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Abstract—Automated Lane Centering (ALC) systems are
convenient and widely deployed today, but also highly security
and safety critical. Recently, Dirty Road Patch (DRP) attack is
proposed as a state-of-the-art adversarial attack against ALC
systems. In this work, we report our recent progress of improving
the DRP attack on attack deployability, attack stealthiness, and
effectiveness on real vehicle. We also discuss future directions.

I. INTRODUCTION

Automated Lane Centering (ALC) is a Level-2 driving
automation technology that automatically steers a vehicle to
keep it centered in the traffic lane. Due to its high convenience
for human drivers, today it is widely available on various
vehicle models such as Tesla, GM Cadillac, etc. While conve-
nient, such system is highly security and safety critical: When
the ALC system starts to make wrong steering decisions, the
human driver may not have enough reaction time to prevent
safety hazards such as driving off road or colliding into
vehicles in adjacent lanes. Thus, it is imperative and urgent
to understand the security property of ALC systems.

Dirty Road Patch (DRP) attack [1] is recently proposed as
a domain-specific adversarial attack to Deep Neural Network
(DNN) based ALC systems. This attack identifies dirty road
patches as an attack vector for physical-world adversarial
attacks on ALC systems due to 2 unique advantages: (1) Road
patches can appear to be legitimately deployed on traffic lanes
in the physical world, e.g., for fixing road cracks; and (2)
Since it is common for real-world roads to have dirt or white
stains, using similar dirty patterns as the input permutations
can allow the malicious road patch to appear more normal
and thus stealthier. With the attack vector, the DRP attack
systematically generates a malicious surface pattern mimicking
the normal dirty patterns and achieves high attack effectiveness
against a production ALC system. However, it is known that
the DRP attack has major limitations on deployability, attack
stealth, and effectiveness against real vehicles.

In this work, we report our recent progress to address
such limitations of the DRP attack. In §II, we design a multi-
piece mode that can significantly reduce the attacker’s effort in
deploying attacks while maintaining a high attack success rate.
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In §III, we conduct a user study to more rigorously evaluate the
stealthiness of the DRP attack. In §IV, we assess safety impact
on real vehicle by injecting attack traces into an ALC system
installed in a real vehicle to simulate other driver assistance
features that are commonly used with ALC at the same time
in real-world driving, for example, Lane Departure Warning
(LDW), Adaptive Cruise Control (ACC), Forward Collision
Warning (FCW), and Automatic Emergency Braking (AEB).
Finally, we discuss the future research directions in §V.

II. ATTACK DEPLOYABILITY IMPROVEMENT.
To deploy the attack, the direct approach is to print the

malicious dirty patterns on one single road patch and deploy
it at once. However, if the required patch size is large, it
may not be easy to be quickly deployed at once, which may
increase the risk of being noticed by police officers or road
guards. To improve this, we design an optional multi-piece
patch attack mode, which allows the attackers to deploy the
DRP attack with multiple small pieces of road patches. In this
mode, the attacker can specify (1) the size of a small piece
that they can quickly deploy at once, denoted as sizep, and
(2) the total number of such pieces based on their affordable
deployment efforts and risks, denoted as Np. Fig. 1 shows an
example multi-piece patch attack from the driver’s view, which
includes 8 pieces of quickly-deployable small road patches.
With this, the attacker can deploy one small piece at a time
to avoid drawing too much attention, and can also parallelize
the deployment of different pieces to further accelerate the
process.

Evaluation methodology and setup. First, we consider
a road patch of size 1.6-1.8 m wide and 6-8 m long as a
deployment unit for 1-2 people at a time, based on normal arm
span and available adhesive road patch lengths online.Different
from a legitimate road patch deployment, the attacker does
not need to fill asphalt and stamp the road, which are the
most time-consuming steps. Instead, she only needs to place
the patch on the road surface, and this step only takes 5-
10 seconds for the defined deployment unit above based on
demo videos of the adhesive patch deployment. With this,
we can then estimate the deployment effort for 1-2 people by
calculating the number of deployment units for a given attack
road patch. We start from an attack patch size of 5.4m×36m
(width×length), the size used in previous sections, and then
vary the allowed number of deployment units in the patch area
using multi-piece patch attack mode to evaluate the trade-off
between deployability and attack effectiveness.

