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and complex neural networks commonly seen in industrial lane
detection systems.

The modularity carries the additional benefit of being lane
detection model-agnostic, paving a path for integration into any
lane detection pipeline. Given the constant improvement and
refinement of lane detection techniques, detaching our defense
from a particular architecture allows it to remain viable as the
underlying methods become more sophisticated.

Our system is motivated by the framing of secure lane
detection as two complementary tasks: lane detection and lane
verification. The former requires discerning the locations of a
variable number of lanes in a constantly changing environment;
the latter boils down to binary classification: given a set
of lane coordinates, determine if they correspond to a lane
that is either real or fake. Instead of further complicating
the optimization problem faced by existing lane detection
models by introducing the secondary goal of security on
top of their initial purpose, we propose moving the task of
verification into a separate bespoke model, allowing each part
of the pipeline to focus on maximizing individual performance
without compromise. Since the task of lane verification can
take lane coordinates as given and only needs to return a binary
result, it can be accomplished by models much simpler and
faster than those required for lane detection.

Our experiments show that simple convolutional models
are sufficient to significantly improve lane detection pipeline
robustness to both digital and physical attack as pictured in
Figure 2. When evaluated against a Lp bounded attack and two
patch-based attacks, our model can detect over 95% of attacks
with minimal impact to model accuracy and inference time.
These results suggest that our model is capable of defending
against a variety of attack types, including unknown threats.

In summary, strong performance of our defense against
both nonadaptive and adaptive versions of such threats indi-
cates that such a system could offer security to lane detection
models at very little expense.

Our primary contributions are as follows:

• We propose a simple lane verification defense that
can be integrated into the pipeline of any lane de-
tection effort with no retraining of the underlying
model required. Its independent and lightweight nature
provides marginal inference overhead and allows for
quick security updates when new attacks arise.

• We show empirically that verification provides signif-
icant lane detection security with minimal cost.

Abstract—Susceptibility of neural networks to adversarial 
attack prompts serious safety concerns for lane detection efforts, 
a domain where such models have been widely applied. Recent 
work on adversarial road patches have successfully induced 
perception of lane lines with arbitrary form, presenting an avenue 
for rogue control of vehicle behavior. In this paper, we propose 
a modular lane verification system that can catch such threats 
before the autonomous driving system is misled while remaining 
agnostic to the particular lane detection model. Our experiments 
show that implementing the system with a simple convolutional 
neural network (CNN) can defend against a wide gamut of 
attacks on lane detection models. With a 10% impact to inference 
time, we can detect 96% of bounded non-adaptive attacks, 90%
of bounded adaptive attacks, and 98% of patch attacks while 
preserving accurate identification at least 95% of true lanes, 
indicating that our proposed verification system is effective at 
mitigating lane detection security risks with minimal overhead.

I. INTRODUCTION

End-to-end lane detection methods have shown great 
promise; however, their shared foundation with deep neu-
ral networks imply a shared weakness to adversarial exam-
ples [16]. Given the importance of accurate lane detection 
in downstream control decisions for autonomous vehicles, a 
successful attack on lane perception could result in undesirable 
or outright dangerous vehicle behavior. In particular, we are 
interested in attacks that could interfere with vehicle guidance 
through the generation of malicious lane lines, where attack 
success is marked not by alarm, as is the case when lane lines 
cannot be found, but by a false sense of normalcy. With no 
defense, as is the case with current state-of-the-art efforts, a 
lane detection pipeline is unable to make any judgement of lane 
validity, and thus the perceived fake lanes are indistinguishable 
from real. To defend against such attacks, we propose a system 
for lane verification as illustrated in Figure 1, with the goal 
not to recover the original lanes, but to minimize instances of 
lane detection model false confidence.

Our lane verification model is fast, lightweight, and appli-
cable to any existing lane detection effort. The simplicity of our 
verification model imparts very little inference overhead, and 
its modular nature allows for independent training that avoids 
the costs associated with redesigning and retraining the large
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Fig. 1. Our proposed defense augmentation to a general lane detection model.

II. RELATED WORK

While work on lane detection model defenses is sparse,
there is extensive related work on end-to-end detection models
and some work on lane detection attacks which have been
summarized below.

