
CANCloak: Deceiving Two ECUs with One Frame

Li Yue
Tsinghua University

yuel18@mails.tsinghua.edu.cn

Zheming Li
Tsinghua University

lizm20@mails.tsinghua.edu.cn

Tingting Yin
Tsinghua University

ytt18@mails.tsinghua.edu.cn

Chao Zhang�
Tsinghua University

chaoz@tsinghua.edu.cn

Malicious 
Transmitter Receiver1 Receiver2

CAN Bus

meat meet

meæt

!

meæt meæt

Fig. 1: CANCloak Attack: A malicious transmitter sends an
ambitious waveform, different receivers read it differently.

legitimate ECU nodes [2], or key establishment schemes
derived from pre-shared keys [3], or cryptography support with
special hardware [4]. These solutions are hard to deploy in
practice, since they have to extend the standard CAN protocol
and require collaboration from all ECU devices. Another type
of solutions provided by researchers are intrusion detection
systems (IDS), e.g., [5, 6], which in general attach a detector
ECU to the CAN bus and listen all CAN messages to perform
anomaly detection, signature or pattern matching. This type of
solutions is attractive and easy to deploy in practice.

In this paper, we point out a new attack, CANCloak, which
can deceive IDS to make wrong decisions, or confuse ECUs to
work collaboratively. More specifically, attackers can transmit
specially-crafted ambiguous waveform on CAN bus (via a
compromised ECU, or a maliciously ECU attached to the
On-Board Diagnostics (OBD) port), and lead two receivers
to interpret it as two different data frames, as illustrated in
Figure 1. In this way, if one of the receivers is an IDS,
it may fail to detect command received by the other victim
ECU. Besides, if none of the deceived ECUs is an IDS, then
attackers may issue two instructions at the same time. The
vehicle may have abnormal behavior if these instructions are
mutually exclusive(e.g., full-throttle while full-braking).

We studied the data link layer CAN standard [7], and
pointed out the root cause is the ambiguous settings of ECU
nodes connected to the CAN bus. Specifically, each ECU has
a sample-point setting in physical layer, which controls when
this ECU reads state of CAN bus and then determines the
logic bit value. ECUs with different sample-point settings can
communicate on a same CAN bus, which is a common case
in practice. Attackers could exploit this inconsistent setting to
launch the CANCloak attack.

We make the following contributions in this paper:

– We found a security issue in the physical layer of CAN,
which could cause inconsistency to ECU nodes.

– We proposed a CANCloak attack to exploit this issue,
which is able to deceive two ECUs with one CAN frame.

– We developed a test environment consisted of 3 ECUs,
including a transmitter capable of launch CANCloak
attack.

Abstract— Modern vehicles have many electronic control units 
(ECUs) connected to the Controller Area Network (CAN) bus, 
which have few security features in design and are vulnerable to 
cyber attacks. Researchers have proposed solutions like intrusion 
detection systems (IDS) to mitigate such threats. We presented 
a novel attack, CANCloak, which can deceive two ECUs with 
one CAN data frame, and therefore can bypass IDS detection or 
cause vehicle malfunction. In this attack, assuming a malicious 
transmitter is controlled by the adversary, one crafted CAN data 
frame can be transmitted to a target receiver, while other ECUs 
shall not receive that frame nor raise any error. We have setup a 
physical test environment and evaluated the effectiveness of this 
attack. Evaluation results showed that success rate of CANCloak 
reaches up to 99.7%, while the performance depends on the attack 
payload and sample point settings of victim receivers, independent 
from bus bit rate.

I. INTRODUCTION

The number of electronic devices in vehicles keeps in-
creasing over the past decade. A modern vehicle could have 
tens of ECUs as well as hundreds of sensors connected to the 
CAN bus, which are used by engine units, braking system, 
transmission system, and infotainment module etc. to improve 
both safety and comfort of driving. However, due to the lack 
of security features in design, vehicles are prone to cyber 
attacks. Several research groups have demonstrated successful 
attacks against modern vehicles [1]. For instance, attackers 
could exploit vulnerabilities in WiFi or Bluetooth modules 
to access vehicles remotely, and then exploit vulnerabilities 
in infotainment modules to compromise reachable ECUs that 
are connected to the CAN bus, and finally issue malicious 
commands through the compromised ECU to control other 
ECUs and therefore vehicles.

