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Fig. 1. Illustration of a connected vehicle based traffic signal control system

data, a CV-based traffic control system (CV-TSC) utilizes CV
trajectory data as input to make control decisions. A typical
CV-TSC system is illustrated in Figure 1. Each CV is equipped
with an On-Board Unit (OBU), which broadcasts Basic Safety
Messages (BSMs). A BSM records a CV’s information includ-
ing its location, speed, heading, and acceleration. Consecutive
BSMs represent the vehicle trajectory. On the infrastructure
side, an intersection is equipped with a Roadside Unit (RSU),
a signal controller, and traffic signals. The RSU receives BSMs
(i.e., CV trajectories), which are used to optimize traffic signal
timing plans. The signal controller executes the optimal signal
timing plans and controls traffic signals to display corre-
sponding colors. The signal controller is usually connected
to a transportation management center (TMC), which sends
commands remotely to the signal controller (e.g., time-of-
day signal timing plans). Meanwhile, the RSU continuously
broadcasts Signal Phase and Timing (SPaT) messages, which
record current signal status (i.e., green/yellow/red) and remain-
ing time. Based on continuously received BSMs, the CV-TSC
system responds to real-time traffic demands by updating the
signal timing plans dynamically. Over the past decade, various
CV-TSC models have been proposed and significant mobility

Abstract—Connected vehicle (CV) technologies enable data 
exchange between vehicles and transportation infrastructure. In 
a CV environment, traffic signal control systems receive CV 
trajectory data through vehicle-to-infrastructure (V2I) communi-
cations to make control decisions. Comparing with existing data 
collection methods (e.g., from loop-detectors), the CV trajectory 
data provide much richer information, and therefore have great 
potentials to improve the system performance by reducing total 
vehicle delay at signalized intersections. However, this connectiv-
ity might also bring cyber security concerns.

In this paper, we aim to investigate the security problem of 
CV-based traffic signal control (CV-TSC) systems. Specifically, 
we focus on evaluating the impact of falsified data attacks on the 
system performance. A black-box attack scenario, in which the 
control logic of a CV-TSC system is unavailable to attackers, is 
considered. A two-step attack model is constructed. In the first 
step, the attacker tries to learn the control logic using a surrogate 
model. Based on the surrogate model, in the second step, the 
attacker launches falsified data attacks to influence the control 
systems to make sub-optimal control decisions. In the case study, 
we apply the attack model to an existing CV-TSC system (i.e., 
I-SIG) and find intersection delay can be significantly increased. 
Finally, we discuss some promising defense directions.

I. INTRODUCTION

Advanced communication technologies such as Dedicated 
Short Range Communication (DSRC) and cellular LTE/5G en-
able vehicles and transportation infrastructure to communicate 
with each other in real-time. Vehicles that have communication 
capabilities are referred as connected vehicles (CVs). The com-
munication mechanism greatly enhances information exchange 
between CVs and transportation infrastructure and therefore 
has great potential to improve various mobility applications, 
including traffic signal control (TSC), a critical component 
in urban traffic operation. Different from conventional traffic 
control systems that depends on infrastructure-based sensor
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improvements are observed [10]. Because of this benefit, it
is envisioned that CV-TSC systems may gradually replace the
conventional TSC systems in the future [23].

Despite great improvements in system performance, the
new trait, connectivity between vehicles and infrastructure,
might open a new door to cyber attacks. The benefit of CV-
TSC systems can be achieved only if the systems are secure in
cyberspace. Therefore, cyber security is a crucial component
when developing CV-TSC systems. However, most of the
existing CV-TSC models are designed without considering
cyber security issues and thus may be vulnerable to cyber
attacks. Before developing defense strategies, it is important
to identify potential cyber threats and investigate the impact of
cyber attacks. Existing studies on this topic usually consider a
“white-box” attack scenario, which assumes that attackers have
full access to the traffic control system and/or control logic so
that they can manipulate the traffic signal phasing and timing
freely [4], [7]–[9], [15], [19], [24]. For example, Perrine et al.
[19] assumes that the traffic signals can be selectively disabled
to flashing-red status (equivalent to a four-way stop-sign inter-
section) without explaining how the attack is conducted. Chen
et al. [4] assumes that the source code of the signal control
model is known to the attacker so a comprehensive analysis
can be performed. “Manipulating signal phasing and timing
freely” is a very strong and unrealistic assumption. For most
of the commercial traffic control systems, various levels of
protection from hardware (e.g., Malfunction Monitoring Unit)
to software (e.g., controller firmware) are designed to prevent
such manipulations, no mentioning access to the source code.
Thus, it is necessary to build an attack model and evaluate the
impact of cyber attacks under real-world scenarios where the
controller hardware and control logic are inaccessible.

