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in order to perform the attack. Because of this, the attacks
suggested in the recent studies have not appeared in the wild.
We wonder whether a complicated attack is really needed to
manipulate an ADAS?

In this paper, we evaluate the robustness of Mobileye 630
PRO, the most popular off-the-shelf ADAS on the market today,
to camera spoofing attacks applied using a projector. We show
that attackers can use a projector in order to inject traffic signs
into Mobileye 630 causing this system to issue false warnings.
We performed various experiments and assessed the influence
of color, shape, projection speed, diameter, and ambient light
on the outcome of the attack by mounting a projector onto
a drone and injecting traffic signs into the ADAS of a real
driving car.

We make the following contributions: First, unlike other
studies in this area that trained a classifier and found vulnera-
bilities to attack the ADAS, we evaluated the practicality of our
attack against Mobileye, a real off-the-shelf ADAS. Second,
our vector attack doesn’t require the attacker to be in the attack
location; we demonstrate a remote attack that can be executed
by a drone.

II. RELATED WORK

In this section, we describe related work on attacks against
ADASs and provide an overview of adversarial attacks. Com-
puter vision object detectors are integrated to ADAS and used
to detect traffic signs from a video stream. Many of these
detectors are trained using deep learning techniques. Several
studies created adversarial instances to trick such deep learning
classifiers and showed that this type of classifier is vulnerable
to spoofing attacks. Petrakieva et al. [2] demonstrated how
perturbations that are often too small to be perceptible to
humans can fool deep learning models. Sitawarin et al. [6]
showed that they could embed two traffic signs in one traffic
sign with a dedicated array of lens that causes a different
traffic sign to appear depending on the angle of view. Eykholt
et al. [7] and Lu et al. [3] showed that physical artifacts (e.g.,
stickers, graffiti) misled computer vision classifiers. In the
abovementioned studies, the researchers only trained dedicated
models by themselves and identified instances that could exploit
them using white-box techniques. Furthermore, the researchers
did not show the effectiveness of the attack against an off-the-
shelf ADAS. In contrast, we demonstrate our attack against
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today, to camera spoofing attacks applied using a projector. We 
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projected in proximity to the car that the system is installed in. 
We assess how changes of the road signs (e.g., changes in color, 
shape, projection speed, diameter and ambient light) affect the 
outcome of an attack. We find that while Mobileye 630 PRO 
rejects fake projected road signs that consists of non-original 
shapes and objects, it accepts fake projected road signs that 
consists of non-original colors. We demonstrate how attackers 
can leverage these findings to apply a remote attack in a realistic 
scenario by using a drone that carries a portable projector which 
projects the spoofed traffic sign on a building located in proximity 
to a passing car equipped with Mobileye 630. Our experiments 
show that it is possible to fool Mobileye 630 PRO to issue false 
notification about a traffic sign projected from a drone.

I. INTRODUCTION

Advanced driver assistance systems (ADASs) [1] are elec-
tronic systems that aid automobile drivers while they are 
driving. Such systems aim to help drivers by: 1) issuing
alerts (e.g., collision avoidance) regarding potential threats and
2) recognizing upcoming traffic signs. ADASs have already 
become an integral part of the current car generation, and they
will provide automated functionalities for the next generation 
of cars (autonomous vehicles).

Security of ADAS have recently attracted attention of
researchers that has begun to investigate the their robustness 
to various attacks. Recent studies [2], [3], [4], [5] showed that
ADAS alerts and notifications can be spoofed by applying ad-
versarial machine learning techniques to traffic signs, allowing 
attackers to control the output of the ADAS for their benefit.
The application of the methods suggested in these studies 
exposes drivers that respond to ADAS alerts and notifications 
and other nearby drivers and pedestrians to variety of risks
that can cause accidents. However, the suggested attacks are
complicated and require deep understanding of the ADAS used
in order to manipulate it. In addition, the nature of the attacks 
necessitated that the attacker be located near the traffic sign
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the Mobileye system and mislead it so it recognizes spoofed
traffic signs using black-box techniques.

Attacks against ADAS are not, however, limited to mislead-
ing the classifier using an adversarial traffic sign. Petit et al.
[4] presented two attack vectors against car’s sensors such
as LiDAR and cameras. They were able to show that: 1) a
laser directed at the camera can destroy the optical sensor
permanently, and 2) LiDAR’s output can be spoofed using
infrared light. Yan et al. [8] demonstrated various spoofing
attacks against a camera, ultrasonic sensor, and radar that
can cause Tesla’s Model S to misperceive the distance of
nearby obstacles. However, it is not possible to perform the
suggested attacks [4], [8] on a driving car due to the complexity
of the attacks because: 1) they require deploying devices at
specific ranges from the attacked car, and 2) the attacker must
connect the hardware directly to a driving autonomous car
which can be a major challenge due to the driving speed. A
recent study [5] misdirected an autopiloted vehicle, taking it in
the wrong direction. The authors placed interference patches
(small stickers) on the ground at two way route, causing the
vehicle to turn in to the opposite lane. In this case, the attacker
must physically put the stickers on the road; in contrast, our
attack vector doesn’t require the attacker to be on site, since
the drone can be deployed remotely.