CAN bus is the de-facto standard used by all vehicle manu-
facturers to provide reliable communication between different 
in-vehicle ECUs. However, CAN protocol in design lacks 
modern security features, e.g., end-to-end encryption, message 
authentication or node authorization. It therefore opens the 
door to attackers, i.e., a malicious or compromised ECU that 
connects to the CAN bus could compromise the whole network 
and take control of a vehicle.

Researchers have proposed several mitigations to address 
such threats. The first type of solutions is message authenti-
cation, which relies on either symmetric keys shared among

Workshop on Automotive and Autonomous Vehicle Security (AutoSec) 2021 
25 February 2021, Virtual
ISBN 1-891562-68-1
https://dx.doi.org/10.14722/autosec.2021.23024
www.ndss-symposium.org



CAN High

CAN Low
CAN Status

Logic Bit

Format prev. frame SOF arbitration field (11-bit identifier + 1-�������) control field data field CRC field (15-bit CRC value + 1-bit delimiter)
ACK ACK

delim. EOF (7 recessive bits)

Fig. 2: A Sample CAN Data Frame Signal

Node 1 Node 2 Node n

CAN High

CAN Low
120Ω 120Ω

Fig. 3: CAN Bus Topology

– We evaluated the performance of CANCloak, showing an
attack success rate up to 99.7% under certain experiment
parameter.

II. BACKGROUND

Over the past few decades, automobile manufacturers equip
their new cars with more and more high-tech features, like lane
departure warning (LDW) system, blind-spot warning (BSW)
systems, and automatic emergency braking (AEB) systems to
improve both safety and convenience of driving. Autonomous
driving is coming to reality with the help of those devices. The
structure of modern cars has transformed from machinery to
complex in-vehicle electronics networks. For example, modern
vehicles are running with up to 2500 signals exchanged by 70
electronic control units (ECUs) [8].

A. Controller Area Network (CAN)

The controller area network (CAN) is widely used to
provide a communication channel for different ECUs within
a car. Bosch released the CAN protocol specification [9] in
1986 and then updated it to CAN 2.0 [10] in 1991. After that,
the CAN specification became an ISO standard [7] and was
widely used by all automobile manufacturers.

Figure 3 shows a typical CAN bus topology. Any node
could act as a master (multi-master) to send a message over
the bus, while other nodes will receive and act on the message
(multi-cast). Modern vehicles may have multiple CAN buses.

CAN uses a two-wire twisted cable as bus to connect all
embedded control units (ECUs). These 2 cables, i.e., CAN
High (CANH) and CAN Low (CANL), hold differential signal
to achieve high reliability and noise tolerance. As shown in
Figure 2, the voltage difference between these two signals turns
the bus to one of two states, i.e., the dominant state (logic "0")
when VCANH > VCANL, and the recessive state (logic "1")
when VCANH ≤ VCANL. For convenience, we use negative
edge to represent logic "1" to "0" transition, and use positive
edge to represent logic "0" to "1" transition.

B. CAN Frame

CAN frame, or "message", is the basic data unit sent
through CAN bus. Though there are other type of frames, in
this paper, we will only focus on data frames.

As Figure 2 shows, a CAN data frame consists of several
fields, including the start of frame (SoF), arbitration field,
control field, data field, cyclical redundancy check (CRC) field,
acknowledge (ACK) field, and the end of frame (EoF).

SoF and EoF mark the beginning and the end of a data
frame, consisting of 1 dominant bit and 7 recessive bits
respectively. The arbitration field consists of an 11-bit unique
identifier (which represents the message priority) and one
Remote Transmission Request (RTR) bit. The control field has
several control flags, including IDentifier Extension bit (IDE)
and Data Length Code (DLC). The data field contains data
to be transmitted with a maximum length of 8 bytes. CRC
is applied to detect any transmission error in the whole data
frame, followed by acknowledge bits.

C. Arbitration

CAN uses Carrier Sense Multiple Access/Collision De-
tection (CSMA/CD) as an arbitration scheme. Following this
scheme, every ECU must check whether there are no activities
for a while on the bus before sending messages, and then
monitor collisions during transmission. If an ECU sends a
recessive bit and then reads back a dominant bit, it learns that
another ECU is sending a message with a higher priority, and
thus will stop transmitting immediately.

