Car Hacking and Defense Competition
on In-Vehicle Network

Hyunjae Kang, Byung Il Kwak, Young Hun Lee, Haneol Lee, Hwejae Lee and Huy Kang Kim
School of Cybersecurity, Korea University
{trifle19, kwackal2, dlddudfkr, roytravel, hwejae94, cenda} @korea.ac.kr

Abstract—Cybersecurity competitions can promote the impor-
tance of security and discover talented researchers. We hosted
the Car Hacking: Attack & Defense Challenge from September
14, 2020 to November 27, 2020, and many security companies
and researchers participated. To the best of our knowledge, it
is the first competition to contest both attack and detection
techniques on an in-vehicle network, specifically Controller Area
Network (CAN). The participants developed various injection
attacks and high-performance detection algorithms based on the
real vehicle environment. Rule-based and ensemble tree-based
models dominated the final round. Also, time interval and data
byte patterns worked as major features to detect attacks.

I. INTRODUCTION

The development of connected vehicles inevitably increases
security threats to the vehicle. Modern vehicles contain three
main components, in-vehicle systems, external communication
interfaces such as Vehicle-to-Vehicle (V2V) or Vehicle-to-
Infrastructure (V2I), and internet-based applications, to provide
more innovative driving experiences like autonomous driving
[3]. Unlike traditional vehicles, an in-vehicle network such as
Controller Area Network (CAN) [14] is no longer isolated
from an external attacker’s threats. As one of the famous hack-
ing cases, Miller and Valasek demonstrated that an attacker
could control the 2014 Jeep Cherokee by obtaining access to
the CAN network over a compromised radio [13].

In cybersecurity area, competitions to test hacking and
defense skills are being held worldwide. Such competitions
can promote the importance of security, discover professionals,
and educate students in an efficient and attractive way [4].
However, there are only a few competitions held in car security
area. Pwn20wn, a cybersecurity conference with hacking
contests on popularly used software, included automotive
category in 2019 and 2020 [5]. They used a Tesla Model 3
as a target and encouraged researchers to exploit the modem,
infotainment, gateway, CAN bus of the vehicle. Also, SINCON
2020 conference opened a Capture The Flag (CTF) style
competition on car security [8]. Each team could remotely
access a virtual simulated vehicle environment or physical test
bench and solved questions related to the CAN bus. Despite
the positive effects of competitions, holding a car security
competition has challenges due to difficulties of vehicle testbed
set-up and lack of researchers in the related field.

Workshop on Automotive and Autonomous Vehicle Security (AutoSec) 2021
25 February 2021, Virtual

ISBN 1-891562-68-1

https://dx.doi.org/10.14722/autosec.2021.23035

www.ndss-symposium.org

The purpose of this paper is to share our experience of
holding a car security competition. We hosted the Car Hacking:
Attack & Defense Challenge from September 14, 2020 to
November 27, 2020, in South Korea. The competition problem
was to develop attacks and detection algorithms for CAN, a
widely used standard of in-vehicle communication. The partic-
ipants earned scores when they detect other team’s attacks and
inject critical or stealth attacks. The most significant difference
from the events of Pwn20wn and SINCON is that we held
attack and detection competitions simultaneously.

The contributions of our competition are listed below:

e We used a commercial car in the competition: Hyundai
Avante CN7, a model released in 2020. The participants
could inject attacks and see the following effects of a real
vehicle.

e The competition aimed to challenge participant’s attacks
and detection algorithms concurrently. On the day of the
main contest, we captured the CAN traffic while the red
team injects attack messages into the car and transmitted
the traffic to the rest of the teams’ (i.e., blue teams)
detection systems. It is the first attempt to contest both
attack and detection skills in the same car security contest
to the best of our knowledge.

e We ran a testbed with real vehicles before the finals, so
even individual participants who do not have equipment
could use the environment to inject and analyze CAN
traffic. We believe this opportunity helped increasing
interest in car security to researchers and students.

e We could test and compare attack and detect methods of
many research teams, including companies and univer-
sities in car security field. They showed statistical rule-
based approach is effective to detect attacks, and reducing
frequency of attack messages helps to avoid detection
systems.