Other famous attacks against cars that are not related to our
work are [9], [10], which were based on compromising the
firmware of the car or an internal device. Our attack model is
much lighter than these attacks, since it does not require us to
hack to those systems.

III. THREAT MODEL

We consider an attacker as any malicious entity with the
aim of attacking a driving car with equipped with Mobileye
630 PRO. The attacker can inject spoofed traffic signs into
Mobileye using a portable projector mounted on a drone. The
attacker’s goals can be to: 1) harm or manipulate the car of a
specific victim, or 2) cause environmental chaos (e.g., harm
multiple cars in a specific region such as a city, neighborhood,
highway, etc.).

IV. MOBILEYE ANALYSIS

Here we analyze the robustness of Mobileye 630 PRO against
various projected road signs. Mobileye is an external ADAS that
provides function-specific vehicle automation (Level 0). The
Mobileye 630 PRO contains two main components. The first is
a camera, which is installed on the windshield, under the rear
view mirror, and the second is a small display which is placed
in front of the driver and provides visual and audible alerts
about the surroundings as needed. Mobileye has the following
features: lane departure warning, pedestrian collision warning,
forward collision warning, headway monitoring and warning,
intelligent high beam control, and traffic sign recognition. In
this section we focus on testing the robustness of its traffic
sign recognition.

In the following subsections, we learn the effect of environ-
mental factors (ambient light, distance) on the result of the

attack. In addition, we test the robustness of the Mobileye for
classifying traffic signs that do not exist.

A. Experimental Setup

Fig. 1. Experimental setup: the projected sign is boxed in red, and the attacked
vehicle is boxed in yellow

In this subsection, we describe the setup for the experiments
performed. For convenience we used a white projector screen,
in order as screen for the projected traffic sign. A portable
projector was used to provide the sign’s content. The injection
method, as described in Section III, is comprised of the
projector and screen. The portable projector was placed on
a tripod about 2.5 meters from the screen and projected a
traffic sign onto the center of the screen; while the sign was
projected in this way we drove the car (a Renault Captur
equipped with Mobileye 630 PRO) in a straight line at a speed
of approximately 25 km/h. Figure 1 presents an illustration of
our experimental setup.

B. Influence of the Projected Sign’s Diameter

Fig. 2. Influence of the sign’s diameter

1) Experimental Setup: In this case, we investigate whether
the size of the projected sign influences the distance from which
the Mobileye 630 PRO’s sensor can detect the projected sign.
We repeated the experiment five times, projecting a different
sized sign each time, and calculated the average detection
distance.
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2) Results: Figure 2 presents the results of this experiment.
As can be seen, if the sign is too small (less than 16 cm in
diameter) the Mobileye 630 Pro sensor didn’t detect it at all.
The red dots in the graph symbolize the average distance at
which we managed to mislead the sensor, and the grey area
shows the range of the entire samples set.

3) Conclusion: The diameter range is wide and provides a
lot of room for error when projecting a traffic sign. Based on
our measurements, the distance can range from approximately
5-16 meters.

C. Influence of the Color of the Projected Sign

Fig. 3. (a) examples of different colored traffic signs, (b) an example of a
different traffic sign shape, (c) an example of an incorrect or unrecognized
speed limit value

1) Experimental Setup: Here we assess whether the Mobil-
eye 630 PRO sensor is sensitive to the color of the sign. We
tried various colors as seen in (Figure 3a). First we projected
the sign with its true colors, and then we verified that the
Mobileye 630 PRO sensor managed to recognize the sign.
Next, we projected the same sign but this time with a color
scheme which is different from the real one.

2) Results: We could see, quite quickly, that Mobileye is
not sensitive to color, since all of the signs tested managed to
mislead the sensor (even the black and white speed limit sign
seen in, Figure 3a).

3) Conclusion: Based on these results we conclude that the
Mobileye 630 PRO sensor only considers the shape of a sign
when trying to classify the sign’s content.