D. ERROR Handling

To keep robust and functional even under high electrical
disturbances, the CAN protocol adopts several error detections.

a) Bit Monitoring: ECU keeps tracking the actual bus
status while sending a message. If any inconsistency happens
(e.g., sending a recessive bit but reading back a dominant bit),
a transmit error shall be raised.

b) CRC Check: Every frame includes a 15-bit CRC. All
receiver nodes will re-calculate the CRC and compare it with
the one in the received message. If two CRC values mismatch,
a receive error shall be raised.

c) Stuff Bit Check: The CAN bus does not have an
independent clock wire, and ECU nodes rely on monitoring
negative edges to synchronize. However, the CAN protocol
uses the Non-Return-to-Zero (NRZ) bit encoding scheme, in
which consecutive bits of the same polarity exhibit no voltage
level changes on the bus. Therefore, if many consecutive
bits of the same polarity are being transmitted, then there
will be no negative or positive edges on the CAN bus for
a period of several bits, therefore receiver nodes may get out-
of-synchronization.

To address this issue, a CAN transmitter must actively
insert one bit of opposite polarity (called stuff bit) after five
consecutive bits of the same polarity have been transmitted
in the stream. On the receiver side, if a node detects any

2



violation against this stuffing rule, i.e., six consecutive bits
of same polarity (except EoF bits) are found in a stream, then
a stuff error will be raised.

d) Acknowledge Check: Each receiver node should send
a dominant bit to the bus during the ACK slot. The transmitter
will signal an ACK error if no dominant bit was detected
during the ACK slot.

E. CAN Sub-Bit Structure

TABLE I: Segments of CAN bit

Segment Length Explanation

Synchronization
Segment 1 tq To synchronize the various CAN nodes

on the bus

Propagation
Segment 1~8 tqs Compensate for physical delay times

within the network

phase-1 Segment 1~8 tqs Compensate for edge phase errors, may
be lengthened during re-synchronization

phase-2 Segment 2~8 tqs Similar to phase-1, may be shortened
during re-synchronization

tq: time quanta

The minimum time unit used in a CAN controller is time
quanta, derived from the ECU’s system clock. For each ECU,
the time period of receiving a bit is split into four segments,
i.e., synchronization segment, propagation segment, phase-1
segment, and phase-2 segment, whose time duration are all
multiples of the ECU’s time quanta. Table I lists the structure
of a bit transmission time period, the length limit of each
segment and the explanation of each segment.

The separation point between phase-1 and 2 segment is
called the sample-point. ECU will read voltage of CAN bus
at sample-point to get bus state. Note that, segments’ length (in
number of time quanta) are up to the ECU’s settings, so does
the position of the sample-point. It is not necessary, and could
be physically infeasible, to synchronize all ECUs’ sample-
points. To make multiple ECUs work on the same CAN bus
simultaneously, the only hard requirement is the bus rate, i.e.,
the length of a bit time of every ECU, must be the same. It
is common to find ECUs with different sample-point settings
working on a same CAN bus1.

F. Synchronization Mechanisms

CAN is a message-based protocol and does not have a
specific timing wire for synchronization. Thus, CAN receivers
rely on extracting timing information from signals on the bus.
To receive every bits in a frame correctly, the CAN standard
provides two synchronization mechanisms in different layers.

Hard synchronization is the main mechanism used in
frame level synchronization. It happens when receiver detects
the first negative edge occurs after the last frame and inter-
frame interval on bus. This negative edge indicates the bus
idle status is over, and the first bit (SoF) of a new frame is
incoming. Once detected, the bit timing logic unit of the ECU
will be reset to the initial state.

1We have confirmed it in multiple real world ECUs.

Bit re-synchronization is a bit level synchronization
mechanism. Ideally, all ECUs’ bit length are identical, then
they will keep synchronized, receivers should observe bus state
flips only in its synchronization segment. However, due to the
accuracy limitation of physical and environmental factors such
as unequal temperature over the bus, different ECUs may have
different bit lengths. The CAN bus protocol has to be tolerate
and thus allows reasonable minor clock shift among ECUs.

While receiving a frame, a receiver may observe bus state
flip outside the synchronization segment, since the transmitter
may have an inconsistent bit length. Specifically, the bus status
flip (a negative or positive edge) may arrive slightly later than
expected, i.e., in the receiver ECU’s propagation or phase-
1 segment. Or, the bit flip may arrive slightly earlier than
expected, i.e., in the phase-2 segment of the previous bit.