In this paper, we aim to evaluate the impact of falsified
data attacks on CV-TSC systems by considering a “black-box”
attack scenario, in which the attackers do not know the details
of the signal control system and do not have physical access to
the system (e.g., signal cabinet). Attackers first need to learn
the signal control logic using a surrogate model that includes
critical traffic features. With the learned model, the optimal
signal timing plan generated from the control system can be
predicted by the attackers using received CV trajectories. Then
the attackers alter the critical traffic features and subsequently
the signal timing plan by injecting falsified CV data into the
system. The impact of attacks is measured by comparing the
total vehicle delay before and after attack. In the case study,
we apply the proposed attack model on I-SIG, an existing CV-
TSC system. Results show that falsified data attacks can create
excessive delay at the intersection and degrade the performance
of the CV-TSC system. We also briefly discuss two defense
strategies as future research directions.

The remainder of this paper is organized as follows.
Background knowledge on traffic signal control is introduced
in Section II. Section III presents the attack model, including
how attackers may learn the signal control logic and how
attackers may generate falsified data to launch attacks. Section
IV presents a comprehensive case study, which realistically
evaluates the impact of falsified data attacks on I-SIG. In
Section V, we discuss two defense strategies. Related studies
regarding cyber attacks on CV-TSC systems are introduced in
Section VI. Finally, conclusions are drawn in Section VII.

Fig. 2. Ring-barrier structure

II. BACKGROUND

A. Traffic Signal Control

This study assumes that the CV-TSC system uses a ring-
barrier phasing. The ring-barrier structure [13] illustrated in
Figure 2 is the standard traffic signal phasing setting in North
America. Starting from the major street and moving clockwise,
the through phases are labeled as phases 2, 4, 6, and 8. Starting
from the left-turn phase that is next to phase 6 and moving
clockwise, the left-turn phases are labeled as phases 1, 3, 5, and
7. Ring 1 includes phases 1 to 4 and ring 2 includes phases 5 to
8. A barrier separates major street phases (phases 1, 2, 5, and
6) from minor street phases (phases 3, 4, 7, and 8). The phases
that operate first within a barrier in each ring are called lead
phase (e.g., phases 1 and 5) and the other phase (e.g., phases 2
and 6) is called lag phase. Therefore a barrier includes two lead
phases and two lag phases. A signal optimization algorithm
changes phase sequence and allocates green time of each phase
to minimize/maximize predefined performance indexes, based
on collected traffic data (e.g., CV trajectories).

B. I-SIG

In this study, I-SIG system from the Multi-Modal Intelli-
gent Traffic Signal System (MMITSS) project is selected as the
targeted CV-TSC system [23] for case study. Both simulation
and field experiments have demonstrated the effectiveness of
I-SIG in terms of delay reduction and mobility improvement
[6]. The reason for choosing I-SIG is that it is one of the most
cited work related to CV-TSC and the proposed framework
has been adopted by many other studies. The control logic
of I-SIG system is briefly introduced. At the beginning of
each barrier, I-SIG takes a snapshot of the trajectories received
from all the CVs within the RSU’s communication range.
Each trajectory is converted to an ETA (estimated time of
arrival), which is calculated as the CV’s distance to stop
bar divided by its speed. Based on the ETAs of each signal
phase, an arrival table is constructed. Then I-SIG solves an
dynamic programming (DP) based optimization problem with
the objective to minimize total vehicle delay or total queue
length. Each barrier is considered as one stage in the DP
formulation. Ideally, I-SIG should plan as many stages as
needed so that all the vehicles can be properly served. For real-
world implementations, however, I-SIG plans only two stages
(i.e., one signal cycle) because of computational limitations
in the edge computing device and real-time performance
requirement. I-SIG then executes the timing plan of the first
stage (the four phases in the current barrier) and arranges the
phase sequence of the second stage (the four phases in the
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Fig. 3. The process of learning control logic

next barrier). When a new barrier starts, I-SIG repeats this
optimization process. For more details, please refer to [6].