D. Influence of the Projected Sign’s Shape

1) Experimental Setup: In this case, we evaluate whether
the Mobileye 630 PRO sensor can detect signs which do not
take the form of their original shape. For this experiment we
simply took a speed limit sign and modified its shape (as seen
in Figure 4b). This experiment was binary, i.e., we only wanted
to know if the sign can be detected or not.

2) Results: We utilized a total of seven different shapes (a
triangle, rectangle, pentagon, and hexagon, as well as three
other more unusual shapes - a star, arrow, and random polygon).
The Mobileye 630 PRO’s sensor was unable to detect any of
these shapes.

3) Conclusion: We can conclude the Mobileye system
considers just the shape of the sign and isn’t fooled by unknown
shapes.

4) Experimental Setup: In this case, we tested the effect of
ambient light, utilizing 20 samples (drives) from every hour
of the day to check our injection success rate.

5) Results: Figure 4 presents the results of this experiment;
success is considered a sample (drive) in which Mobileye
recognized the projected sign.

6) Conclusion: Based on our analysis of these results we
can conclude that is possible to inject a spoofed traffic sign
at all hours of the day, but performance is best later in the
day (in the evening and at night). One thing that should be
considered with regard to ambient light is the equipment used,
since the opacity of the projected sign depends on the ambient
light as well as the projector used (a better success rate may
be achieved with a better projector).

E. Influence of the Speed of the Projection Time

1) Experimental Setup: Here we assessed the speed of the
projection time that is needed to fool the system. We conducted
a few experiments that measured the amount of time required
for injection.

2) Results: We discovered that a projection speed of 100
ms is sufficient for fooling the system. We were unable to fool
the system with faster projection speeds probably due to the
frame per second rate of the optical sensor of the Mobileye.

3) Conclusion: The fast projection speed causes the attack
vector on the target to be very easy to inject and doesn’t require
staying for to long.

F. Influence of the Number on the Projected Sign

1) Experimental Setup: In this case, we investigate whether
the Mobileye 630 PRO sensor can also detect speed limit signs
with speed values that are not used in the real world (e.g.
Figure 3.c).

2) Results: Table 1 presents the results of this experiment.
3) Conclusion: Based on these results, we can conclude

that incorrect speed limit signs are effective at misleading the
system. The system do not ignore them and classify them as
other similar traffic signs.

V. ATTACKING A CAR WHILE DRIVING

In this section, we demonstrate how attackers can spoof
Mobileye 630 PRO’s video camera remotely using drone.

1) Experimental setup: We mounted a portable projector on
a drone (DJI Matrice 600) (Figure 4). In this experimental setup
our car (a Renault Captur equipped with Mobileye 630 PRO)
was driven in an urban environment as the attacker operated a
drone, positioning the drone so the spoofed speed limit sign can
be injected into the Mobileye sensor. The attacker projected the
incorrect speed limit sign (see Figure 4), managing to mislead
the Mobileye sensor which recognized the sign as a 90 km/h
speed limit sign (see Figure 5). The implemented attack vector
can be seen in an uploaded video of the attack 1.

1 https://youtu.be/C-JxNHKqgtk
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Fig. 4. Left: Influence of Ambient Light. Middle: the drone with the projector used in our experiments, Right: the moment of the attack (the projected road
sign is boxed in blue, the attacker’s drone is boxed in purple, and the victim’s car is boxed in red).

TABLE I
DETECTION OF INCORRECT SPEED LIMIT SIGNS,(LEFT: SPEED LIMIT ON

THE PROJECTED SIGN. RIGHT: THE DETECTED SPEED LIMIT, AS SHOWN ON
THE MOBILEYE DISPLAY, X MEANS NO DETECTION)

Projected Speed limit Detected Speed limit

0 X
1 X
2 X
3 X
4 X
5 5
6 X
7 X
8 X
9 X

27 X
43 X
69 60
71 70
88 80

150 X
160 X
170 X
180 110
190 110
200 X

Fig. 5. Mobileye display before and during the attack.

2) Results: We managed to fool Mobileye so it classified
the speed limit as 90 km/h when the speed limit for a city
road is only 30 km/h.

VI. FUTURE WORK

As future work, we suggest to test whether camera spoofing
can be applied by embedding a traffic sign to an advertisement
presented on a digital billboard in an invisible manner (e.g.,
by flashing the traffic sign for a split second) [11]. We also
suggest examining whether the attack can be applied using
infrared projection, exploiting the fact that a narrow spectrum
of frequencies, the near infrared, is also captured by some

CMOS sensors (this fact was exploited to establish an optical
covert channel [12] and to break the confidentiality of FPV
channel of commercial drones [13], [14]). We also suggest to
test whether attackers can project a fake lane in order to fool
Mobileye 630’s lane detection functionality [15].
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