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inputs [3], [4]. It can effectively reduce the computation
overhead by running detection algorithms on smaller input
dimensions and filter detection noises by preventing ambiguous
detection, e.g., when multiple traffic lights exist in the camera
view. Despite the benefits in improving the detection efficiency
and accuracy, the accuracy of ROI mainly depends on the
localization results–a wrong localization would result into a
wrong ROI, which in turn causes the perception module to
look at a wrong area in the sensor input.

For AD systems, cameras are especially critical for traffic
light (TL) detection since they are the only sensors that are
able to accurately detect TL colors. Thus, as the first study,
we start from the TL detection and leverage the existing GPS
spoofing attacks [5], [6] on localization to demonstrate attack
consequences of such ROI attacks in an end-to-end AD system.
Attack demos showing the end-to-end attack consequences are
at https://sites.google.com/view/roiattack.

Considering the severity of the attack, we hope this work
can bring immediate attention to the AD system developers
for more robust ROI designs. In summary, while this work is
still work-in-progress, it makes the following contributions:

• We perform the first security analysis on the ROI design
in the perception module in AD systems and identify a
design-level vulnerability that allows the attacker to fool
AD perception using GPS spoofing.

• We design a concrete ROI attack targeting the TL detec-
tion in AD perception. Results show that our attack is
able to achieve a 100% success rate in causing the victim
AV to run red lights or denial-of-service.

II. BACKGROUND

A. AD Systems and TL Detection
Baidu Apollo overview. Baidu Apollo [3] is a production-

grade open-source AD system for Level-4 AVs [7], which has
already been deployed for RoboTaxi services in China [8]. It
follows a typical Level-4 AD system design, which mainly
consists of localization, perception, prediction, planning, and
control modules [3]: the localization module localizes the AV
on a map; the perception module uses perception sensors
to detect obstacles and TLs; the prediction module predicts
the future trajectories of the obstacles; the planning module
incorporates maps, localization outputs, and predicted obstacle
trajectories to calculate a safe driving trajectory; the control
module executes the planned trajectory by actuating the steer-
ing, throttle, and brake on the AV. In this work, we focus on
two of these modules: localization and perception.

The localization module takes inputs from sensors such as
GPS and LiDAR to estimate the real-time position of the AV.

Abstract—The perception module is the key to the security 
of Autonomous Driving systems. It perceives the environment 
through sensors to help make safe and correct driving decisions 
on the road. The localization module is usually considered to 
be independent of the perception module. However, we discover 
that the correctness of perception output highly depends on 
localization due to the widely used Region-of-Interest design 
adopted in perception. Leveraging this insight, we propose an 
ROI attack and perform a case study in the traffic light detection 
in Autonomous Driving systems. We evaluate the ROI attack on 
a production-grade Autonomous Driving system, named Baidu 
Apollo, under end-to-end simulation environments. We found our 
attack is able to make the victim a red light runner or cause 
denial-of-service with a 100% success rate.

I. INTRODUCTION

In the automotive industry, a revolution is taking place: the 
rise of Autonomous Vehicles (AVs). AVs have been demon-
strated to lower transportation costs and energy consumption, 
improve travel convenience and comfort, and reduce traffic 
accidents and congestion [1]. However, the Autonomous Driv-
ing (AD) system, which serves as the “brain” of an AV to 
make driving decisions, may have vulnerabilities that could 
lead to severe security threats to road safety. For example, 
vulnerabilities in the localization module, whose outputs are 
critical for route planning and navigation, can be exploited by 
attackers to manipulate the routes of AVs [2]. In fact, attacks 
on the localization will not only affect AVs’ route planning 
and navigation but also have direct effects in other modules 
such as the perception module to cause false detection.