III. ATTACK MODEL

The proposed attack model includes two steps. In the
first step, the attacker tries to learn the control logic using a
surrogate model. Based on the surrogate model, in the second
step, the attacker launches falsified data attacks to influence
the control system to make sub-optimal decisions.

A. Learning Control Logic

In a real-world implementation, a CV-TSC system utilizes
vehicle trajectories (i.e., BSMs) as the input and generates
optimal signal timing plans. Both vehicle trajectories and
signal timing plans are observable to the attacker in the
forms of BSMs and SPaT messages respectively, because all
messages are transmitted in a broadcast mode. The actual
signal control logic, however, is unknown to the attacker. In
order to launch effective attacks, the attacker needs to learn
the control logic first using a surrogate model. The surrogate
model takes the same trajectories as the input and outputs
predicted signal timing plans. Historical BSM and SPaT data
can be used to train the surrogate model. The attacker uses
the surrogate model as the replacement of the real control
logic when launching attacks. The whole learning process is
illustrated in Figure 3.

1) Surrogate Model: A signal timing plan includes two
parts, green time of each phase and phase sequence. The
prediction of green time can be considered as a regression
problem because green time is continuous. In contrast, the
prediction of phase sequence is a classification problem since
there is a finite number of possibilities for phase sequences.
In this study, decision tree regression/classification [2] is
adopted to be the surrogate model. Decision tree models are
chosen because they are easy to implement and their output
always falls within the feasible ranges, i.e., minimum and
maximum green time. Most importantly, decision tree models
possess inherent “if-then-else” structures and can effectively
map nonlinear relationships, making signal control algorithms
particularly easy to fit into programmatic structures. The input
features to the surrogate model are critical traffic features
extracted from observed CV trajectories.

2) Critical Traffic Features: Different CV-TSC systems use
different objectives and performance indexes to optimize the
signal timing plan. Since the objectives are typically functions
of one or more traffic features, the signal timing plan should be
closely related to these associated traffic features. For example,
a signal controller may allocate green time based on the queue
length of each phase, or a signal controller may terminate a
green phase when there is a large headway. A list of common

traffic features applied in existing studies include queue length
(QL), number of approaching vehicles (NAV), headway (HW),
estimated time of arrival (ETA), vehicle delay (VD), and flow
rate (FR). These traffic features will be used in the case study
in Section IV.

For a particular CV-TSC system, usually not all traffic
features are utilized to optimize the signal timing. We define
the traffic features that determine the signal timing plan as
critical features. When falsified data alter the values of these
critical features, signal control decisions are changed accord-
ingly. As a result, the attacker needs to identify the critical
features that have a significant impact on the signal timing plan
before launching attacks. Identifying critical features from the
list of features is a feature selection problem. In this study,
a sequential forward selection algorithm (SFS) is applied [1].
Starting from an empty feature set, SFS greedily searches for
the best features that can improve the prediction performance.
John et al. [12] suggests using SFS for identifying useful
features and shows that SFS can improve the performance of
decision tree models. The output of SFS is a set of critical
features. Note that in Section III-A1, only critical features are
used as the input features of the decision tree models.

B. Falsified Data Generation

In the previous section, the attacker has obtained the
surrogate model f(·) by training the decision tree models.
Then the attacker launches attacks by broadcasting falsified
trajectories using the compromised communication device (i.e.,
OBU). Based on received real CV trajectories, the attacker
can compute critical traffic features Xo (e.g., queue length)
identified in the previous step, and use the trained surrogate
model to predict the signal timing plan, i.e., f(Xo). f(Xo)
is referred to as the pseudo-optimal timing plan because it is
not the exact timing plan generated from the actual control
system, but a plan predicted by the trained surrogate model.
By injecting falsified trajectories, the attacker tries to alter the
values of the critical features from Xo to Xa. Similarly, the
attacker can predict the signal timing plan with the altered
critical feature, i.e., f(Xa). The dissimilarity between the
pseudo-optimal timing plan and the timing plan under attack
are computed using the L2 norm. The attacker’s objective is to
maximize the dissimilarity by generating falsified trajectories
that can alter the values of the critical features, as shown in
the following problem (P1):

max
Xa

‖f(Xo)− f(Xa)‖2 (1)

s.t. Xa ∈ ΩXa|Xo
(2)

In P1, the feasible region ΩXa|Xo
is dependent on Xo. For

example, after injecting a falsified stopped vehicle (a falsified
vehicle has a legitimate trajectory in the form of BSMs but
is not physically on road), the new queue length cannot be
smaller than the originally observed queue length.