The bit re-synchronization mechanism is proposed to com-
pensate for this phenomenon. In every CAN controller, there is
a variable named re-Synchronization Jump Width (SJW). If the
receiver ECU finds a negative edge outside its synchronization
segment, it will adjust its bit length with SJW number of
time quanta, in order to keep pace with the transmitter in
the following bits. Specifically, if the receiver ECU finds a
negative edge in the propagation or phase-1 segment, it learns
that its last bit length is shorter than the transmitter’s, and
thus will lengthen its bit length, by expanding the phase-1
segment with SJW time quanta. Otherwise, if receiver ECU
finds a negative edge in the phase-2 segment, it learns that its
bit length is longer than the transmitter’s, and thus will shorten
its bit length, by reducing the phase-2 segment with SJW time
quanta.

III. THE CANCLOAK ATTACK

In this section, we will present a security issue of CAN
protocol, and present the CANCloak attack which could exploit
this issue to deceive ECUs.

A. Threat model

We assume the target CAN bus follows the latest CAN data
link layer and physical signalling standard [7], and at least two
ECUs connected to the CAN bus have different sample-point
settings. Regarding the defense, we assume no authentication
mechanisms have been deployed, but an IDS may or may not
be attached to the CAN. This is a common scenario in practice.

On the other hand, we assume the adversary knows sample-
points of two victim CAN receivers (which may or may
not include an IDS). It is feasible for attackers to get such
information, e.g., by disassemble another adversary-owned
vehicle of the same model, extract target ECU, then take
experiments on it. Moreover, we assume the adversary could
attach a malicious ECU which can send crafted waveform to
the CAN bus, e.g., via the OBD-II diagnose port. In practice,
this is also feasible for attackers.

Given a designated CAN frame (FrameA), goal of CAN-
Cloak attack is to let a target victim receiver, ReceiverA, ac-
cepts FrameA as intended, and the other receiver, ReceiverB ,
cannot notice FrameA from the same bus. It is important to
make sure that ReceiverB would not raise any receive error
during this attack, otherwise it will send an active error frame
immediately to interrupt ReceiverA.

3



1
0

1
0

1
0

1
0

Recv1 sample-point Recv2 sample-point

�b� 1-bit waveform�a� 0-bit waveform

�d�n-bit waveform�c�p-bit waveform
Switch-Point

Switch-Point Switch-Point

Switch-Point

Fig. 4: The adversary transmitter could send a waveform of
0-bit, 1-bit, p-bit and n-bit, by switching bus state between
sample-points of two receiver ECUs, to trick them getting
different combination of bit values.

FrameA BitStringA

FrameB BitStringB

Synthesized
Bitstring

SamplePointA

SamplePointB

SwitchPoint

Synthesized
Waveform

(2)

(5)

(2)

(3)

(4)

Fig. 5: Design of CANCloak

B. Intuition: One Bit Deceiving

Given that ECUs read CAN bus state only at sample-point,
it is possible to craft an ambiguous signal letting receivers
decoding it differently, if these receivers have different sample-
points.

In a 3-ECU transmission scenario, while one ECU act
as transmitter and other two as receivers, without loss of
generality, assuming ReceiverA has a sample-point earlier
than ReceiverB . While these two ECUs are about to receive
next bit from bus simultaneously, they would extract same
polarity of result from bus, as illustrated by 4 (a) and (b) for
0-bit and 1-bit respectively.

However, if the transmitter of current waveform is ma-
licious, intending to trick two receivers to read different bit
values, Adversary could switch the bus state around a specially
chosen switch-point, which sits in between sample-points of
receivers. As shown in Figure 4 (c), the adversary maintain bus
state to logic ’0’ before switch-point of bit, and manipulate it
to logic ’1’ after it. Thus ReceiverA would recognize this bit
as ’0’, while ReceiverB mark it as ’1’. Figure 4 (d) shows
the opposite scenario. For simplicity, since these abnormal bit
introduces positive (logic ’0’ to ’1’) or negative (logic ’1’ to
’0’) edge to waveform, we denote them as ’p’-bit and ’n’-bit

C. Design of the CANCloak Attack

Since a frame is transmitted as a bit string and an adversary
is able to deceive ECUs with one bit as discussed in previous
sections, she/he could then synthesize an attack waveform bit
by bit. Figure 5 shows the overview of the workflow.