The perception module processes sensor inputs to per-
ceive the surrounding obstacles and traffic lights, which are 
necessary for planning a safe driving path and making the 
correct driving decision. Typically, the perception sensors (i.e., 
camera, LiDAR, radar, ultrasonic sensor) in the AD system [3],
[4] have wide ranges of views. For example, AVs are usually 
equipped with high-resolution cameras that are capable of 
detecting obstacles as far as 100 meters or more [3]. However, 
in this work, we discover an interesting design consideration, 
which is common in AD systems, that enables an attacker 
to blind or misguide the perception without tampering the 
perception sensor inputs themselves.

The root cause for such a vulnerability is the design 
of Region-of-Interests (ROIs). ROI is a strategy commonly 
employed in AD perception that utilizes information from 
the localization to narrow the detection scope in the sensor
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Fig. 1: Projection from world co-
ordinates to image coordinates.
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Fig. 2: Illustration of the
ROI in TL detection.

Depending on the sensor availability, the localization module
can be configured in GPS mode or Multi-Sensor Fusion (MSF)
mode [9]. The GPS mode directly takes positioning from GPS,
while the MSF mode combines GPS and LiDAR for more
accurate and robust positioning. For example, Baidu Apollo, by
default, uses MSF in the localization; however, it also provides
a GPS mode when there is no LiDAR installed on the AV.
Tesla Autopilot, as a Level-2 AD system [7], also do not use
LiDARs and thus relies on GPS for localization [10].

The perception module incorporates sensors such as cam-
eras, radars, LiDARs, and ultrasonic sensors to recognize
vehicles and pedestrians surrounding the AV. In addition, it
also performs important tasks such as TL detection.

TL detection and ROI design. TL detection is an essential
feature for Level-4 AVs. If an AV cannot detect and recognize
TLs, it may violate traffic rules resulting in some catastrophic
consequences, such as running red lights and causing car
accidents. Recently, as Level-2 AV companies aiming to
achieve higher level driving autonomy, companies such as
Tesla starts to add TL detection into their AD systems [11]. TL
detection leverages Deep Neural Networks (DNNs) to detect
and classify TLs in the camera images [3], [4]. For example,
Baidu Apollo applies two DNNs for TL detection; one for the
object detection to recognize the TL object in the image, and
the other for the classification to recognize the light color [3].

Since the camera image may contain multiple TLs, it
is thus necessary to identify the correct TL for the current
intersection. To address this, AD systems commonly adopt an
ROI design [3], [4], which projects the current TL in the world
coordinates obtained from the High-Definition (HD) map to
image coordinates based on the localization outputs (Fig. 1).
To compensate for any localization or HD map inaccuracies, an
ROI area with an empirically determined radius or height/width
centered at the projected image coordinates is selected for
TL detection. Such an ROI design not only helps prevent
ambiguous TL detection but also reduces the computation
overhead. Fig. 2 show an example of the ROI in Baidu Apollo.
As shown, the ROI anchor box is the projected position of the
TL. However, due to inaccuracies in localization and HD map,
the projected position is not perfectly aligned with the actual
TL. Thus, Baidu Apollo defines a larger rectangle as the ROI
for TL detection ( 2© in Fig. 2). After that, it crops the ROI
area from the image and applies DNNs to recognize all TL
bounding boxes and their colors in the ROI. Finally, the TL
bounding box ( 3© in Fig. 2), which is the closest to the ROI
anchor box, is selected as the TL detection result.

B. GPS spoofing attacks to AD localization
Civilian GPS systems are known to be vulnerable to

spoofing attacks due to the lack of signal authentication in the
infrastructure. In the spoofing attack, the attacker broadcasts
fake satellite signals to the victim GPS receiver to deceive it
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Fig. 3: Illustration of the ROI attack for TL detection.

into resolving false positions specified by the attacker [5]. So
far, GPS spoofing has been demonstrated to be feasible on
various systems, including smartphones [12], drones [5], and
vehicles such as Tesla [10].