When broadcast by the attacker’s OBU, the falsified trajec-
tory is mixed with regular CV trajectories. The RSU collects
all the trajectories and uses them as input data for traffic
signal optimization. Thus, the generated signal timing plans
are influenced by the falsified trajectory, and thus are no longer
optimal. As a result, vehicles may spend extra time passing the
intersection and hence the total travel time is increased.
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This attack model aligns with a recent study on black-box
attacks against unknown machine learning models [18]. By
using a surrogate model, the attacker crafts adversarial images
to fool a target model so that the target model would output
erroneous predictions.

IV. ATTACK EVALUATION

In this section, a case study is presented to evaluate the
impact of the proposed attack model on the I-SIG system.

A. Simulation Setup

A simulation environment is built using Matlab. A typical
4-leg intersection with eight phases is modeled. Each approach
has one left-turn lane and one through lane. Right-turn lanes
are not explicitly modeled since their phase allocations are
usually the same as adjacent through lanes. The car-following
model from the NGSIM project is used to model vehicle
motions [25]. The minimum green time and the maximum
green time are set to be 5 seconds and 30 seconds for each
phase, respectively. The transition time between phases (i.e.,
yellow and red clearance time) is 4 seconds. The traffic demand
for each movement is 400 veh/h. The communication range is
set to be 300 meters. The free flow speed is 15.65 m/s. The
resolution of the simulation is 10 Hz, which is consistent with
the frequency of CV communication [21]. Attacks are launched
every time I-SIG optimizes the signal timing plan.

B. Applying the Proposed Attack Model

1) Learning Control Logic: Because I-SIG executes opti-
mized signal timing for one barrier each time, the surrogate
model only needs to predict the green time of the four phases
in the current barrier. The surrogate model consists of two
decision tree regression models. The output of the first decision
tree model (labeled as Tree 1) is the barrier length (i.e., lead
phase plus lag phase). The second decision tree model (labeled
as Tree 2) outputs the green time of the lead phase. Then the
green time of the lag phase can be calculated by subtracting
that of the corresponding lead phase from the barrier.

A 30-hour simulation is run to generate a data set needed
for both training and validation. Totally, 2206 optimizations
are conducted. 80% of the data are randomly chosen for
training, while the remaining 20% are used for validation.
Mean absolute error (MAE), mean absolute percentage error
(MAPE), and root mean square error (RMSE) are utilized to
quantify errors for a given set of traffic features. The errors
are defined as the differences between predicted phase (barrier)
duration and the phase (barrier) duration generated by original
I-SIG. The SFS is applied to the list of common features and
the results are shown in Table I. In the first round, only one
feature is used for fitting the decision tree models. The model
with NAV has the least error for both trees. Therefore, NAV
is added to the critical feature set. In the second round, two
features are used for fitting the decision tree models, with one
feature fixed to be NAV. The model with NAV and ETA has
the least error. Thus, ETA is chosen as the second feature and
added to the critical feature set. This process is repeated to find
the third feature. However, the models with three features are
all worse than the best model in the second round. Thus, NAV
and ETA are identified as critical features. We note that the

Fig. 4. Comparison between I-SIG and the trained surrogate model

Fig. 5. Total delay for each experiment

two identified critical features are consistent with the findings
from a previous vulnerability analysis on I-SIG [4].

Figure 4 shows the effectiveness of the trained surrogate
model, in which the prediction by the trained surrogate model
and the ground truth generated by I-SIG are compared. The
color depth represents the density of the data. The majority of
the data lie on or near the 45-degree line, indicating that the
surrogate model has a good prediction accuracy. The MAE for
lead phase and barrier duration prediction are only 0.52s and
1.33s respectively (Table I). The prediction of the lag phase
has a relatively greater error because it is estimated indirectly
from the barrier and the lead phase.