Though, there are several issues to address in this attack.

1) Introduce FrameB: As described in III-A, ReceiverB
should neither detects FrameA nor raises any error. Thus, we
shall let ReceiverB receives another frame, FrameB , which
meets the following basic requirements.

• Has a legitimate CAN data frame structure.
• Is different from FrameA.

2) Construct Bit-Strings: After choosing both frame in
application layer, we need to craft their counterpart in data link
layer, bit-string of ’0’s and ’1’s. Usually, this step is automati-
cally complete by transmitter part of CAN controller hardware.
However, those bit-strings would be blind to application layer,
which is needed in further phase of our attack. So, we manually
finish this step (fill control field and CRC field, etc.) of both
frame, resulting in BitStringA and BitStringB respectively.

3) Synthesize Bit-String: Given two bit-strings expected by
the victim receivers, the adversary needs to synthesize a special
bit string consisting of 0-bit, 1-bit, p-bit, and n-bit, in order to
deceive victim ECUs bit by bit.

Table II shows an example of synthesized bit string.

TABLE II: Example Synthesized Bit-String

BitStringA 1 0 0 1 1 0 0 0 1 1 0 1 0
BitStringB 1 0 1 1 0 1 0 1 0 0 0 1 1

Synthesized BitString 1 0 p 1 n p 0 p n n 0 1 p

4) Determine Switch-Point: Theoretically, the switch-point
could be placed anywhere between sample-points of the two
ECUs, and would not affect the attack performance. In prac-
tice, considering the electromagnetic interference, we set the
switch-point around the center of sample-points’ gap. We will
discuss the success rate of different switch-point settings in
Section IV-B.

5) Optimize FrameB: In this section, we will demonstrate
how content of FrameB influence attack performance, and
show a practical method of generating an acceptable FrameB .

The synthesized bit-string may introduce some ’n’-bits,
which introduce negative edge inside bits. These edges could
easily trigger receivers’ re-synchronization mechanism. For
the receiver having earlier sample-point, it will consider this
negative edge come later then sample-point and lay in phase-
2 segment of bit, then shorten this bit for SJW. For the
other receiver, this negative edge is in propagation or phase-1
segment, thus the bit time would be longer. As a result, there
will be a time gap between 2 receivers while stepping into
next bit. The cumulative effect of such time gap will confuse
receivers and possibly result in receive errors.

To avoid this chaos, we add another requirement:

• By manipulate FrameB , synthesized Bit-string should
have minimum number of ’n’-bits, (i.e., 1–>0).

It is easy to eliminate ’n’-bits in most part of frame, because
we can arbitrarily manipulate FrameB . In contrast, CRC field
of frame is not directly controllable, it is calculated from other
fields of the frame. Thus, we forge a large amount of FrameB

4



Transmitter
FPGA

Transceiver

Receiver1
STM32

Transceiver

Receiver2
STM32

Transceiver

PC

UART1 UART2
Control Field

Testing Field

Event
RecorderUART0

CAN Bus

Fig. 6: Illustration of a CANCloak attack scenario. Compo-
nents in the analyzing field are not needed in real world attacks.

candidates which does not create any ’n’-bit outside CRC field,
and elect the one create least number of ’n’-bit in CRC field to
be the actual FrameB . Though there are 15 bit in CRC field,
in most circumstance, we can find a solution having equal or
less than 1 ’n’-bit in 10 second, on a modern PC.

D. Implementation of CANCloak Test Bench

To demonstrate this attack, we setup a basic CAN bus
environment connected with the malicious transmitter and two
victim receiver ECUs. The structure is shown in the testing
field in Figure 6.

1) Malicious Transmitter: As the core of this attack, the
malicious transmitter is responsible for generating malformed
waveform to deceive two receivers. An off-the-shelf CAN
transceiver cannot generate crafted waveform directly, because
the synthesize CAN frames do not conform the normal CAN
bus data frame structure. We implemented a proof-of-concept
(POC) malicious transmitter based on an ALTERA EP4CE6
FPGA. FPGA can handle complex low-level logic of CAN
transmitter, while concurrently sending precise synthesized
waveform.

