
Trusted Verification of Over-the-Air (OTA) Secure
Software Updates on COTS Embedded Systems

Anway Mukherjee, Ryan Gerdes and Tam Chantem
Department of Electrical and Computer Engineering, Virginia Tech, USA.

Email: {anwaym, rgerdes, tchantem}@vt.edu

security and protection for said devices [5], [6]. OTA frame-
works assist in remote diagnosis, and upgrades if required,
for any reported security breach in compromised EVSEs and
BEVs without having to deal with expensive in-person human
attendance to fix the issue(s). While an OTA software update
framework facilitates security updates, along with operational
upgrades, it can also introduce unwanted security loopholes.
For instance, in an autonomous BEV, nearly all driving oper-
ations (for e.g., where to turn, when to brake, controlling the
speed of the car etc.) are automated, while specific manual
cognitive decision-making control is left to the discretion of
the driver. Thus, if a corrupt OTA update package which
contains functional upgrades for the car is installed, an external
agent can easily piggyback on the corrupt package to install
malicious programs that will compromise the entire BEV
thereby leading to catastrophic consequences. Note that even
though we motivate our work with specific examples of BEVs
and EVSEs for the rest of the paper, our approach can easily be
applied to improve the security specifications of any existing
system that utilizes secure OTA update framework running on
TEE-compatible COTS embedded system.

OTA updates in EVSEs and BEVs, therefore, not only need
to be (1) secure to prevent unauthorized access, but also
(2) support internal software isolation to ensure functional
correctness. Protecting and encrypting the communication
channel and checking the authenticity of the new software are
longstanding and vital security measures for any BEVs and
EVSE devices. However, said security measures are incon-
sequential if the OTA update verification framework itself is
compromised [7], [8]. Therefore, there is a need to tackle such
a scenario, and design a framework that can detect and protect
against such security breaches. Existing approaches to protect
the OTA update verification framework include dedicated
secure hardware-based solutions (e.g. trusted platform modules
(TPMs), secure networking modules, secure grid etc.) [3], [9],
[10]. They all require expensive, custom-built hardware with
long time-to-market or time-to-deployment cycle. A readily
available cheaper alternative is the use of trusted execution
environment (TEE) [11] on commercial off-the-shelf (COTS)
embedded processors. Examples of hardware support for TEE
include the ARM TrustZone [12] which is popular in embed-
ded devices. TEE leverages hardware security extensions to
provide platform virtualization to run an application in secure
isolation from the rest of the system. TEE can be quickly re-
deployed if an exploit is found since they are implemented
using platform virtualization. Hence, TEE does not require

Abstract—Over-the-air (OTA) software updates are an impor-
tant feature to remotely analyze and upgrade any section of cur-
rently running software on battery-operated electric vehicles and 
its supply equipment. Even though a secure OTA framework can 
verify and validate updates before installation, the integrity of the 
framework itself cannot be guaranteed, and can easily introduce 
system and software vulnerability with potential catastrophic 
consequences. In this paper, we show how a popular automotive 
OTA secure update framework (Uptane) can be deployed entirely 
inside a TEE-enabled commercial off-the-shelf (COTS) embedded 
device to extend its security considerations and improve its 
resilience against both internal and external security breaches. 
We also present a software analysis tool that leverages SAWScript 
to verify our proposed solution against any functional and logical 
inconsistency, while validating our approach on a real COTS 
hardware (Raspberry Pi 3B).

I. INTRODUCTION

With the increase in popularity of smart infrastructure, the 
complex devices that interconnect them all to form the internet 
of things (IoTs) lacks a holistic framework that delivers
visibility, segmentation, and protection throughout the entire 
network infrastructure (1) secured to prevent unauthorized 
access, and (2) support internal isolation to ensure execution 
correctness. For example, battery electric vehicles (BEVs) [1], 
operating on a battery management system (BMS), require
periodic charging performed by specialized electric vehicle 
supply equipment (EVSE) deployed at designated BEV charg-
ing stations or residences [2]. The EVSEs are smart internet 
of thing (IoT) devices that can connect the BEVs to an 
available power source, with support for both grid-to-vehicles 
(G2V), and a reverse vehicle-to-grid (V2G) energy transac-
tions. However, BEVs and EVSEs can be easily manipulated, 
individually or collectively, by adversaries to gain access and
act as conduits to breach their internal security, leading to 
malicious attacks and life-threatening situations, for instance,
traffic accidents [3] in BEVs, and disrupt or cause power 
systems failure through high or low voltages on feeder circuits
in EVSEs [4].