II. BACKGROUND
A. In-vehicle network

Most vehicles have standard protocols, i.e., LIN, CAN,
MOST, and FlexRay, to communicate with in-vehicle nodes. In
those protocols, the CAN protocol has high-integrity data com-
munications for real-time applications, reliability, and excellent
error detection. For such reasons, most common vehicles apply
CAN to an in-vehicle network to transmit sensor data between
the nodes: Electronic Control Unit (ECU), microcontrollers,
and sensors [14]. It has characteristics such as multi-master bus
access, bus topology, and message priority. An accessed CAN
bus node can transmit CAN message without any configuration

to communicate with other nodes. Accessed nodes broadcast
CAN message because of its bus topology where all nodes
share one line. When some nodes send messages into the CAN
bus, messages identifier works as a priority of transmission.

B. CAN message injection attacks

The CAN bus’ distinctive characteristics could be vul-
nerable due to no consideration of security. Many injection
attacks, such as flooding, fuzzing, spoofing, replay, and bus-
off attacks, exploits CAN bus vulnerabilities [7]. The CAN bus
has no authentication for source and destination addresses, so
the injected data can be processed in normal ECUs without
verification. The flooding attack causes CAN message delaying
of normal ECUs by sending bunch of messages that has the
highest priority (CAN ID 0x000). The fuzzing attack injects
random CAN IDs and data. The spoofing attack controls
certain vehicle functions by setting specific CAN ID and data
field. The replay attack is to inject normal CAN bus traffic,
which was collected during driving. Lastly, the bus-off attack
is to increase error counts via intentional message collision.
When the target node’s error count is large enough, the node
is set to bus-off status [1].

C. Intrusion detection techniques

Various intrusion detection methodologies have been stud-
ied to increase the security of the CAN bus network. These
researches could be categorized based on detection layers, i.e.,
physical layer, data link layer, and application layer. In the
physical layer, voltage differences between a normal ECU and
an abnormal ECU were used to detect intrusions [2], [9]. In
the data link layer, the CAN traffic sequences were used to
the deep learning algorithm to detect the in-vehicle intrusion
[15]. Moreover, the status features, i.e., the survival analysis of
CAN message’s frequency [7] and CAN bus’s self-similarity
[10], were utilized for the anomaly detection algorithms. In
the application layer, in-vehicle sensors’ correlation was used
to check the abnormality with an On-Board Diagnostic (OBD)
data [6]. Various deep learning algorithms based on increased
computing power have recently been studied to detect in-
vehicle network anomalies and intrusions [11].

III. COMPETITION PROBLEMS

This competition targeted the CAN bus of Avante vehicle.
The CAN bus of the Avante is divided into several sections
(e.g., D-CAN, C-CAN, B-CAN) according to its role. To
focus on a specific goal, we tapped a DB9 cable directly
to the C-CAN high/low wires, like Fig. 2a. C-CAN contains
ECUs related to a cluster, motor-driven power steering, airbag
control, rear camera, vehicle dynamic control, and several
Advanced Driver Assistance Systems (ADAS).

We assumed the scenario that an attacker is already ac-
quired access to the CAN bus. It can happen in practice by
hacking the infotainment system or adding a physical node to
the CAN bus. It is important to develop an intrusion detection
system for the CAN layer because the attacker will eventually
inject CAN messages to control the car in many cases. The
participants were required to suggest a high-accuracy detection
algorithm along with developing attacks (i.e., injecting CAN
messages) by analyzing the CAN data. The scope was limited
to C-CAN, considering the short period of the competition.

[Register] [J Testbed open .
Sep. 14 - Oct. 7 Oct. 12-16 . Oct. 26 - Nov. 18 - Nov. 26-27
September October : November :
Files tol . « Detection results (csv) : :;i?i';d\zgzgn:m’ « Presentation
submit * Registerform | Algorithm document Pis, slides
« Detection system

Fig. 1. Car Hacking: Attack & Defense Challenge 2020 timeline

\ g
(a) Tapping C-CAN

(b) Finals site

Fig. 2. Vehicle settings for the competition. (a) C-CAN wires were tapped
to connect a CAN interface device. (b) Cars were lifted up in the finals.

A. Preliminary round

We gave CAN traffic files, including normal and attack
messages, to the participants. Each team had to develop
an attack detection method and submit the class (‘Normal’
or ‘Attack’) of each message. The teams, in order of high
detection accuracy, could advance to the finals. For dataset
description, see Section IV-A.