2) Evaluating the Impact of Attacks: Four simulation ex-
periments are conducted to assess the impact of the proposed
attack model. Each experiment lasts for 5 hours, with the exact
same traffic demand and vehicle arrival patterns. The total
delay for each experiment is shown in Figure 5.

In Experiment I, the original I-SIG system operates nor-
mally without attacks. This experiment serves as the bench-

4



TABLE I. APPLYING SFS FOR IDENTIFYING CRITICAL TRAFFIC FEATURES

Feature set MAE[s] MAPE RMSE[s] Feature set MAE[s] MAPE RMSE[s]
QL 3.6771 9.32% 4.6842  QL 2.6690 14.34% 3.6185

NAV 1.3967 3.46% 2.3786   NAV 1.1888 6.82% 2.2235
HW 6.0618 15.53% 7.5209  HW 3.3484 17.76% 4.4968
ETA 5.4608 14.04% 6.7911  ETA 3.8290 19.84% 4.6471
VD 6.4353 16.45% 8.0939  VD 4.8858 25.85% 6.0647
FR 4.6341 11.76% 5.7694  FR 3.4285 17.85% 4.2815

NAV+QL 1.6386 4.06% 3.0106  NAV+QL 1.2375 7.01% 2.6973
NAV+HW 1.5842 3.89% 2.8640  NAV+HW 1.1151 6.29% 2.3574
NAV+ETA 1.3287 3.26% 2.3469  NAV+ETA 0.5205 2.95% 1.5097
NAV+VD 1.6177 3.97% 2.9335  NAV+VD 1.3257 7.64% 2.8670
NAV+FR 1.5162 3.74% 2.5721  NAV+FR 1.1948 6.86% 2.2860

NAV+ETA+QL 1.3959 3.46% 2.5778  NAV+ETA+QL 0.5513 3.10% 1.7964
NAV+ETA+HW 1.4065 3.48% 2.5982  NAV+ETA+HW 0.5398 3.07% 1.7040
NAV+ETA+VD 1.3977 3.44% 2.5750  NAV+ETA+VD 0.5404 3.02% 1.7978
NAV+ETA+FR 1.4059 3.49% 2.4968  NAV+ETA+FR 0.5398 3.04% 1.6367

Tree 1 (Barrier) Tree 2 (Lead Phase)

Round 1

Round 2

Round 3

mark for all the other experiments. In Experiment II, the
trained surrogate model is used to generate signal timing plans
and control the traffic signals. However, no falsified CV data
are injected to the system. As evidenced by a small increase
of 1.5%, the total delay is very close to the benchmark. This
indicates that the trained surrogate model could effectively
mimic the actual signal control logic. In Experiment III, the
attacker is assumed to attack I-SIG based on the feature ETA.
To achieve this, the attacker alters ETA by manipulating the
location and speed data in the falsified BSMs. It is worth noting
that only one falsified trajectory is injected into the system
per attack. The total delay increases by 19%. In Experiment
IV, the attacker is assumed to attack I-SIG based on the
feature NAV. The attacker alters NAV by injecting multiple
falsified trajectories to different phases per attack. The total
delay increases by 23%. Results indicate that the ETA attack
(only one falsified trajectory) is more effective than the NAV
attack (multiple falsified trajectories) because it can trigger
a vulnerability called “last vehicle advantage” in the I-SIG’s
logic. When under ETA attack, the I-SIG algorithm extends the
green time to the maximum value to serve the fake vehicle.
However, the NAV attack only adds fake vehicles into the
arrival table, which only marginally increase the green time
allocation. More details about the ETA attack can be found
in our previous study [4]. These experiment results show
that the proposed “black-box” attack model is effective in
increasing intersection delay, even with a limited budget. In
the original study, the maximum delay decrease brought by I-
SIG is 16.33% [6]. It means that our proposed attack model can
completely reverse the benefit brought by the CV technology.

V. DEFENSE STRATEGY

Although the focus of this study is on the impact eval-
uation of falsified data attacks, defense strategies are briefly
discussed. Because the attacker needs to learn the control
logic before attack, one natural defense strategy is to interfere
with the learning process. For example, we may add noise
to the optimized signal timing plans. This may increase the
difficulty in learning the surrogate model. However, when the
environment is benign (i.e., no attacks), adding noise makes the
system operate under sub-optimal conditions. Thus, a trade-off
needs to be made between security and efficiency.