Results. Table I shows the experiment results with 4 to
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TABLE I: Evaluation results for attack deployability using
multi-piece patch attack mode. Piece #: Allowed number of
1.8m×7.2m patches for the attack; 15 pieces cover the entire
deployable area.

Piece # Succ.
rate

Succ.
time (s)

Deploy. time
improvement

15 (full) 100% 0.89 -
12 98.8% 0.94 -20%
8 93.8% 1.28 -47%
6 76.3% 1.63 -60%

Multi-Piece Patch Single Rectangle Patch

Fig. 1: Driver’s view in multi-piece patch attack mode (§II) at
2.5 seconds before the attack succeeds. The attack in the figure
has 8 pieces of 1.8m×7.2m road patches, each requiring only
5-10 sec to deploy for 1-2 people.

15 deployment units. To fully cover the 5.4m wide and 36m
long patch placement area, 15 deployment units, each for a
piece of 1.8m×7.2m patch, are required for 1-2 people. When
the allowed piece number decreases, the attack success rate
decreases accordingly since the perturbable area size becomes
smaller. Interestingly, the success rate is still as high as 93.8%
when only 8 pieces are allowed, which is able to significantly
reduce the original deployment efforts by nearly 50%. This
suggests that it is not necessary to cover the entire attack
deployable area to achieve a high success rate for the DRP
attack, which thus concretely shows the benefit of our multi-
piece patch attack mode design in improving deployability.
Fig. 1 shows an example DRP attack with such 8 pieces of
1.8m×7.2m road patches from the driver’s view. To deploy
8 such pieces, the attacker only needs to find opportunities
to block the road for 1-2 min in total. To maximize the
stealthiness, such an effort can be spread up to 8 different
times, each for a single piece or more. Each time, a single
piece only requires a 5-10 seconds vacant period of the target
road, which is common in the U.S. since the majority of the
driving scenarios in the U.S. are free-flow scenarios, where a
vehicle has at least 5-9 seconds headway. In the late night,
such opportunities can be even more frequent.

III. ATTACK STEALTHINESS USER STUDY

We conduct a user study to more directly evaluate the
stealthiness of the DRP attack. We have gone through the
IRB process and our study is determined as in the IRB
Exempt category since it does not involve the collection of any
Personally Identifiable Information (PII) or target any sensitive
population.

Evaluation methodology. We use the generated attacks
on real-world driving traces to perform the user study. For an
attack scenario, we ask the participants to imagine that they are

driving with the ALC system taking control, and then show a
sequence of image frames with the malicious road patch from
the driver’s view at 3, 2.5, 2, 1.5, and 1 second(s) before the
attack succeeds. Here, 1 second before the attack succeeds is
right before the attack starts to take effect. At this point, the
patch is placed at 7 m away from the vehicle. For each image
frame, we ask whether they will decide to take over the driving
to avoid danger or potential safety risks. These questions are
also asked for the image frames with a benign road patch that
only has the base color without the malicious dirty patterns as
a control group.

Since our attack is designed for drivers who are in favor of
using ALC system in normal cases, the same set of questions
are asked at the beginning for the original image frames
without attack, and we only accept a participant if she does not
choose to take over the driving for these cases. This process
also helps filter out ill-behaved participants who just provide
random answers. Since DRP is a new form of attack vectors
on the road, we do not tell the participants that the study is
related to security attacks. Instead, we only tell them that our
focus is on surveying driver’s decisions under ALC systems
for different road surface patterns such as road patches and
scratches. At the beginning of the study, we also provide
an introduction of ALC systems with demo videos to ensure
that the participants fully understand what driving technology
we are surveying about. To understand the distribution of the
participant background, we also ask demographic information
and background information related to driving and ALC usage.
None of the questions in our study involve PII or target any
sensitive population; our study is thus determined as in the
IRB Exempt category.