Both BEVs and EVSEs are prone to external interference
as well as internal software vulnerabilities. EVSEs are also
limited by their size, weight and power (SWaP) constraints 
and network capacity, making them more vulnerable to attacks
compared to other embedded and general purpose systems [3].
Over the air (OTA) updates is a popular interface to facilitate

Workshop on Automotive and Autonomous Vehicle Security (AutoSec) 2021 
25 February 2021, Virtual
ISBN 1-891562-68-1
https://dx.doi.org/10.14722/autosec.2021.23028
www.ndss-symposium.org



hardware redesign. In each platform-specific OS that supports
TEE (for e.g., ARM TrustZone), an instance of TEE execution
is initiated by a setup context, followed by the actual trusted
execution inside an isolated environment, and exits through
a destroy context. TEE is utilized by partitioning the code
such that the portion that requires secure execution is run
inside the TEE context and communicates with the rest of the
partitioned code via a software-controlled exceptions called
secure monitor calls (SMCs) [13].

This paper proposes a new secure software update frame-
work that ensures that secure OTA updates, along with the en-
tire OTA verification framework, can be deployed and serviced
inside a trusted secure environment fully protected from any
external or internal attacks. For proof of concept, we utilize
the Uptane [6] framework to model a secure OTA update
and verification framework in BEVs and EVSEs. Uptane
is a secure open-source industrial software update standard
for automobiles. The framework services protection against
malicious attackers by signing and delivering software updates
through a secure communication channel in EVSEs and BEVs.
Our proposed solution isolates and deploys the entire OTA
verification framework inside TEE to protect its integrity
and avert any security breaches. We also formally verify our
proposed solution framework by leveraging an open-source
software analysis workbench (SAW) developed by Galois [14].
SAW is an essential tool to analyze semantic models of
programs, and check for any software vulnerability that can
potentially lead to security breaches. Our main contributions
are as follows.

1) We leverage ARM TrustZone to present a novel design
that aims to strengthen the security of OTA update and
verification framework. Our approach proposes to migrate
the entire OTA update and verification framework inside a
TEE, and isolate all of its standard functionality within the
scope of trusted execution for improved protection in BEVs
and EVSEs.

2) We leverage SAW tool to propose a technique which can
verify and validate our proposed framework to guarantee
that our software implementation does not lead to any
security vulnerability.

3) We validate our approach on a real hardware (Raspberry
Pi 3B) using ARM TrustZone that runs OP-TEE, an
open source trusted OS, side-by-side with real-time Linux
RT_PREEMPT.

II. PRELIMINARIES

A. Uptane

Uptane [6] is a popular open source secure software update
framework that aims to protect software updates that are
packaged by the OEM and delivered over-the-air to its recip-
ients through secure wireless communication channels. This
framework is the standard for secure updates in the automotive
industry, and is designed to successfully prevent a variety
of malicious state-of-the-art attacks. A standard open-source
implementation of the Uptane framework can be divided into

two broad categories; (1) the secure server representing the
OEM, and (2) the client representing the recipient. A secure
communication channel, for e.g., https, is used for data
communication between the server and its client(s).

The secure server-side implementation consists of three
sub-modules. First, the images repository stores the actual
image package, along with related metadata which are securely
signed by a private key. Second, the director sub-module
validates vehicle manifests, and generates the vehicle-specific
update images and metadata. Finally, the timeserver sub-
module generates timestamp tokens to validate that the most
recent update package is being delivered to the client. The
client-side implementation similarly consists of multiple sub-
modules. The primary client sub-module generates vehicle
version manifest(s) with vehicle metadata and sends it back
to the server-side director. A manifest consists of information
pertaining to client-side system-wide status, which is analysed
by the director, before generating any update package to
redress detected vulnerabilities in the client. The primary client
also maintains the update cycle by fetching and validating all
signed images, and its metadata, from the director. It also
queries the timeserver for signed attestation. The validated
metadata in the client is stored in a local metadata staging sub-
module. Finally, a secondary client fetches and validates all
signed metadata from the primary before installing the update
package(s) on to the system.