A. End-to-End Lane Detection Models

Convolutional neural network-based lane detection models
typically frame the core task as one of image segmentation,
with the goal to label each pixel as one of N classes, each class
corresponding to a distinct lane. In the end-to-end formulation,
the segmentation is accompanied by a parallel binary labelling
of lane existence, allowing the model to narrow down where
exactly the lane is within pixels of the same segmentation class.
By doing so, an end-to-end lane detection model is able to take
a scene and return predictions of lane line locations. Proposed
models largely differ on neural network architecture choices
and postprocessing cleanup procedures, the details of which
our defense treats as a black box.

Given the methodological similarities between the top lane
detection models on the TuSimple dataset, we chose to test
our proposed defense with LaneNet as proposed by Neven et
al. [10] due to its near state-of-the-art performance at time
of writing and result reproduction accessibility. We achieve
accuracy within 2% of Neven et al.’s results before adding our
defense. Note that due to the lane detection model-agnostic
nature of our defense, the results from our experiments should
be applicable to any other model we could have chosen, such
as [5], [6], and [7].

B. Image Comprehension Model Attacks and Defenses

The framing of lane detection as a task of image segmen-
tation suggests a sharing of similar security weaknesses, and
recent work has shown image comprehension models to be
very susceptible to adversarial attack. Adversarial examples,
shown to be incredibly effective for image classification, have
been shown to be extendable to image segmentation, with [3]
specifying a framework generalizing their generation across
a variety of tasks, including segmentation, and [16] finding
attack success across a variety of segmentation networks.
Successful attack need not change every pixel as discovered

Fig. 2. Defense Performance. Our defense is able to filter out all but a
handful of adversarial attacks that would otherwise fool unprotected lane
detection models. Intersection over Union (IoU) between detected lanes and
attack targets is our chosen attack metric due to its measurement of both how
well the induced fake lane matches the target fake lane and how much of
the original scene was preserved, providing a sense of amount of control an
attacker has over the scene. The bounded attack before verification surpasses
the IoU achieved by the lane detection model on real lanes, suggesting the
adversarial fake lanes are indistinguishable from real ones to the model. While
patch attack IoU is relatively muted compared to that of bounded attack due
to its largely local impact, it can still cause significant lane deviation as shown
in Figure 6.

in [2], and classification can easily be corrupted with a patch
a fraction of the total size of the image. Defenses, such as
adversarial training, as suggested and explored by [4], [11],
[9], and [15] against adversarial attack, often involve retraining
the entire model which is costly given the ever increasing
complexity of state-of-the-art techniques.

C. Lane Detection Model Attacks

Regarding adversarial attacks on lane detection models in
particular, recent work has used image segmentation attack
methods to great effect. [12] details how a bounded patch,
disguisable in practice as road dirt, could be used to fool
lane detection models before the passenger catches on. The
adversarial patches we test our defense on differ in their
much smaller size and unboundedness compared to the full
lane covering required by [12]. Although our metric of attack
success show the patches are unable to achieve our goal of
reshaping all the lanes in the scene, our results do reaffirm that
patch attack-based lane deviation is a valid threat necessitating
defense.

III. METHOD

A. Defense

Our proposed defense takes place at the end of an existing
lane detection pipeline, at which point a set of candidate lanes
have been identified by the lane detection model. Upon attack
success, these candidate lanes are corrupted and may include
a mix of real and fake lanes. The goal of our defense is to
verify the real lanes and filter out the fake lanes before fur-
ther autonomous vehicle systems make potentially hazardous
decisions based on faulty information.
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Fig. 3. Lane Stabilization. Stabilized lanes are classified as either real or
fake by the verification system.

1) Stabilizing Lanes: The defense takes detected lanes as
input; however, due to the nature of perspective and exac-
erbated by the fact that lane lines can curve either left or
right, extracting lanes using masks formed from the pixel-level
segmentation as provided by the lane detection model results in
lane lines that can take an arbitrary number of forms, lending
itself to a classification problem with an unbounded domain.
To address this issue, we construct a stabilized image of each
lane as follows:

1) Given a set of points corresponding to a lane, we first
perform a least squares polynomial regression to get
its underlying shape.