The attack capabilities of GPS spoofing are different in
GPS-based localization and MSF-based localization. In GPS
mode, GPS inputs are the only positioning source for lo-
calization, and thus GPS spoofing can directly control the
localization outputs in the AD system. In MSF mode, since
the positioning from GPS will be fused with LiDAR, GPS
spoofing cannot set an arbitrary position in the localization
output. Nevertheless, Shen et al. [6] have demonstrated that
they can inject a large deviation in the MSF-based localization
outputs using GPS spoofing.

III. THREAT MODEL AND ATTACK GOAL

Threat model. Similar to the threat model used in prior
works [6], [12], we assume a car-following model where the
attacker launches GPS spoofing attack while tailgating the
victim AV. We assume the attacker can arbitrarily manipulate
the victim’s localization outputs under GPS spoofing, which is
valid for AVs using only GPS for localization, such as Baidu
Apollo in GPS mode and Tesla. We also assume the attacker
can track the physical position of the victim AV, which is
feasible if the attacker’s vehicle is also an AV [6].

Attack goal. The goal of our attack is to influence the
position of ROI in the perception module via GPS spoofing,
and thus cause the victim AV to detect a wrong TL to run the
red light or fail to detect any TLs to stop at the green light
(i.e., denial-of-service or DoS).

IV. ATTACK INSIGHT AND DESIGN
Attack insight. Although from high-level design, the lo-

calization and perception modules appear to be independent
of each other, the perception module in fact heavily relies on
the localization, especially for the ROI logic in TL detection
as mentioned in §II-A. Since the localization output directly
determines the ROI that the TL detection pipeline will be
performed on, any errors in the localization would result in
a wrong ROI and may cause incorrect TL detection.

Attack design. To perform the ROI attack on TL detection,
the attacker launches GPS spoofing when the victim AV is in
front of an intersection. When the victim AV drives towards
the intersection, a longitudinal error in the localization would
naturally have a smaller effect on the ROI position compared
to a lateral deviation. Thus, to maximize the effect on the
ROI, we design the attack as spoofing a lateral distance away
from the physical position of the victim AV, e.g., the spoofing
distance shown on the Fig. 3.

Fig. 3 illustrates the ROI attack for TL detection, which is
composed of a reconnaissance stage and a spoofing stage. In
the reconnaissance stage, the attacker examines the current TL
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status and determines the best attack parameters to be applied.
Depending on the TL status, the attacker will use different
spoofing distances to achieve the desired attack goals. For
example, when the TL is red, the attacker needs to spoof a
distance such that the ROI includes another green TL in the
camera view to cause false detection. Alternatively, if the TL
is green, the attacker can simply spoof a distance large enough
such that the ROI contains no TLs, which would trigger a safe
stop in the planning since the AV knows from the HD map that
there is a TL in the front but fails to detect one. In addition,
we set an attack range threshold for determining the timing to
launch the spoofing. If the attacker starts spoofing when the
victim is too far or too close to the intersection, the victim
might have already been deviated out of the road boundary
that prevented it from reaching the intersection or have already
detected the correct TL color and committed the correct driving
decision. After that, the attacker closely monitors the victim’s
position and spoofs the corresponding lateral distance when
the victim enters the attack range.

V. EVALUATION
Experimental setup. Due to the high cost of evaluating

self-driving algorithms on real AVs, we follow the com-
mon practice for AV testing and perform a simulation-based
evaluation, in which we run Baidu Apollo in an industry-
grade AV simulator, LGSVL [13]. To facilitate AV simulation,
LGSVL provides photo-realistic simulation environments with
diverse road structures and a wide range of vehicle models.
In our evaluation, we use the Shalun map and Lincoln MKZ
vehicle. The Shalun map models a common two-lane road with
multiple intersections along the road. We use Lincoln MKZ
since it contains the compatible sensor configurations for Baidu
Apollo. We simulate our attack on Baidu Apollo version 5.0,
which is the latest version fully supported by LGSVL.