2) Victim Receivers: To make our testing platform closer
to a real-world scenario, the receivers are set up in the
most common way. Core of receivers are STM32F429 micro-
controllers, integrated with CAN controller peripheral module.
In our implementation, a CAN time quanta is 200ns. To meet
the most common bit rate of CAN bus, 500 kHz, each bit time
should be exactly 2ms, so each bit takes 10 time quantas in
our demonstration configuration.

3) Transceivers: Note that, since the I/O ports of the
FPGA and the STM32 micro-controllers are not able to handle
differential voltage signals on the CAN bus, we use three extra
NCV7342 CAN transceivers to connect the FPGA and micro-
controllers to the actual cable of the CAN bus.

4) Attack Verification: To verify whether the attack suc-
ceeds, we collect the messages received by victim ECUs and
compare them with the intention of the adversary. Note that,
this part is only for verification purpose, not required for real
world attacks. The structure is shown in the analyzing field in
Figure 6.

The work flow of event recorder is described as follow.
Every time a synthesized waveform is sent to CAN bus, event
recorder will wait for 50ms to let receivers process it, then ask
receivers if they accepted any frame recently. An success attack
is count only if ReceiverA accepted designated FrameA, and

both receiver did not raise any error. Finally, event recorder
uploads all result to PC for further process.

IV. EVALUATION

We conducted several groups of experiments on our test
environment to evaluate the performance of CANCloak attack.
The performance might be affected by the following parame-
ters:

• The Switch-Point used to synthesize the attack payload.
• The Bit Rate of CAN bus.
• The Gap of Sample-Points of victim receivers, determined

by their timing configuration.
• The Content of FrameA expected to accept by receivers.

We only change one parameter in each experiment to reveal
their influence.

A. Attack Payload Data Set

FrameA in CANCloak is designated, shall be determined
by real attack purpose. In our experiment, FrameA is an eight
bytes data frame whose ID and all data bytes are random.
FrameB is determined by FrameA. We spent 20 seconds
finding the best (least ’n’-bit in synthesized frame) FrameB ,
on a modern laptop with Intel Core i7-8550U CPU. This
process was repeated 1000 times. Thus we have a data set
consists of 1000 frame pairs after less than 6 hours.

B. Change the switch-point

We choose the switch-point as the variable for the first set
of experiments, while all other parameters are controlled. The
output port of the transmitter in CANCloak is working at a
50 MHz maximum flip rate. This rate is 100 times faster than
the CAN bus bit rate (500 kbps, Bits Per Second). So we have
101 potential switch-point positions (from 0% to 100%). If the
switch-point is 0%, the synthesized frame will be identical to
FrameB since there is no space leaving for FrameA. On the
contrary, if the switch-point is set to 100%, both receivers will
get FrameA.

For more details, we take switch-point as the variable in
this experiment and change it from 0% to 100%. The other
parameters are configured as follow: bit rate is 500 kbps,
sample-points of receives are 40% and 70%, i.e. their ratio of
segments’ length Synchronization:Phase-1:Phase-2 are 1:3:6
and 1:6:3 respectively. We tested all 1000 frame pairs in our
data set with every switch-point. So there are 101,000 tests in
total.

Figure 7 shows the success rate of CANCloak attack,
i.e., CANCloak alienate the ReceiverA to get FrameA and
ReceiverB to get FrameB . The valid attack window is from
30% to 70%. The highest success rate is 99.7%, appears when
switch-point is 45%. And the success rate is near 100% when
switch-point lies in 40% and 60%.

C. Change the Bus Rate

Although CAN standard [7] allows the rate vary from
10 kbps to 1 Mbps, there are two major CAN bus rates
usually used, High-Speed CAN Bus at 500 kbps and Low-Speed

5



0 20 40 60 80 100

switch-point (%)

0

20

40

60

80

100

su
cc

es
s

ra
te

(%
)

SamplePointA SamplePointB

70

Fig. 7: Attack Success Rate Over Different Switch Point

0 20 40 60 80 100

switch-point (%)

0

20

40

60

80

100

su
cc

es
s

ra
te

(%
)

1:3:6
1:6:3

1:4:5
1:6:3

1:5:4
1:6:3

Fig. 8: Attack success rate in different receiver timing settings

CAN Bus at 250 kbps. We select four representative rates for
evaluation, the maximum rate (1 Mbps) and the minimum rate
(10 kbps), and two commonly used rates (250 kbps, 500 kbps).