2) For each pixel that lies on the curve, we compute the
derivative of the polynomial at that point, and extract
the pixels corresponding to the line centered around
the point on the curve and rotated by the angle formed
by the derivative and the horizontal axis.

3) Rotating each extracted line such that the pixels in
each line are lined up horizontally, we can then stack
the horizontal lines vertically to obtain a stabilized
image of the lane that is not influenced by perspective
or lane curvature.

While inverse perspective transforms [1] can mitigate perspec-
tive distortions as well, we found little benefit from applying a
fixed homography before extracting the stabilized lanes. Figure
4 shows examples of positive and negative samples generated
by our stabilization process.

2) Training: Given the absence of applicable existing
datasets, to generate a training dataset for the defense, we
extract stabilized real and fake lanes from a dataset labelled
for lane detection, using the ground truth labels as the basis
for real lanes and generating curves that start from real lanes
but deviate as they move away from the camera as the basis
for fake lanes. While each scene only has a fixed number of
real lanes, an arbitrary number of fake lanes can be generated
from them, creating an imbalance in real versus fake lanes. A

Fig. 4. Examples of positive and negative examples generated by the lane
stabilization process for the defense training dataset.

potential enhancement of the defense could involve tailoring
fake lane design in anticipation of specific attacks.

To address class imbalance, the defense is trained using
focal loss as described in [8] with hyperparameters determined
experimentally. To improve robustness, we employ adversarial
training [9] with an emphasis on missed fake lane detection
via asymmetric weighting of the loss function.

B. Nonadaptive Threat Model

We propose two different threat models dependent on at-
tacker access to lane detection equipment. The threats share the
goal of perturbing the original scene such that the binary seg-
mentation component of an end-to-end lane detection model is
disrupted, allowing the attacker to inducing an arbitrary lane
existence pattern of their choosing. Due to the downstream
dependence of lane detection models on lane existence, the
attack can fatally disrupt lane detection model function. All
attacks are carried out using Projected Gradient Descent [9]
until convergence.

The attacks are nonadaptive, meaning that they do not
target our verification model. We describe adaptive versions
of our attacks [13] in the following section.

1) L-Infinity Attack: In our first threat model, the attacker
is able to manipulate any pixel in the input image, but is
constrained by a bound on the size of perturbation for each
pixel, akin to digital corruption of the input or a lens filter
over the camera.

2) Patch Attack: The attacker is able to manipulate a subset
of pixels in the input image, but is not constrained by a bound
on the size of perturbation for each pixel. We can further break
the subset of pixels into two sizes: fixed and variable. In a fixed
size patch attack, there is a fixed number of pixels the attacker
can modify, akin to having a patch on the lens of the camera.
In a variable size patch attack, the number of pixels able to be
modified is a function of distance away from the camera, akin
to being able to lay a physical patch on the road in the scene.
We can simulate such an attack by scaling patch size against
how lane width and lane marker height change as a function
of pixel height.

C. Adaptive Threat Model

The lane stabilization procedure poses an issue for dif-
ferentiability when planning an adaptive attack in which the
attacker seeks to outmaneuver the defense. Specifically, the
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Fig. 5. Example of L-infinity bounded attack. From left to right, the vertical
pairs of images represent clean, nonadaptive, and adaptive attack, with the
lane detection model output superimposed on the second row, and IoU values
below. IoU values are with respect to the upper rightmost image of the target
lane binary segmentation map, and the resulting stabilized lane is shown below.
Under bounded attack, the attacker is able to assert full control over the scene
and induce arbitrary lane configurations.

backpropagation when attacking the defense is unresolvable at
the point of lane stabilization. We instead propose an adaptive
threat model that takes place in two stages that can extend any
of the nonadaptive threat models proposed above. Without loss
of generality, we discuss the adaptive threat in the context of
an L-infinity attack.

1) The first stage is an L-infinity attack on the lane
detection model, with the goal to induce an arbitrary
binary segmentation map of our choosing. The output
is a perturbed scene in which the lane detection model
identifies the arbitrary lane we choose.