B. ARM TrustZone

The TrustZone [11] is ARM’s open-source implementation
of trusted execution environment for COTS embedded sys-
tems. It provides a secure virtualization platform where code
that requires trusted execution can be executed in isolation
from the entire system without loss of integrity. Mukherjee et.
al. [13] details the architectural framework of a TrustZone
consisting of side-by-side deployment of a normal execu-
tion environment (running the non-trusted OS), and secure
execution environment (running the trusted OS). In non-
trusted execution environment, the non-secure application(s)
or code segments that do not require TEE execution, run
on standard embedded hardware. In a trusted environment,
all code and/or application(s) that require trusted execution
have their data are stored in, and executed in isolation on
specially augmented secure hardware components (e.g., CPU,
memory, and peripherals). Signal and data communication be-
tween the two environments (TEE and non-TEE) is performed
through a platform-specific secure message passing protocol.
TEE delimits the code running in normal world from (1)
changing the trusted OS system configurations, and (2) protect
secure environment data/code from being accessed by the non-
trusted software. This means that if the non-trusted execution
environment and OS is compromised, the attack is confined
to the access privileges of only the non-trusted OS.

C. SAW Verification Tool

The software analysis workbench (SAW) [14] provides the
ability to formally verify any application code and identify

2



Timeserver Images Director

Non-Trusted OS

Trusted OS

Communication
Channel

ARM hypervisor

ARM Trusted Firmware 

Local metadata 
staging areaNon-secure 

applications

Secure server

Secure wireless communication

Verification 
Module

Fig. 1. An overview of our proposed update framework which is decoupled
into (1) a secure Uptane server, and (2) a modified Uptane client-side
implementation to run as trusted application(s) within the trusted OS inside
TEE. The client consists of a communication channel and a metadata staging
area, and services client-specific functionalities.

any software-level security vulnerabilities of said code. SAW
provides a standard developmental kit (SDK) that can lever-
age a number of programming language-specific tools and
solvers to automate the process of analysis and verification
of complex software frameworks. Specifically, SAW utilizes
symbolic execution to translate code into formal models,
execute code on symbolic inputs, effectively unrolling loops,
and translating the code into a circuit representation for cryp-
tographic verification. As a verification tool, SAW provides
a level of assurance beyond the capabilities of traditional
frameworks since SAW is capable of performing an exhaustive
testing of target applications against all combinations of input
parameters. In this work, we leverage the SAW tool developed
by Galois that uses Cryptol scripting language [15] for the
high-level analysis and verification of target software.

III. PROPOSED FRAMEWORK

A. Threat Model

While our proposed framework can be seamlessly integrated
into any existing system that utilizes secure OTA update frame-
work running on TEE-compatible COTS embedded system, we
motivate our work by describing a setup where a standard se-
cure update framework can lead to an internal security breach.
For example, consider a BEV-EVSE collective IoT system. We
now argue why it is not nearly enough to just have a secure
OTA update framework in place inside an EVSE or a BEV. We
consider the BEV with nearly all automated driving operations
controlled by the on-board network of embedded devices. We
also consider a setup where the BEV provides periodic V2G
reverse grid charging through EVSE that forms a part of the
broader IoT network. Therefore, the OTA update framework
(1) acts as a client to acquire important updates from a server
(or OEM) through a secure update process for the on-board
embedded systems in the BEVs and EVSEs, and (2) directs the
BEV/EVSE to download the update packages into its system
for installation after in-situ rigorous verification and validation
process. Here, we assume that the BEV or the EVSE has
been compromised and an attacker has control over its internal
software and data. The attacker can now easily manipulate

the integrity of any of the following; (1) OTA verification
framework, (2) the actual software update package, and (3)
its signatures that were previously downloaded and stored
in the BEV/EVSE from a secure server for verification and
validation. A malicious update package, therefore, can easily
be pushed into, and installed in the BEV/EVSE. The attacker
can easily gain access to all the automotive features inside
BEV leading to a range of catastrophic scenarios. Similarly, a
corrupt EVSE can lead to charging termination (e.g., in smart
grids), and impact the overall voltage and frequency limits
of a system leading to energy-related vulnerabilities. Here we
assume that the secure server (OEM) can maintain its own
integrity. However, both the EVSE and the BEV, and its OTA
update framework requires extended security to combat such
threats.