B. Final round

The teams were requested to develop five kinds of injection
attacks. On the finals, the teams took turns to inject attack
messages into the vehicle. Each team had one attack session for
10 minutes to inject their attacks into the vehicle; other teams
should submit detection results. Each team’s attacks were not
shared with other teams; thus, all teams should prepare their
detection algorithm to work on unknown attacks. There were
some restrictions on the attacks. Teams could conduct only
five injection attacks, and the attack effects should be visible
in naked eyes to confirm the validity of attacks. Also, unlike
preliminary round, attacks injecting random CAN messages
such as fuzzing attacks were not allowed in order to prevent
mixing no-effect messages.

IV. RUNNING COMPETITION

Overall competition schedule and submission files are
briefly described in Fig. 1. Note that the competition was
held during the period of the COVID-19 pandemic, so both
preliminary and final rounds were held as virtual events.
For preliminary, we opened a leaderboard website so the
participants could see their scores. For finals, we provided a
live broadcast along with the leaderboard.

A. Preliminary round dataset

In the preliminary round, we provided two datasets depend-
ing on the purpose: the training set and submission set. Table I
shows the number of messages for normal and attack classes.
Both datasets contained two status of the target vehicle.

TABLE 1. SUMMARY OF PRELIMINARY ROUND DATASET

Purpose Car Status Normal Flooding | Spoofing | Replay | Fuzzing
Driving 1,724,630 77,373 3,879 23,775 45,474

Training (92.0%) (4.1%) (0.2%) (1.3%) (2.4%)
Stationary 1,648,113 76,807 3877 23818 44,405

(91.7%) (4.3%) (0.2%) (1.3%) (2.5%)

Driving 1,799,046 96,559 22,489 37,869 44,770

Submission (89.9%) (4.8%) (1.1%) (1.9%) (2.2%)
Stationary 1,559,164 95,120 20,094 25,012 51,923

(89.0%) (5.4%) (1.1%) (1.4%) (3.0%)

TABLE II. EXAMPLES OF TRAINING DATA

Ti Arbitration ID | DLC Data Class SubClass
1597759747.427094 507 4 08 00 00 01 Normal Normal
1597759747.427486 000 8 00 00 00 00 00 00 00 00 Attack Flooding
1597759747.427742 356 8 00 00 00 80 1D 00 00 00 Normal Normal

Driving. The data extracted when driving, including general
driving motions (e.g., accelerate, braking, turning the steering
wheel).

Stationary. The data extracted when the car engine is on but
not moving (park gear), including subsidiary motions (e.g.,
pressing buttons of the center console).

In each state, there were four types of attacks:
Flooding. Flooding attack aims to consume the CAN bus
bandwidth by sending a massive number of messages. We
transmitted messages having the lowest value of CAN ID
(0x000) to take advantage of the priority mechanism.
Spoofing. An attacker injects CAN messages to control the
desired function after reversing the vehicle traffic. Several
spoofing attacks were performed in the preliminaries; 1) fac-
tory mode activated warning, 2) printing higher RPM gauge, 3)
engine off warning, 4) blind spot collision warning, 5) sudden
turn-on of the rear camera screen. We included 1), 2) to the
training set, and 3), 4), 5) to the test set; different CAN IDs
were used in the test set to increase detection difficulty.
Replay. Replay attack is to extract normal traffic at a specific
time and replay (inject) it into the CAN bus. It is relatively
hard to make changes to a specific function, but much easier
than spoofing attack because it does not require hard reversing.
When we replayed the traffic, some warnings flashed on the
cluster, and odd reactions appeared when driving the vehicle.
Fuzzing. If an attacker does not have sufficient information
on the values of CAN IDs and the data field, he may inject
random messages. When we transmitted randomly generated
data of several arbitrary IDs, random warnings flashed on the
cluster, and occasionally it caused sudden stop or flinching of
the steering wheel.

As shown in Table II, the training dataset was CSV
format files consisting of 6 fields: Timestamp, Arbitration ID
(i.e., CAN ID), DLC, Data, Class, and SubClass. Timestamp
indicates the Unix time when the CAN message was logged.
CAN ID is a hex value of the identifier. DLC is an integer
value of the data length code. Data is hex values of the data
field, each byte separated by a space. Class and subclass are
fields to indicate normal or attack, and type of attack of the
CAN message.

In the submission dataset, we deleted Class and SubClass
fields and added Number field indicating the row number
in front of the Timestamp field. Participants submitted the
predicted Class (Normal of Attack) of each CAN messages.
Note that predicting SubClass (i.e., attack type classification)
was not required in the competition to consider scalability,
because participants may carry out any type of unknown
attacks in the finals.