Another defense strategy is to proactively identify falsified

trajectories before they are utilized by the control system.
The falsified trajectories are generated to alter the values
of the critical features, which does not represent true traffic
conditions. For example, in our case study, to alter ETA
to a large value, the attacker needs to generate a falsified
trajectory which shows that the falsified vehicle approaches the
intersection with a low speed. Such falsified trajectories are
behaviorally different from normal trajectories. By applying
methods from the area of misbehavior detection, we may
be able to identify abnormal (falsified) trajectories. We will
investigate this defense strategy in our future research.

VI. RELATED WORK

Based on the general structure of a CV-TSC system in
Figure 1, three attack surfaces can be identified at a connected
intersection: the transportation infrastructure (RSU, signal con-
troller, and traffic signals), the TMC, and the CVs. Usually,
the transportation infrastructure is deployed in an agency’s
local network with firewall protection. It is difficult to access
the infrastructure devices remotely from the public domain.
In order to initiate an attack, attackers have to open up the
signal control cabinet and establish a wired connection to the
devices. Once attackers gain access to the system, they can
directly manipulate the signal timing. Alternatively, attackers
may trespass into the TMC and send control commands to
the signal controller directly. These attacks are referred to
as direct attacks, which have been investigated by previous
studies [5], [9], [15], [19], [20]. These studies mainly focus
on conventional traffic control systems, for instances, fixed-
timing signal control [15] and ramp metering control [20].

The other type of attack towards the traffic control system
is indirect attacks, in which attackers try to influence signal
control decisions by injecting falsified data. Indirect attacks
can be launched from the vehicle side. By exploiting software
vulnerabilities, it is practically feasible that attackers hack into
the communication devices in their own CVs and broadcast
falsified messages. This is similar to compromising other
Electronic Control Units as demonstrated in the literature [3],
[14]. Alternatively, attackers may hack into their vehicles’
internal networks. This can be achieved in many ways. For
example, attackers may hack into the infotainment system of
the vehicle [16]. Once attackers are in the vehicle’s internal
network, they would be able to take control of a wide range

5



of vehicle functions [14], including sending malicious BSMs
that contain falsified data elements. Because attackers have
arbitrary access to their own vehicles, indirect attacks are
much more achievable. Recent studies have shown that falsified
input data can indeed influence system control decisions and
significantly downgrade the system performance. For example,
influencing routing decisions in social navigation systems by
generating virtual traffic jams (e.g., Google map, Waze) [11],
[22], or increasing total travel delay by affecting signal control
decisions [4], [7], [8], [17], [24].

VII. CONCLUSION

In this paper, we aim to investigate the security problem
of CV-TSC systems. Compared to the literature, this study
considers a more realistic attack scenario in which the control
logic of CV-TSC systems is unavailable to the attacker. We
assume that the attacker may learn the signal control logic
using a surrogate model and identify critical traffic features.
With the learned model, the signal timing plan generated by
the control system can be predicted by the attacker. Falsified
BSMs then can be constructed to alter the values of the critical
traffic features. Consequently, the signal control decisions are
influenced. The attacker is assumed to find the “best” value of
the critical features by maximizing the dissimilarity between
the pseudo-optimal timing plan and the resultant signal timing
plan under attack. A comprehensive case study is conducted
with I-SIG as the selected CV-TSC system. We find that the
surrogate model can effectively mimic the actual control logic
of I-SIG, which is sensitive to two critical traffic features: ETA
(estimated time of arrival) and NAV (number of approaching
vehicles). Two types of attacks are launched based on these
two features. Simulation experiments show that the total delay
increases by 19% and 23% respectively under these two
attacks. This indicates that even though the control logic is
unknown, an attacker is still able to cause severe damage
to the CV-TSC system. To protect the system, two defense
strategies are briefly discussed. Based on the findings of this
paper, future work will focus on the proactive defense strategy
to safeguard CV-TSC systems from falsified data attacks. The
goal of the defense strategy is to detect anomaly in BSMs
and filter out falsified trajectories before applying them in the
CV-based applications.
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