B. Mitigation Strategy

We consider a TEE-enabled system for both EVSE and
BEV which can (1) protect the integrity of an OTA update
verification framework by running it within a TrustZone in
isolation from the rest of the system, and (2) securely store
update packages (both software and data) within a trusted stor-
age. Implementing a verification and validation framework for
OTA software updates within a secure execution environment
has several advantages. A secure environment helps us isolate
the update framework from the rest of the system without
breaking the backward compatibility. It also gives us the
flexibility to seamlessly deploy a trusted execution framework
for any commercial off-the-shelf (COTS) embedded system,
and use it for data protection over OTA channels without
compromising the standard security requirements. Moreover,
since the entire OTA update framework runs in seclusion
inside a trusted OS, any internal or external attack on the
rest of the software or system does not affect the integrity
of the isolated OTA framework. In this work, we design (1) a
trusted framework using TEE that provides an secure execution
environment within which the standard Uptane verification
framework operates, (2) instrument and re-factor the Uptane
framework to integrate it within the TEE environment, and
(3) create a communication gateway for secure data transfer
between the Uptane OTA framework and a designated remote
secure OEM server.

Figure 1 shows an example overview of our proposed sys-
tem model inside BEV/EVSE. Since Uptane’s software update
process is based on a publish-subscribe model, we divide
our work into three parts; (1) an Uptane-compliant secure
server which complies with the Uptane standards, (2) a TEE-
specific client-side implementation (inside BEV/EVSE) that
includes all functional components that perform software and
data exchange between the client sub-modules and the secure
server, and (3) a secure standard communication protocol that
services the client requests, and implements a co-ordinated
data transfer between the server and the client. The client-
side modifications ensure a seamless integration of the Uptane
standard policies within the TEE framework. Since, it is the
programmer’s responsibility to ensure that the application

3



TimeserverImages Director

Communication
Channel (UART)

Local metadata 
staging area

Modified Uptane Framework

Secure server

Secure client-side implementation inside TEE

Request 
for metadata

Most recent 
image metadata

Verification
Module

Verify the 
metadata

Request 
for image

Most recent 
image

Most recent 
image

Staged 
metadata

1 2

3

4 5

6

7

Fig. 2. An detailed overview of our proposed client-side implementation. The
numbers associated with each arrow capture the chronological exchange of
data between the secure server and the client-side sub-modules running within
the TEE.

code running inside TEE do not inadvertently introduce any
software-related security vulnerabilities, we formally verify
our client-side implementation using the SAW tool to analyse
and check for security vulnerabilities (Section V).

Our solution is based on the following preconditions which
do not violate the Uptane standard verification policy. First,
we assume that there is a secure server in place, which is
compatible with the existing Uptane verification standards.
Therefore, we keep Uptane’s standard server design in tact.
Second, we assign the client with the ability to establish
connection to a verified server. We assume that the client
is programmable, and can initiate an update cycle triggered
periodically by a hardware interrupt subroutine. Finally, we
attribute the client with the ability to perform a public key
cryptography operation, as well as verification and validation
of images supplied by a secure server within the guidelines
supplied by the Uptane standards.

IV. TEE-ENABLED UPTANE CLIENT

A client, as part of the BEV/EVSE software module,
services all the functionalities to verify and validate an Uptane-
specifc OTA update framework. The client is deployed inside
a TEE for isolated execution. An overview of our proposed
solution is shown in Figure 2. We split our work into a two-
step procedure; a client-side implementation within a TEE,
and a secure server. The client-side implementation (1) issues
request for most recent update for the secure server, along
with (2) verification and validation of the its metadata before
(3) securely installing the update(s) to the system. The secure
server is responsible for servicing the update-specific images
and all the relevant metadata when requested by the client-
side. As previously mentioned, we maintain the functional and
logical guidelines in our implementation as recommended by
the Uptane standards. First, the client initiates an update cycle
through a hardware interrupt. The client sends a request to
a secure server to obtain the metadata for the most recent
update available for downloading. Second, the secure server
sends the requested update-specific metadata back to the client.