2) Once the first stage has converged, the pixels cor-
responding to the arbitrary lane are extracted from
the perturbed scene. The lane is then stabilized as
described in the process above, and subject to the
second stage of the attack. The goal of the second
stage is to find a perturbation to the stabilized lane
such that the defense is fooled into thinking the arbi-
trary lane is real. Upon convergence of the L-infinity
attack on the defense, the resulting perturbation on
the stabilized lane is mapped back to the original
location of the pixels that form the stabilized lane
in the perturbed scene output from the first stage.

The final result is a perturbed scene designed to both convince
the lane detection model of the existence of a fake lane and
the defense that the perceived fake line is real.

IV. EXPERIMENTS

A. Datasets

The lane detection model, LaneNet, is trained on the
TuSimple dataset [14], which consists of 3,626 training images
and 2,782 testing images taken from a camera mounted on the
front of a vehicle. The images are scaled to be of size 512x288.

The defense is trained on stabilized lanes extracted from the
TuSimple dataset. Each stabilized lane is fit with a polynomial
of degree 3 and resized to be of size 128x40.

B. Implementation Details

The defense model takes the form of a 3-layer convolu-
tional neural network, intentionally designed to contrast against
the numerous layers and weights used for lane detection

Fig. 6. Examples of fixed and variable size adaptive patch attacks. Each
group of four images has the original and applied patch on the first row, and
the corresponding binary segmentation maps on the second. The target lane
is dotted in green, with the patch’s bounding box outlined in red. IoU values
are below each applied patch segmentation map, with the resulting stabilized
lane shown to the right of each group. While full scene control is limited, the
results are substantial enough to cause rogue vehicle behavior.

segmentation. Inputs to the defense take the form of stabilized
lanes of size 128x40. The network is comprised of two
convolutional layers and one linear layer. Both convolutional
layers use a 3x3 filter size with stride 3 and no padding, with
BatchNorm and ReLU applied after each.

Both LaneNet and defense model are trained using one
GPU (GTX 1080). LaneNet is implemented as specified
in [10], with no modifications for robustness, keeping in line
with the modular nature of our defense.

All attacks are performed until convergence is achieved.
Parameter details are as follows:

1) The L-infinity attack is bounded by a per-pixel per-
turbation of at most 8/255, where the input image’s
pixels have a range of [0, 1].

2) The fixed size patch attack is a 100x100 square with
no bound on pixel deviations inside the square. The
square is centered around a point on the targeted
arbitrary lane.

3) The variable size patch attack is specified by a
100x100 square at the foot of the camera, correspond-
ing to roughly a 3-foot by 3-foot physical patch. For
each scene, an arbitrary distance from the camera is
selected, and the square is scaled down accordingly.

C. Evaluation

We evaluate performance of the defense on the test set
of TuSimple. For each scene in the original dataset, LaneNet
is used to identify lanes in clean and attacked variants. The
identified lanes are stabilized and fed to the defense for
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TABLE I. DEFENSE RESULTS. FALSE POSITIVE RATE (FPR) REFERS
TO REAL LANES THE DEFENSE MISTAKENLY FLAGGED AS FAKE, WHEREAS

FALSE NEGATIVE RATE (FNR) REFERS TO FAKE LANES THE DEFENSE
BELIEVED TO BE REAL. AS A MEASURE OF POST-DEFENSE ATTACK

SUCCESS, THE FALSE NEGATIVE (FN) AVERAGE IOU IS THE AVERAGE IOU
BETWEEN ALL ATTACKED SCENES AND TARGETS ONCE FLAGGED LANES

HAVE REMOVED.

Defense Metrics Attack Metric
Bounded Attack FPR FNR FN Average IoU
Unprotected 0 1 0.720
Nonadaptive 0.040 0.039 0.031
Adaptive 0.043 0.098 0.046

Defense Metrics Attack Success Metric
Patch Attack FPR FNR FN Average IoU
Fixed Size Unprotected 0 1 0.205
Fixed Size Nonadaptive 0.039 0.005 0.001
Fixed Size Adaptive 0.042 0.005 0.001
Variable Size Unprotected 0 1 0.082
Variable Size Nonadaptive 0.053 0.017 0.002
Variable Size Adaptive 0.045 0.023 0.002

classification. We report fake lane missed detection rates (false
negative) and real lane misclassification rates (false positive)
at a classification threshold such that we see a 5% real
lane misclassification rate in a validation set. Additionally,
we report the average intersection over Union (IoU) values
between all lanes in attacked scenes and attack targets once
flagged lanes have been removed. IoU values were of interest
due to their dual purpose of measuring how much of the
target was achieved and how much of the original scene was
preserved, providing a sense of attacker control over the scene.