Outside Network

Competition Site (Finals)

Attack PC

<
@ Attack ch 1 @ Remote
access

CAN Interface

® Dump

_ DumpPC AWS
. h1 all traffic
= 7 ' CAN Interface =<
. ® Dump attack Team 1
Target Vehicle traffic Labeling PC H

ch1 ® Run)
CAN Interface detection
systems

® Make ground truth

/ Show scores
@ Calculate

detection scores .i i E

i Scoring Server Web Server (Leaderboard)

Fig. 3. Overview of final round systems and process
The preliminary round datasets are available for research
purposes on our website.!

B. Systems and process for final round

In the finals, all teams had one attack session (10 minutes)
in turn to inject five types of prepared attacks. In each attack
session, all teams’ attack detection systems, including the
attack team’s system, submitted the predicted Class of each
CAN messages collected.

The overall systems and process is shown in Fig. 3.
To hold attack and detection competition simultaneously, we
considered the following conditions when building the finals
environment:

e All C-CAN traffic of the vehicle and only attack traffic
should be captured separately.

e Creating ground truth should be automated.

e Running each team’s detection system and evaluation
should be automated.

1) Performing attacks: For safety, the target vehicle was
lifted up and kept stationary status. Participants may change
the vehicle’s settings except for drive or rear gear (e.g., park
or neutral gear, turning the steering handle, opening/closing
doors). Staffs changed the settings at the site if requested since
the participants remotely accessed the attack PC because of
the pandemic. Each team’s pre-submitted attack scripts were
downloaded on the PC, so the participants could run the scripts
to send attack messages to the vehicle. The PC was connected
to the vehicle through a CAN to USB interface product of
Kvaser’s. The interface supported a dual CAN channel, and
the first channel was cabled with the vehicle’s C-CAN.

2) Collecting CAN data: The CAN message frame does
not contain sender information, so it is hard to distinguish
attack messages only from the dumped traffic of the vehicle’s
CAN. We revised attack scripts after submission to make them
re-send duplicate messages to the second channel to solve this
problem. The second channel was connected to another CAN
interface of other PC (“Labeling PC” in Fig. 3). Since it is
a separate bus network from the vehicle’s network, we could
collect attack messages only. Also, another PC (“Dump PC”)
collected all traffic from the vehicle.

Thttps://ocslab.hksecurity.net/Datasets/carchallenge2020

TABLE III. COMPETITION PERFORMANCE EVALUATION INDICATORS
Category Evaluation Indicators Proportion Remarks
Visibility of attack impact Y/N Qualitative
Number of attack kinds 6% Quantitative
Attack Score Different attacks from preliminary round 6% 30% Quantitative
Severity of attacks 6% Qualitative
Detection difficulty 12% Quantitative
. . Host’s session 10% o
Detection Score Attack detection accuracy (F1-score) } Participant’s session 70% 50% Quantitative
Understanding of CAN data and validity of idea-making process 4%
Presentation Features, advantages, and differentiation of detection algorithm 8% 20% Qualitative
Features, advantages, and differentiation of attack techniques 8%

3) Making ground truth: After each attack session was
finished, the dump PC sends dumped traffic to the labeling PC.
The labeling program flagged certain messages as “Attack” if
the message could be found in attack traffic, dumped from the
other channel. Timestamp, arbitration ID, DLC, and data fields
were compared to determine the attack messages.

4) Running detection systems and scoring: Each team
installed their attack detection system on an individual cloud
server. We provided Amazon EC2 P3.2xlarge instance?, and
the teams were able to set up their system for two days
before the finals. The system should be automated and the
participants were inaccessible to the server on the day of
the final. After each attack session was finished, we trans-
mitted unlabeled CAN traffic and ran all detection servers
in parallel. The servers submitted detection results and run
times to a scoring server. The submission time limit was 20
minutes, twice the time of an attack session. The scoring server
calculated detection scores by using the ground truth from
the labeling PC, and finally, it uploads each team’s detection
score on a leaderboard. Considering the time required for
data transmitting and processing, participants could check their
scores in at most 25 minutes.

C. Scoring

We conducted quantitative and qualitative evaluations to-
gether for a comprehensive assessment. All evaluation indica-
tors and distribution is on Table III.