Evaluation setup. We use Amazon Mechanical Turk to
perform this study, and in total collected 100 participants.
All of them have driving experience, which is confirmed by
asking them the age when first licensed and the weekly driving
mileage. A local-road driving trace is used in this study, and
for the scenarios with attack, we evaluate 3 stealthiness levels
(i.e., λ = 10−2, 10−3, 10−4 as defined in [1]). The survey is
available at [2]. Among the 100 participants, 56% are male
and 44% are female. The average age is 32.3 years old. 79%
of them have experienced at least one ALC system, among
which Tesla Autopilot has the largest share (28%). Statistics
of ALC experiment and demographic information are shown
in Fig. 3.

Results. Fig. 2 shows the study results. As shown, the
closer it is to the attack success time, the more participants
choose to take over the driving in the attacked scenarios
since the dirty patterns become increasingly larger and clearer.
Among the 3 stealthiness levels, the driver decisions are
consistent with our design: the lowest stealthiness level (λ =
10−4) has the highest take-over rate, while the highest level
(λ = 10−2) has the lowest. In particular, we find that even for
the lowest stealthiness level (λ = 10−4), only less than 25% of
the participants decide to take over before the attack starts to
take effect. At this stealthiness level the white dirty patterns are
quite dense and prominent. Thus, these results suggest that the
majority of human drivers today do not treat dirty road patches
as road conditions where ALC systems cannot handle.

As discussed in [3], 2.5 seconds is commonly used as
the average driver reaction time to road hazard. Thus, at 2.5
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seconds or more before the attack succeeds, the human driver
still has a chance to take over the driving to prevent the damage
in common cases, as long as she can realize that it is a road
hazard. However, our results show that only less than 20%
of the participants decide to take over at 2.5 and 3 seconds
before our attack succeeds even for the lowest stealthiness
level. In particular, when the stealthiness levels are λ = 10−2

and λ = 10−3, the take-over rates at these 2 time points are
similar to the rates for the benign road patch with only the base
color. This suggests that at the time when there is still a chance
to prevent the damage in common cases, our attack patches at
λ = 10−2 and 10−3 appear to be as innocent as normal clean
road patches to human drivers. In these cases, the take-over
rates are only less than 15%, which are from participants who
will take over even for normal clean road patches. Note that
the take-over rates in practice are likely to be lower than this
since (1) this study is performed for a local-road scenario,
while the road patches in highway scenarios are much farther
and thus much less noticeable as shown in Fig. 7 in [1], and
(2) the road patches in this study are digitally synthesized into
the image frames, which may appear less natural and thus may
more easily alert the participants.

Discussion. While we try our best to evaluate the stealth-
iness of the DRP attack, our user study has 3 potential
limitations: (1) The participants may not represent the normal
drivers. Unfortunately, we cannot fully address this limitation
as long as we use cloud-sourcing. To the best of our ability,
we use the responses for normal cases to filter out people who
are not in favor of using ALC systems and those who answer
random responses. However, this filtering may introduce a bias
to the participants. While we intentionally target people who
are supportive to use ALC systems, the results of the user
study may change in the future along with the spread of ALC
systems. (2) Our patch may increase the attention level of
drivers from a distance due to its noisy appearance of our
patch, and it could reduce the reaction time to less than 2.5
sec. We agree that such a case may occur, but we consider
that it only has a minor impact. The driver’s reaction time
(2.5 sec) consists of 1.75 sec of perception time and 0.75 sec
of physical reaction time [3]. In the target scenario, our attack
starts to take effect at 1 second before the attack succeeds. In
this case, the driver needs to react within 0.25 sec to avoid the
DRP attack, which requires a significant reduction from 1.75
sec perception time since the attention level can only improve
the perception time. (3) The multi-piece patch mode may draw
more driver’s attention. In the user study, we only evaluate the
stealthiness of the single-piece patch. If the multi-piece patch
mode harms the stealthiness, we need to find the best balance
between the stealthiness and deployability.