The client stages the metadata for future validation. Next, the
client sends another request to download the actual update
image. Once the image has been downloaded from the secure
server, the client matches the previously staged metadata with
the metadata that is included in the actual update image.
Finally, after successful verification, the client can (1) update
the system with the downloaded image, and (2) update its local
records with the most recently installed update. Next, we will
describe in details the various sub-modules of our client-side
implementation.

A. Communication Channel

This sub-module provides a communication channel be-
tween the server and client in the Uptane framework. In
our implementation, we use a protocol similar to the unified
diagnostic services (UDS) to service the communication layer.
UDS is a diagnostic communication protocol popularly used
in the automotive industry. Our communication channel inside
the client mediates requests to and responses from the secure
server, and services update-specific metadata for verification,
download images for system update, and handles queries for
a signed attestation of the timestamp for the downloaded
images. Similar to the UDS protocol, each feature is associated
with a service ID (SID) and the information and or data
associated with the services are encapsulated in the payload
of the communication message frame. A list of SIDs and their
functionalities is described in Table I. For instance, a download
metadata request message to secure server from the client is
associated with an SID equal to 4, and the payload associated
with the request contains various information including the
the size of download, the location of the metadata in the
server, and the type of metadata requested. In contrast, the SID
associated with image download request message is 5. Each
request is followed by a response message with a positive or
negative validation. The associated payload with the response
contains the requested metadata in case of successful message
reception at the server, or a negative error code if the request
message failed to comply with the SID-specific payload con-
figuration. The SIDs distinguish the different message requests
(and responses) between the server and the client.

For our physical medium of communication, we use a
UART connection between the secure server and the client-
side implementation. This sub-module, therefore, sets up a
UART connection and establishes a communication channel
to send and receive messages along with essential data be-
tween the server and the client. Our design also includes a
UART-to-wifi proxy implementation that can support wireless
communication for backward compatibility.

B. Local Metadata Staging Area

This sub-module contains a local list of Uptane-compliant
files that constitutes the update-specific metadata of the im-
ages that have been downloaded from a secure server. Each
metadata file can be categorized into four sub-classes based on
their roles in the client-side update and verification framework.
The following are the categories of metadata files; (1) Root

4



TABLE I
EXAMPLE SIDS FOR TARGET REQUESTS AND THEIR CORRESPONDING

RESPONSES (YY = REQUEST PAYLOAD, ZZ = RESPONSE PAYLOAD)

SID Request Description Positive Response
1 1 YY YY YY Request to start update 11 ZZ ZZ ZZ
2 2 YY YY YY Request to stop update 12 ZZ ZZ ZZ
3 3 YY YY YY Request timestamp attestation 13 ZZ ZZ ZZ
4 4 YY YY YY Request metadata download 14 ZZ ZZ ZZ
5 5 YY YY YY Request image download 15 ZZ ZZ ZZ
6 6 YY YY YY Request transfer data 16 ZZ ZZ ZZ
7 7 YY YY YY Request transfer exit 17 ZZ ZZ ZZ

metadata is used to verify the metadata associated with all
the other sub-classes, (2) Target metadata is used to verify
an image. It also contains information on the server-specific
metadata, including the current image version number, (3)
Snapshot contains the signed metadata for all the other sub-
classes, and (4) Timestamp metadata indicates whether the
downloaded images and metadata are new and current.

C. Verification Module

If the client does not have latest image, it enters an update
cycle through an interrupt procedure call. The local metadata
staging area stores a local copy of the metadata of previously
installed images in the client secure storage. This sub-module
performs the step-by-step process of downloading the most
recent image from the secure server to the client and verifying
the image before it can be installed into the system.

Download Latest Image: The client first downloads the
target metadata from the server. The information contains
the filename used to identify the latest known image. If
there is no target metadata about this image, we abort the
update cycle. Additionally, in the case of failure, the client
retains its previous target metadata instead of using the newly
downloaded target metadata. Otherwise, we download the
image, and verify (described in the section below) that it
matches the target metadata. Finally, once the update cycle
is completed, the client overwrites the latest image specific
metadata to its local copy in the secure storage.

Verify Latest Image: The client verifies and validates that the
latest image matches the latest metadata. The first step in the
process is to download the latest image specific metadata from
the server. The first step of validation includes checking that
the client identifier in the metadata matches the actual client
identifier, followed by a valid image filename. The next step
is to check that the latest image version counter is greater
than the previously installed image in the client-side. Then
we decrypt the image metadata, followed by a hash checking
between the downloaded image and the downloaded metadata
in the staging area. If at any time this verification step fails
to validate the image, the client aborts the update cycle, and
waits for the next update trigger.