To simulate the attack consequences, we create two con-
crete attack scenarios: red light detection and green light
detection. Specifically, for red light detection, we set the front
TL in the first intersection to red and the back TL in the second
intersection to green; for green light detection, we set the front
TL to green and the back TL to red. We have confirmed that
in benign driving, the AV will always correctly detect the front
TLs, and make the correct driving decisions, i.e., stop before
the intersection or drive through the intersection.

Evaluation metric. In our evaluation, we explore the
attack effectiveness of the ROI attack under different attack
range thresholds and spoofing distances, aiming to find the
parameters that can achieve the highest attack effectiveness.
We define a successful attack case as the victim AV mis-detects
the front TL and commits the wrong driving decisions, i.e.,
running the red light or stopping in front of the green light.
Since both Baidu Apollo and LGSVL involve random factors
such as messaging delays, we calculate a success rate by
repeating the simulation for 5 times for each attack parameter.

Attack construction. For the ease of evaluation, we im-
plement the attack logic as an independent module in Baidu
Apollo to receive original GPS inputs from LGSVL. If the
victim AV is within the attack range threshold, we apply the
spoofing distance to the original GPS positions. After that, we
publish the spoofed GPS inputs to the localization module.

Results. As mentioned in §IV, the red light detection sce-
nario has a more restricted spoofing distance requirement since
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Fig. 4: Attack success rates under different attack range
thresholds (left) and spoofing distances (right).

the attacker needs to spoof the GPS such that the ROI covers
the back green TL but not the front red TL. Thus, we start by
exploring the attack parameters for this scenario. The left figure
in Fig. 4 shows the attack success rates when using different
attack range thresholds, i.e., the distance from the AV to the
TL that triggers the attack. During the experiments, a spoofing
distance of 3 meters is applied to the victim’s GPS inputs. As
shown, the best attack range threshold falls between 24 and
28 meters. When using a small attack range threshold (e.g., 22
meters), the attack fails because the victim is too close to the
intersection, and it already executed the stop decision based on
the TL detection prior to the attack. On the other hand, if the
attack range threshold is too large (e.g., over 28 meters), the
victim might already be deviated out of road boundary since
the AD system is constantly correcting any deviation between
the localization and the planned trajectory [6].

The right figure in Fig. 4 shows the attack success rates
when using different spoofing distances. Based on the previous
experiments on the attack range threshold, we launch the attack
when the victim AV is 26 meters away from the TL. As shown
in Fig. 4, a spoofing distance of smaller than or equal to 2
meters is too small to move the red TL out of the ROI, so the
victim can still detect it. On the other hand, when the spoofing
distance is larger than 4.5 meters, both front and back TLs are
moved out of the ROI, causing the victim to fail to detect
any TL and simply stop in front of the intersection. When
the spoofing distance is 3–4.5 meters, the attack success rate
is at least 80%, where the front red TL is moved out of the
ROI, but the back green TL is still in and thus detected by the
victim AV, causing it to continue driving forward to run the
red light. In particular, a 100% attack success rate is achieved
when using a spoofing distance of 3 meters.

In the green light detection scenario, instead of controlling
the ROI to be at a particular position, the attacker can simply
spoof the ROI to the area without any TLs. In such a case, the
TL detector will report “unknown” as no TLs exist in the ROI.
Consequently, the planning module in the AD system issues a
stop decision conservatively. This results in a DoS attack since
the victim stops at the green TL. Similarly, we evaluate this
scenario and found that our ROI attack can achieve a 100%
success rate when using a spoofing distance of 5 meters.

Attack demos. We create two attack demos to illustrate
the severe consequences of the ROI attack. Fig. 5 and Fig. 6
show the snapshots when attacking the red and green light
detections, respectively. The left sub-figures show the camera
images with the ROI annotations, and the right sub-figures
show the corresponding driving decisions in Baidu Apollo. As
shown, our attack can successfully fool the victim AV to detect
a wrong TL or fail to detect any TLs due to the ROI position
shifts caused by GPS spoofing. Such an attack poses great dan-
gers to road safety since it can cause the AV to violate traffic
rules and may even lead to car crashing consequences, e.g.,
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Fig. 5: Snapshot of attacking the red light detection. The green
TL at the next intersection is falsely detected by the AV due
to the incorrect ROI.