Other parameters are the same as the previous experiment.
While switch-point varies from 0% to 100% for each bit rate.
sample-points of receivers is 40% and 70%, All frame pairs in
our data set are tested on every switch-point, every bus rate.
Thus 404,000 tests in total were performed.

The result is omitted because the success rate curve remains
the same at different bus rates, indicating that CANCloak’s
performance stable over different bus rate settings.

D. Change the Gap Between Receivers’ Sample-Points

Timing parameters of different ECUs, like the length of
time quanta or segments, may different, though they are
connected to the same bus. For ReceiverA, 3 sets of tim-
ing parameters are used, which are 1:3:6, 1:4:5 and 1:5:4,
i.e., sample-point are 40%, 50% and 60% respectively. For
ReceiverB , the sample-point is fixed at 70% with the timing
parameters of 1:6:3. Other parameters are still the same as the
previous experiment. The bus rate is 500 kHz, The payloads
are all frame pair from our data set, The switch-point varies
from 0% to 100% for each sample-point setting. So there are
303,000 tests in total.

Figure 8 shows how attack success rate varies with 3
different sample-point settings. In general, the more deviation
these two receivers have in the sample-point settings, the wider
attack window adversary could have. In the first configuration,
there are 30% time interval between two receivers’ sample-
points. In this case, we have a 20% width perfect attack
window, which starts at 40% (i.e., identical to sample-point

of ReceiverA) and ends at 60% (i.e., a time quanta (10%)
ahead of ReceiverB’s sample-point). The perfect attack win-
dow drops to 10% and 0 for the second and third settings,
respectively.

In summary, the length of the perfect attack window of
switch-point is one time quanta less than the gap between the
sample-points. The ideal attack window starts at the sample-
point of ReceiverA, and ends at one time quanta before
sample-point of ReceiverB .

V. CONCLUSION

In this paper, we propose a new type of attack, CANCloak,
which takes advantage of the deviation between two CAN
ECUs. We then design and implement CANCloak attack.
As far as we know, CANCloak is the first attack against
CAN physical layer. Furthermore, we evaluate the overall
performance of CANCloak attack by changing sample-point
of CAN receivers, bit rate of bus, switch-point settings, and
attack payload. The results show that CANCloak attack has up
to 99.7% of success rate in certain conditions.

REFERENCES

[1] C. Miller and C. Valasek, “Remote exploitation of an
unaltered passenger vehicle,” Black Hat USA, vol. 2015,
p. 91, 2015.

[2] Q. Wang and S. Sawhney, “Vecure: A practical security
framework to protect the can bus of vehicles,” in 2014
International Conference on the Internet of Things (IOT).
IEEE, 2014, pp. 13–18.

[3] A. Van Herrewege, D. Singelee, and I. Verbauwhede,
“Canauth-a simple, backward compatible broadcast au-
thentication protocol for can bus,” in ECRYPT Workshop
on Lightweight Cryptography, vol. 2011, 2011, p. 20.

[4] E. Wang, W. Xu, S. Sastry, S. Liu, and K. Zeng,
“Hardware module-based message authentication in intra-
vehicle networks,” in 2017 ACM/IEEE 8th International
Conference on Cyber-Physical Systems (ICCPS). IEEE,
2017, pp. 207–216.

[5] M. Marchetti and D. Stabili, “Anomaly detection of can
bus messages through analysis of id sequences,” in 2017
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017,
pp. 1577–1583.

[6] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detec-
tion system based on the analysis of time intervals of can
messages for in-vehicle network,” in 2016 international
conference on information networking (ICOIN). IEEE,
2016, pp. 63–68.

[7] “Road vehicles - Controller area network (CAN) - Part
1: Data link layer and physical signalling,” International
Organization for Standardization, Standard, Dec. 2015.

[8] E. C. De Oliveira, “Electrical architectures and in-
vehicles networks,” SAE Technical Paper, Tech. Rep.,
2007.

[9] U. Kiencke, S. Dais, and M. Litschel, “Automotive serial
controller area network,” SAE transactions, pp. 823–828,
1986.

[10] R. Bosch et al., “Can specification version 2.0,” Rober
Bousch GmbH, Postfach, vol. 300240, p. 72, 1991.

6