V. SOFTWARE ANALYSIS

Heretofore, we have successfully modified the Uptane client
to run entirely in isolation inside a TEE to protect it from any
external attacks. However, it does not guarantee that the client-
side implementation of the trusted code running within TEE

does not introduce any new vulnerabilities. Moreover, Uptane
documentation provides a list of rules that must be followed to
ensure that an Uptane client (and the update process) complies
with its set standards. Therefore, we leverage the software
analysis workbench (SAW), a popular software analysis tool
developed at Galois, to formally verify properties of our
implementation code. As an analysis tool, SAW is capable
of testing a program against an exhaustive list of all input
parameters, and can efficiently capture corner-cases when the
application code will fail to comply with its functional and
logical requirements. In this work, we have utilized SAW (1)
to detect any logical and programming correctness with our
Uptane-compliant trusted client application that runs within
TEE, and (2) analyze client-specific functionalities that largely
utilize cryptographic algorithms (e.g., SHA and ECDSA) to
validate and verify downloaded update image(s) and their
metadata.

We now demonstrate how we use SAW tool to prove the
equivalence of the reference and implementation versions of
the members of our image metadata, and detect any bug in
an incorrect implementation. Our verification is structured as
a sequence of commands, potentially along with definitions
of functions that abstract over commonly used combinations
of commands. Consider a part of the target client code, a
memcpy() module that needs to be analyzed and verified
against any logical or functional irregularities. SAW tool
provides a library of reference implementation that can be
used to compare with our target implementation of memcpy()
to identify any existing bug in the code. Figure 3 shows the
SAWScript that can automatically leverage symbolic execution
to translate the target code into formal models to compare, an-
alyze and verify its robustness against any security vulnerabil-
ities. For instance, The LLVM_extract command instructs
the SAW tool interpreter to perform symbolic simulation of
our target function, and return the semantics of the function.
The let statement then constructs a new term corresponding
to the assertion of equality between two existing terms. The
prove command verifies the validity of our assertion, or
produce a counter-example that invalidates it. The parameter
thm indicates the theorem solver that has been used in our
target verification process.

Specifically, the SAW tool ensures that the software run-
ning inside the TEE complies with the standards outlined
by the Uptane framework. Our implementation draws upon
the standard C programming resources to realize the OTA
framework inside TEE, primarily since TEE only supports a
limited range of C headers and functions. Therefore, we utilize
SAW tool to evaluate the memory safety assumptions (length
of buffer, data integrity, data overflow etc.) for associated
data schemas specific to our implementation. We also utilize
the cryptographic algorithm analysis framework included with
SAW tool to validate the Uptane client hashing and signature
verification functions, including the compositional verification
of said algorithmic functions. SAWScript leverages its em-
bedded Cryptol programming tool to service any high-level
cryptographic specifications.

5



Fig. 3. An example SAWScript to analyze a target application code
uptane_memcpy_imp, and prove its equivalence when compared against
the SAW tool reference implementation memcpy_ref.

Fig. 4. Application log of Uptane client running on our experiment testbed.
Results indicate that the OTA update requests are triggered periodically and
the subsequent responses with image and metadata download from the server
through a secure UART communication.

VI. EXPERIMENTS

To validate our proposed approach in a realistic setting, we
selected Uptane as the representative secure software update
framework. We use the Raspberry Pi 3B (Rpi3B) as our
example TEE-enabled embedded testbench that represents a
TEE-enabled COTS-based automotive BEV and EVSE. Rpi3B
is a small computer powered by Broadcom BCM2837 chipset
consisting of quad-core ARM Cortex A53 processor, 1 GB
LPDDR2 RAM, and numerous sensors (for eg., Barometer,
IMU etc.). It can run Linux and other non-trusted operating
systems. It also extends support for ARM TrustZone. We used
the Linux RT_PREEMPT Kernel v4.6.3 as our non-trusted real-
time OS, along with OP-TEE OS (as TEE) on the Rpi 3B that
extends the support for ARM v8 embedded virtualization. Our
modified Uptane client application is included as part of the
trusted application suite and runs completely inside OP-TEE
OS. An off-board Uptane-compliant secure server stores and
services the update image and metadata to the client. The data
transfer and communication between the server and the client
is performed over a secure UART. Figure 4 shows an example
update sequence at the Uptane client-side starting with (1) the
client triggering a request to the secure server, followed by (2)
timestamp attestation and verification, (3) metadata download
request and validation by the client, and the subsequent (4)
retrieval of update image downloaded from the secure server
and ready for validation before installation.