V. RESULTS

A. L-Infinity Attack

We observe that success is almost certain under bounded
attack, with all traces of the real lanes wiped out and the
induced fake lanes matching target fake lanes with an average
IOU of 0.720. Note that after typical lane detection model
postprocessing cleanup procedures, induced fake lane and the
target fake lane have almost identical stabilized forms. Ex-
amples of scenes and their corresponding binary segmentation
maps before and after targeted attack are in Figure 5.

Table I shows defense results under bounded attack. With
an unprotected model, fake lanes slip by undetected 100%
of the time. Under nonadaptive attack, the defense is very
capable of detecting fake lanes while very rarely mistaking real
lanes for fake. We do see some gains in attack strength under
adaptive attack; however, we are still able to detect 90.2% of
fake lanes. Table II shows selected ROC curve data.

B. Patch Attack

1) Fixed Size: The fixed patch attack results reveal a strong
reliance of LaneNet on spatially local features. Unlike the
previous L-infinity attack, which could manipulate the entire
scene to achieve its goal, the patch attack is unable to induce
change outside of a small region around the patch location.
An example of the attack can be found in the first half of
Figure 6. To improve attack stability, the polynomial curve
used to stabilize the lane for the defense is pulled from the
target binary segmentation map instead of being fitted from
what the patch attack is able to induce. Note that while the
patch attack does not do well against our attack success metric

TABLE II. SELECTED DEFENSE ROC CURVE RESULTS. FALSE
POSITIVE RATE (FPR) REFERS TO REAL LANES THE DEFENSE MISTAKENLY

FLAGGED AS FAKE, WHEREAS FALSE NEGATIVE RATE (FNR) REFERS TO
FAKE LANES THE DEFENSE BELIEVED TO BE REAL.

↓ - LOWER IS BETTER ↑ - HIGHER IS BETTER.

Bounded Attack Adaptive Patch Attack
Nonadaptive Adaptive Fixed Size Variable Size

FNR at 0.01 FPR ↓ 0.160 0.496 0.071 0.099
FNR at 0.02 FPR ↓ 0.075 0.210 0.021 0.056
FNR at 0.05 FPR ↓ 0.036 0.082 0.005 0.020
FNR at 0.10 FPR ↓ 0.026 0.048 0.003 0.010
Area Under Curve ↑ 0.984 0.971 0.996 0.993

of full scene control, the achieved result is still capable of
causing undesired lane deviation.

Table I shows defense results under fixed patch attack.
Similar to the bounded attack, we see strong detection rates for
nonadaptive attack with a minor drop when subject to adaptive
attack. Table II shows selected ROC curve data for the fixed
size adaptive attack.

2) Variable Size: Variable patch attack success follows a
similar trend to that of the fixed size patch attack, with the
region of effect largely localized around the patch location.
An example of the variable patch attack can be found in the
second half of Figure 6. The same strategy to improve attack
stability as described in the previous section is employed when
preparing the lane for verification by the defense.

Table I shows defense results under variable patch attack.
Mirroring both previous attacks, robust nonadaptive attack
detection rates are accompanied by slightly weaker results
when under adaptive attack. Although variable patch sizes are
generally smaller than the fixed patch, the former attack is
slightly stronger than the latter with respect to false positive
and false negative rates despite the smaller attack IoU on the
unprotected model, suggesting the fixed patch being a more
noticeable anomaly harder for the adaptive attack to overcome.
Table II shows selected ROC curve data for the adaptive attack.