Fig. 6: Snapshot of attacking the green light detection. The
TL detector failed to detect any light in the ROI, causing the
victim to stop at the stop line despite the light is green.

when another vehicle fails to yield in time when the victim AV
is running the red light. Demo videos with and without attacks
are available at https://sites.google.com/view/roiattack.

VI. RELATED WORK, LIMITATIONS, AND FUTURE WORK
Related work. To the best of our knowledge, we are the

first to attack ROI and TL detection in AD systems. Since TL
detection relies on DNNs and camera inputs, thus attacks to
these two are direct threats to TL detection. Prior work used
physical-world perturbations to fool the DNNs. For example,
Eykholt et al. [14] uses stickers with carefully devised patterns
to fool the stop sign detection. However, TLs are not as
accessible as stop signs since they are usually installed at a
high place and thus it is unclear how the attacker can put the
stickers without alerting other drivers and law enforcement.
Another line of research explored physical sensor attacks to
blind the camera by shooting strong lights to it [15]. However,
such attacks cannot cause the victim to be a red light runner
and can only lead to denial-of-service. In this work, the ROI
attack does not require any physical perturbations to the TLs
and can achieve both attack goals.

Limitations and future work. As the first study of ROI
attacks in AD perception using GPS spoofing, we start by
attacking AD system with a GPS-based localization, where
GPS is the only positioning resource. Indeed, for GPS-based
localization, it is possible to simply spoof the GPS to a
road without any TLs, such that the victim is not in a state
where it realizes that it should sense a TL, resulting in red
light running. However, this is not the case for MSF-based
localization, which is predominantly adopt in today’s Level-4
AVs, since GPS alone can no longer dictate the localization
output. Although MSF is considered to be more robust against
GPS spoofing, prior work has demonstrated that MSF-based
localization can be deviated by as large as 10 meters using
GPS spoofing [6]. In the future, we plan to incorporate the
MSF attack to improve the practicality of the ROI attack.
Another limitation is that we only evaluate the attack on one
AD system, i.e., Baidu Apollo [3]. Although Baidu Apollo
implements a representative TL ROI design and is already in
production, it is necessary to also evaluate on other TL ROI
implementations (e.g., Autoware [4]) to show the generality
of our attack. We leave this as a future work. Besides, since
the attack parameters are highly dependent on factors such as
victim’s speed and road shape, more diverse driving scenarios

are needed to evaluate the applicability of our attack. In
addition, currently the best attack parameters are found via
exhaustive search. In the next step, we plan to use the victim
AV/TL positions and camera configurations to calculate the
best spoofing distances to be applied in different scenarios.

VII. CONCLUSION

In this paper, we perform the first security analysis on
perception ROI design and take the TL detection as a case
study. We discover that using GPS spoofing can cause the AV
to recognize a wrong TL or fail to detect any TLs. Our study
shows that strategic GPS spoofing can achieve a 100% success
rate to fool TL detection in the AV, leading to red-light running
or denial-of-service consequences, which can be detrimental
to road safety. The future of AVs is bright, but more security
investigations are still needed in the AD systems. We hope
our research can bring more attention to the security threats to
AVs, improving AD systems for safer AVs for the public.

ACKNOWLEDGEMENTS
This research was supported in part by the National Science

Foundation under grants CNS-1850533, CNS-1929771, and
USDOT UTC Grant 69A3552047138.

REFERENCES

[1] S. A. Bagloee, M. Tavana, M. Asadi, and T. Oliver, “Autonomous
Vehicles: Challenges, Opportunities, and Future Implications for Trans-
portation Policies,” Journal of modern transportation, 2016.