IV. SAFETY IMPACT ON REAL VEHICLE

While the simulation-based evaluation is able to show
severe safety impacts of our attack, it does not simulate other
driver assistance features that are commonly used with ALC
at the same time in real-world driving, for example Lane
Departure Warning (LDW), Adaptive Cruise Control (ACC),
Forward Collision Warning (FCW), and Automatic Emergency
Braking (AEB). This makes it unclear whether the safety
damages discussed in [1] are still possible when these features
are used, especially the safety-protection ones such as AEB.
In this section, we thus use a real vehicle to more directly
understand the safety impact.
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Fig. 2: Results of the attack stealthiness user study. Driving
take-over rate is the percentage of participants who choose to
take over the driving at a particular time point before the attack
succeeds.
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Fig. 3: Statistics of the ALC system experience and demo-
graphic information in the attack stealthiness user study.

Evaluation methodology. We install OpenPilot on a Toy-
ota 2019 Camry, in which case OpenPilot provides ALC,
LDW, and ACC, and the Camry’s stock features provide AEB
and FCW [4]. We then use this real-world driving setup to
perform experiments on a rarely-used dead-end road, which
has a double-yellow line in the middle and can only be used
for U-turn. The driver’s view of this road is shown on the
left of Fig 4. In our miniature-scale experiment in [1], the
attack realizability from the physically-printed patch to the lane
detection (LD) model output has already been validated under
12 different lighting conditions. Thus, in this experiment we
evaluate the safety impact by directly injecting an attack trace
at the LD model output level. This can also avoid blocking the
road for sticking printed patches to the ground and cleaning
them up, which can easily affect other vehicles. Note that
attack trace injection is also a common practice in physical-
world attack evaluation for cyber-physical systems.

To create safety-critical driving scenarios, we place card-
board boxes adjacent to but outside of the current lane as
shown in Fig 4, which can mimic road barriers and obstacles
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Fig. 4: Safety impact evaluation for our attack on a Toyota
2019 Camry with OpenPilot engaged. Even with other driver
assistance features such as Automatic Emergency Braking
(AEB), our attack still causes collisions in all the 10 trials.

in opposite direction while not causing damages to the vehicle
and driver safety. Similar setup is also used in today’s vehicle
crash tests [5], [6]. While the cardboard boxes are smaller than
the object used in [5], [6], our setup has enough potential to
damage the vehicle, e.g., the attacker can put heavy weights
in the boxes. To ensure that we do not affect other vehicles,
we place the cardboard boxes only when the entry point of
this dead-end road has no other driving vehicles in sight, and
quickly remove them right after our vehicle passes them as
required by the road code of conduct.

Experiment setup. We perform experiments in day time
with and without attack, each 10 times. The driving speed is
kept at ∼28 mph, the minimum speed for engaging OpenPilot
on our Camry. The injected attack trace is generated from our
simulation environment at the same driving speed.

Results. Our experiment results show that our attack causes
the vehicle to hit the cardboard boxes in all the 10 attack
trials (100% collision rate), including 5 front and 5 side
collisions. The collision variations are caused by randomness
in the dynamic vehicle control and the timing differences in
OpenPilot engaging and attack launching. In contrast, in the
trials without attack, OpenPilot can always drive correctly and
does not hit or even touch the objects in any of the 10 trials.

These results thus show that driver assistance features such
as LDW, ACC, FCW, and AEB are not able to effectively
prevent the safety damages caused by our attack on ALC.
We examine the attack process and find that LDW is not
triggered since it relies on the same lane detection module
as ALC and thus are affected simultaneously by our attack.
ACC does not take any action since it does not detect a front
vehicle to follow and adjust speed in these experiments. FCW
is triggered 5 times out of the 10 collisions, but it is only
a warning and thus cannot prevent the collision by itself.
Moreover, in our experiments FCW is triggered only 0.46
sec before the collision on average, which is far too short
to allow human drivers to react considering the 2.5-second
average driver reaction time to road hazard.

