly predicted if the attacker places a patch
at the mopt location.

During inference (i.e., Algorithm 1), we note that the mask
mopt ∈ M will cover the adversarial patch during the first-
round of double-masking. This forms the masked image x ◦
mopt ◦mopt; by definition of a certification histogram Hi, the
evaluation F(x ◦mopt ◦mopt) = y[i] will be correct. We now
show that the overall output of the double-masking procedure
will be correct by considering three cases:

• Case #1 (consensus): In this case, every first-round
mask results in the correct prediction. Specifically, we
have F(x ◦ m) = F(x ◦ mopt ◦ mopt) = y[i] for all

8

m ∈ M. Then, as per line 4 in Algorithm 3 we will
return the correct prediction for class i.

• Case #2 (first round majority): In this case, a minority
subset of masks Mminority ⊆ M will have an
incorrect first-round prediction. Specifically, we will
have F(x ◦ m′) ̸= y[i] for all m′ ∈ Mminority.
Note that during the second-round of masking, we will
correctly evaluate F(x ◦ m′ ◦ mopt) = y[i] for each
disagreer mask m′ ∈ Mminority; this is due to the
definition of a certification histogram Hi. Therefore,
each of the disagreer masks will fail to have consensus
in the second-round and as per line 12 in Algorithm
3 we will return the correct prediction for class i.

• Case #3 (first round minority): In this case, a majority
subset of masks Mmajority ⊆ M will have an
incorrect first-round prediction. Specifically, we will
have F(x ◦ m′) ̸= y[i] for all m′ ∈ Mmajority.
Therefore, the mask mopt will be a disagreer. During
the second-round, we will correctly predict F(x ◦
mopt ◦msecond round) = y[i] for every second-round
mask msecond round ∈M; this is due to the definition
of a certification histogram Hi. Thus we will have
consensus in the second-round and as per line 9 in
Algorithm 3 we will return the correct prediction for
class i.

The correctness of the underlying double-masking method
implies that Algorithm 1 will return the correct prediction for
class i as desired. Thus, class i must now be counted as a true
positive instead of a false negative.

Analogues for Lemma 1 and Theorem 2 also exist for
bounds on FP , and can be proved the same way albeit
referencing a modified version of Algorithm 5.

APPENDIX D
SELECTED CLASS PRECISION-RECALL CURVES

TABLE IV: Normalized AUC for class precision-recall plots

Class 0/“person” Class 70/“toaster”
Undefended clean 0.961 0.333
Defended clean 0.952 0.158
Certified robust 0.858 0.013

In this section we consider the precision-recall plots asso-
ciated two sample classes from the 2014 MSCOCO validation
dataset. Figure 4a plots precision-recall curves limited to
Class 0/“person”. Figure 4b plots precision-recall curves for
Class 70/“toaster”. Additionally, Table IV lists area-under-
curve (AUC) values associated with each of the individual plots
in Figure 4.

Some general trends are apparent through Table IV. For
instance, the AUC associated with the defended clean setting
tracks closely to the undefended clean setting for both of
the classes; additionally, the AUC for certified robustness is
lower in both cases. Nevertheless, as shown in Figure 4b the
Class 70/“toaster” demonstrates an extreme example in which
almost none of the undefended clean performance is able
to be certified regardless of the threshold. This implies that
Algorithm 2 is a bottleneck for certification performance in

certain classes, contributing to the overall reduced robustness
in Table II.

9

0

20

40

60

80

100

0 20 40 60 80 100

Pr
ec
is
io
n

Recall

Robust Defended clean Undefended clean

(a)

0

20

40

60

80

100

0 20 40 60 80 100

Pr
ec
is
io
n

Recall

Robust Defended clean Undefended clean

(b)

Fig. 4: Precision-recall plots of the three model settings for a) Class 0/“person”, and b) Class 70/“toaster”. Threshold ranges
from 0.0 to 0.99. Ideally, as threshold increases precision will increase at the expense of recall in a concave fashion.

10