C. Speed

The addition of our defense saw a marginal impact on
pipeline inference time, experiencing a drop in output from
29.8 to 27 frames per second. Due to differences in system
configuration, we were unable to achieve the 50 frames per
second as presented in [10], but as a rough estimate, the
3ms inference time of our defense as measured locally would
translate to a drop from 52.6 to 45.5 frames per second using
the pipeline timings provided by [10].

D. Ablation Studies

1) Adaptive Attack Cycling: Given that the second stage of
the adaptive attack is unable to assess its impact on the first
stage, it is possible that there exists adverse feedback between
the two stages. To evaluate the extent of this feedback, we test
a bounded attack where the stages are cycled up to four times.
Results are in the first half of Table III. Comparing them with
the figures in Table I, we note that the false positive and false
negative rates are slightly better for the defense in the cycled
attack, suggesting that while repeated cycling may be helping
first stage output, the effect is outweighed by an adverse impact
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TABLE III. ABLATION RESULTS. FALSE POSITIVE RATE (FPR) REFERS
TO REAL LANES THE DEFENSE MISTAKENLY FLAGGED AS FAKE, WHEREAS

FALSE NEGATIVE RATE (FNR) REFERS TO FAKE LANES THE DEFENSE
BELIEVED TO BE REAL. AS A MEASURE OF POST-DEFENSE ATTACK

SUCCESS, THE FALSE NEGATIVE (FN) AVERAGE IOU IS THE AVERAGE IOU
BETWEEN ALL ATTACKED SCENES AND TARGETS ONCE FLAGGED LANES

HAVE REMOVED.

Defense Metrics Attack Success Metric
Cycled Adaptive Attack FPR FNR FN Average IoU
Bounded 0.042 0.044 0.030

Defense Metrics Attack Success Metric
Linear Defense FPR FNR FN Average IoU
Nonadaptive Bounded 0.049 0.966 0.720
Nonadaptive Fixed Size Patch 0.045 0.879 0.180
Nonadaptive Variable Size Patch 0.052 0.921 0.075

to the efficacy of the second stage. Since polynomial fitting
cleans up much of the noise in the binary segmentation map,
first stage gains may provide marginal benefits to overall attack
strength.

2) Simpler Defense Architecture: We found that although
the philosophy of our defense encourages simple defense
designs, purely linear models struggle with the task of lane
classification as shown in the second half of Table III. This
result hints again at the highly local nature of lane detection
as previously seen in Figure 6, a property linear layers are less
adept at taking advantage of compared to the convolutional
layers used in our 3-layer model.

VI. CONCLUSION

Our proposed defense sits on top of existing lane detec-
tion models and can defend against adversarial attacks with
minimal impact to lane detection capabilities.

The orthogonal nature of the defense allows it to be trained
independently from the underlying lane detection model, elim-
inating the cost of retraining. Amid the rising complexity of
image processing models, our defense can provide security
with very little overhead. Taking only lane locations as inputs,
the defense does not depend on a particular lane detection
model’s features or assumptions, streamlining integration into
any lane detection pipeline. The lightweight nature of the
defense promotes fast inference and quick updates as new
attacks arise.

Under a bounded threat model that is able to fully take over
the scene, we show that a simple 3-layer model employing
our defense structure on top of LaneNet can detect over 90%
of attacks while maintaining a maximum 5% impact to clean
accuracy. Under a patch-based threat model where attacker
control is limited but still capable of causing undesired lane
deviation, our defense is able to identify 98% of abnormal
activity while preserving the same 5% threshold. In such sit-
uations where the lane detection model would have otherwise
passed fake lanes off as real to the autonomous control system,
our model is able to call attention to potentially malicious
actors.

Future work could involve designing a differentiable adap-
tive attack and collecting performance of our proposed defense
on a larger sample of lane detection models. An application of
transfer learning could be explored by training the defense on a
separate dataset from the lane detection model and examining

performance. While our defense is able to alert the vehicle
to the presence of an attack, it does not provide guidance
on the safest response, which we leave as an open question.
Variants in the architecture of the verification system may also
be worth investigating; for example, defense model enhanced
with domain-specific knowledge of the highly local nature of
lane detection could see further improvement in verification
accuracy. Finally, a similar system could prove useful for
bolstering robustness against corruption.
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