In our Camry model, FCW and AEB are turned on together
as a bundled safety feature.However, while we have observed
some triggering of FCW, we were not able to observe any
triggering of AEB among the 10 attack trials, leading to
a 100% false negative rate. We check the vehicle manual
and find that this may be because the AEB feature (called
pre-collision braking for Toyota) is used very conservatively:
it is triggered only when the possibility of a collision is
extremely high. This observation is also consistent with the
previously-reported high failure rate (60%) for AEB features
on popular car models today [7]. Such conservative use of

AEB can reduce false alarms and thus avoid mistaken sudden
emergency brakes in normal driving, but also makes it difficult
to effectively preventing the safety damages caused by our
attack — in our experiments, it was not able to prevent any of
the 10 collisions. The video recordings for these real-vehicle
experiments are available at https://youtu.be/OT8seN6pZj4
and https://youtu.be/Ph42FIaadFo.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we address the limitations of the DRP
attack from 3 improvements and further evaluation: the multi-
piece patch mode, conduct attack stealthiness user study, and
safety impact on real vehicle. The multi-piece patch mode can
improve the attack deployability significantly. The attack with
8 pieces can reduce the original deployment time by nearly
50%. The stealthiness user study reveals that the DRP attack
can appear to be as innocent as normal clean road patches
to human drivers and the take-over rates by human drivers
can be only less than 15%. The safety impact on real vehicle
demonstrates that that driver assistance features such as LDW,
ACC, FCW, and AEB are not able to effectively prevent the
safety damages caused by the DRP attack on ALC. These
results indicate that DNN-based ALC systems have security
risks against adversarial attacks in the real world.

To improve the robustness of ALC systems, we plan to ex-
plore 2 domain-specific defense strategies in future directions:
(1) We will design an attack detection and warning system,
which detects cracks or dirty patterns on the road and warn
the drivers if such patterns can mislead ALC systems. The
challenge in this defense is that the system needs to warn
the driver before the driver’s reaction time (2.5 sec). (2) We
think leveraging HD maps could be a feasible solution for
Level-2 AD systems as Level-4 AD systems today heavily
utilize HD maps [8]. If such a map can be available, a follow-
up research question is how to effectively detect our attack
without raising too many false alarms, since mismatched lane
information can also occur in benign cases We will conduct a
systematic exploration of these directions in future work.

ACKNOWLEDGEMENTS

This research was supported in part by the National Science
Foundation under grants CNS-1850533, CNS-1929771, CNS-
1932464, and USDOT UTC Grant 69A3552047138.

REFERENCES

[1] T. Sato, J. Shen, N. Wang, Y. J. Jia, X. Lin, and Q. A. Chen, “Hold
tight and never let go: Security of deep learning based automated lane
centering under physical-world attack,” arXiv:2009.06701, 2020.

[2] “Driver Take-Over Decision Survey with Automated Lane Centering
System in our Attack Stealthiness User Study,” https://storage.googleapis.
com/driving-decision-survey/driving decision survey.pdf, 2020.

[3] S. of California Department of Motor Vehicles, California Commercial
Driver Handbook: Section 2 – Driving Safely, 2019. [Online]. Available:
https://www.dmv.ca.gov/portal/uploads/2020/06/comlhdbk.pdf

[4] “OpenPilot,” https://github.com/commaai/openpilot, 2018.
[5] “Toyota Safety Sense Pre-Collision System (PCS) Settings and Controls,”

https://youtu.be/IY4g zG1Qj0, 2017.
[6] C. Miller and C. Valasek, “A Survey of Remote Automotive Attack

Surfaces,” https://youtu.be/tnYO4U0h wY?t=1840, 2015.
[7] “Does Your Car Have Automated Emergency Braking? It’s a Big Fail

for Pedestrians,” https://zd.net/2MoUqpd, 2019.
[8] “Building Maps for a Self-Driving Car,” https://link.medium.com/

Bo5pCOov95, 2016.

4

https://youtu.be/OT8seN6pZj4
https://youtu.be/Ph42FIaadFo
https://storage.googleapis.com/driving-decision-survey/driving_decision_survey.pdf
https://storage.googleapis.com/driving-decision-survey/driving_decision_survey.pdf
https://www.dmv.ca.gov/portal/uploads/2020/06/comlhdbk.pdf
https://github.com/commaai/openpilot
https://youtu.be/IY4g_zG1Qj0
https://youtu.be/tnYO4U0h_wY?t=1840
https://zd.net/2MoUqpd
https://link.medium.com/Bo5pCOov95
https://link.medium.com/Bo5pCOov95

	Introduction
	Attack Deployability Improvement.
	Attack Stealthiness User Study
	Safety Impact on Real Vehicle
	Conclusion and Future Directions
	References