[2] Q. Luo, Y. Cao, J. Liu, and A. Benslimane, “Localization and Navi-
gation in Autonomous Driving: Threats and Countermeasures,” IEEE
Wireless Communications, vol. 26, no. 4, pp. 38–45, 2019.

[3] “Baidu Apollo.” https://github.com/ApolloAuto/apollo.
[4] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,

Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
On Board: Enabling Autonomous Vehicles with Embedded Systems,”
in ICCPS’18, pp. 287–296, IEEE Press, 2018.

[5] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned Aircraft Capture and Control via GPS Spoofing,” Journal
of Field Robotics, 2014.

[6] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen, “Drift with Devil: Security
of Multi-Sensor Fusion based Localization in High-Level Autonomous
Driving under GPS Spoofing,” in USENIX Security, 2020.

[7] SAE On-Road Automated Vehicle Standards Committee and others,
“Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles,” SAE International, 2018.

[8] “Baidu debuts Robotaxi ride hailing service in China, using self-
driving electric taxis.” https://www.marketwatch.com/story/baidu-
debuts-robotaxi-ride-hailing-service-in-china-using-self-driving-
electric-taxis-2019-09-26.

[9] G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, and S. Song,
“Robust and Precise Vehicle Localization based on Multi-Sensor Fusion
in Diverse City Scenes,” in ICRA, pp. 4670–4677, IEEE, 2018.

[10] “Tesla Model S and Model 3 Vulnerable to GNSS Spoof-
ing Attacks.” https://www.gpsworld.com/tesla-model-s-and-model-3-
vulnerable-to-gnss-spoofing-attacks/.

[11] “Tesla releases new, highly anticipated Traffic Light and Stop Sign
Control feature.” https://electrek.co/2020/04/24/tesla-autopilot-traffic-
light-and-stop-sign-control-feature/.

[12] K. C. Zeng, S. Liu, Y. Shu, D. Wang, H. Li, Y. Dou, G. Wang,
and Y. Yang, “All Your GPS Are Belong To Us: Towards Stealthy
Manipulation of Road Navigation Systems,” in USENIX Security, 2018.

[13] “LGSVL Simulator.” https://github.com/lgsvl/simulator.
[14] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,

A. Prakash, T. Kohno, and D. Song, “Robust Physical-World Attacks
on Deep Learning Visual Classification,” in CVPR, 2018.

[15] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote Attacks on
Automated Vehicles Sensors: Experiments on Camera and Lidar,” Black
Hat Europe, vol. 11, p. 2015, 2015.

4

https://sites.google.com/view/roiattack
https://github.com/ApolloAuto/apollo
https://www.marketwatch.com/story/baidu-debuts-robotaxi-ride-hailing-service-in-china-using-self-driving-electric-taxis-2019-09-26
https://www.marketwatch.com/story/baidu-debuts-robotaxi-ride-hailing-service-in-china-using-self-driving-electric-taxis-2019-09-26
https://www.marketwatch.com/story/baidu-debuts-robotaxi-ride-hailing-service-in-china-using-self-driving-electric-taxis-2019-09-26
https://www.gpsworld.com/tesla-model-s-and-model-3-vulnerable-to-gnss-spoofing-attacks/
https://www.gpsworld.com/tesla-model-s-and-model-3-vulnerable-to-gnss-spoofing-attacks/
https://electrek.co/2020/04/24/tesla-autopilot-traffic-light-and-stop-sign-control-feature/
https://electrek.co/2020/04/24/tesla-autopilot-traffic-light-and-stop-sign-control-feature/
https://github.com/lgsvl/simulator

	Introduction
	Background
	AD Systems and TL Detection
	GPS spoofing attacks to AD localization

	Threat Model and Attack Goal
	Attack Insight and Design
	Evaluation
	Related Work, Limitations, and Future Work
	Conclusion
	References