VII. CONCLUSION

We present a secure design framework that leverages ARM
TrustZone to isolate and execute the Uptane OTA update
system within EVSEs/BEVs, thereby improving the security of
such mission-critical systems against both external and internal
system vulnerabilities. Our solution also includes a software
analysis and verification tool that utilizes SAWScript to au-
tomatically validates our trusted application code against any
programming, functional and logical defects that can gravely
jeopardize the overall security of the system. The proposed
approach was validated on an actual hardware testbed (Rpi3B)
that runs the client code in isolation within TEE.

REFERENCES

[1] A. M. Andwari, A. Pesiridis, S. Rajoo, R. Martinez-Botas, and V. Esfa-
hanian, “A review of battery electric vehicle technology and readiness
levels,” Renewable and Sustainable Energy Reviews, vol. 78, pp. 414–
430, 2017.

[2] Y. Huang and K. M. Kockelman, “Electric vehicle charging station
locations: Elastic demand, station congestion, and network equilibrium,”
Transportation Research Part D: Transport and Environment, vol. 78,
p. 102179, 2020.

[3] A. Fuchs, D. Kern, C. Krauß, and M. Zhdanova, “Securing electric
vehicle charging systems through component binding,” in International
Conference on Computer Safety, Reliability, and Security. Springer,
2020, pp. 387–401.

[4] J. T. Johnson, “Securing vehicle charging infrastructure.” Sandia Na-
tional Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep.,
2019.

[5] D. K. Nilsson and U. E. Larson, “Secure firmware updates over the
air in intelligent vehicles,” in ICC Workshops-2008 IEEE International
Conference on Communications Workshops. IEEE, 2008, pp. 380–384.

[6] T. K. Kuppusamy, L. A. DeLong, and J. Cappos, “Uptane: Security
and customizability of software updates for vehicles,” ieee vehicular
technology magazine, vol. 13, no. 1, pp. 66–73, 2018.

[7] M. Tullsen, L. Pike, N. Collins, and A. Tomb, “Formal verification of a
vehicle-to-vehicle (v2v) messaging system,” in International Conference
on Computer Aided Verification. Springer, 2018, pp. 413–429.

[8] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli,
“Secure firmware updates for constrained iot devices using open stan-
dards: A reality check,” IEEE Access, vol. 7, pp. 71 907–71 920, 2019.

[9] G. Macher, A. Höller, H. Sporer, E. Armengaud, and C. Kreiner,
“A combined safety-hazards and security-threat analysis method for
automotive systems,” in International Conference on Computer Safety,
Reliability, and Security. Springer, 2014, pp. 237–250.

[10] X. Wei, C. Du, and J. Zhao, “A network security situation awareness
model for electric vehicle shared charging pile system,” in AIP Con-
ference Proceedings, vol. 2238, no. 1. AIP Publishing LLC, 2020, p.
020009.

[11] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution envi-
ronment: what it is, and what it is not,” in Trustcom/BigDataSE/ISPA,
2015 IEEE, vol. 1. IEEE, 2015, pp. 57–64.

[12] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[13] A. Mukherjee, T. Mishra, T. Chantem, N. Fisher, and R. Gerdes,
“Optimized trusted execution for hard real-time applications on cots
processors,” in Proceedings of the 27th International Conference on
Real-Time Networks and Systems, 2019, pp. 50–60.

[14] K. Carter, A. Foltzer, J. Hendrix, B. Huffman, and A. Tomb, “Saw: the
software analysis workbench,” in Proceedings of the 2013 ACM SIGAda
annual conference on High integrity language technology, 2013, pp. 15–
18.

[15] J. R. Lewis and B. Martin, “Cryptol: High assurance, retargetable
crypto development and validation,” in IEEE Military Communications
Conference, 2003. MILCOM 2003., vol. 2. IEEE, 2003, pp. 820–825.

6