1) Attack score: When making the indicators, we delib-
erated on how to tempt teams to make stealth and critical
attacks; ‘detection difficulty’ and ‘severity of attacks’ are the
related indicators. Since there are temporal constraints to hold
a competition, we limited the attack ranges to the cases where
we can visually identify the attack impact.

Visibility of attack impact. The impact of every attack should
be visible; therefore, the staff could recognize that the team is
injecting valid attack messages. If the staff cannot confirm the
impact, the corresponding attempt is not counted as an attack.
Number of attack kinds. The teams could prepare at most
5 different attacks. The ‘kind’ of attack is distinguished as if
an attack affects different functions of the vehicle, regardless
of attack types such as flooding, spoofing, replay, and fuzzing.
For example, if a first attack changes an RPM gauge value
and a second attack turns a steering wheel, both attacks are
counted as different.

Different attacks from preliminary round. This indicator is
included to encourage participants to make different kinds of
attacks from preliminary round datasets. If a team reuses the
attack that is already performed in the preliminary round, this

2The instance’s specifications are one NVIDIA Tesla V100 GPU, 16GB
GPU memory, 8 virtual CPUs, and 61GB memory.

score will be deducted.

Severity of attacks. If an attack arises malfunctioning of
essential driving functions such as controlling a brake or
direction of wheels, the team gets a higher score.

Detection difficulty. If a team performs attacks that are
difficult to detect from other teams’ detection systems, the team
gets points. From an attacker’s point of view, it is important
to carry out silent attacks that an IDS may miss. Note that
this score is calculated on a session basis, unlike the above
indicators, which are scored on each attack. If n is the total
number of teams and Fj is the Fl-score of team ¢, the red team
gets an inverse proportion of all teams’ F1-score average:

_ Z?:1Fi
n

1

2) Detection score: We used F1-score indicator to assess an
accuracy of detection algorithms. F1-score is a harmonic mean
of precision and recall, where precision (recall) is the number
of correctly identified attack messages divided by the number
of all messages predicted as attack (divided by the number of
all real attack messages). It can measure detection performance
objectively even when normal and attack data distribution is
unbalanced:
precision - recall

Fl-score =2+ ——X—M—
precision + recall

For the preliminaries, only the detection score of the
submission dataset was used. For the finals, the detection
scores of all attack sessions were aggregated. There was a
host’s session; we injected attacks similar to the preliminaries
to assess teams’ basic detection performances. Also, each team
submitted results for all team’s sessions, including their own,
and the weighted sum of Fl-scores were the final score.

3) Presentation: Each team made a presentation for 25
minutes (15 min presentation, 10 min Q&A) on the 2nd day of
finals, explaining the detection algorithm and prepared attacks.
The evaluation committee composed of 6 experts estimated
qualitative factors such as background knowledge level of
CAN or in-vehicle IDS, the effectiveness of the proposed
detection algorithm, and efforts to develop attack techniques.

D. Running testbed

A testbed, a real vehicle environment, was provided before
the finals to test their skills and collect real data. We operated it
from October 26, 2020 to November 18, 2020. Two cars were
placed so that two teams could visit at the same time. Kvaser
CAN interface, the same device used in finals, was equipped,
and sample codes of reading and transmitting CAN messages
were provided. For safety reasons, participants were only
allowed to inject or collect data when the car was stationary.

TABLE IV. COMPETITION RESULTS: DETECTION SCORES, ATTACK

SCORES, AND DETECTION ALGORITHMS

Fin. avg, Fin. avg. Fin.
Team Fl-score detection | attack Detection algorithm
time (s) score
A 0.869 33 71.0 Rule-based
B 0.864 155 572 XGBoost, Light GBM, rule-based
C 0.816 355 79.6 Random Forest, white & black list
D 0.812 257 66.7 | Light GBM
E 0.675 295 63.4 | Rule-based, Random Forest
F 0.445 147 38.8 | Random Forest, Light GBM
G 0 114 51.7 | DBSCAN

Instead, they could request us to dump and share data while
driving normal roadway with videos filmed driver actions and
front views. Occasionally, wrong alarms were often turned on
in the cluster when unusual CAN messages were injected, and
they did not disappear by turning the car off and on. Every
day after the testbed closed and anytime users requested, our
staff drove the car for a moment to refresh sensors.

V. COMPETITION RESULTS
A. Summary

We had 25 registrations on the preliminary round, and
19 teams submitted results. Top 7 teams entered finals; two
security companies, one university (professor and graduate
students), one research institute, and three individual teams
composed of undergraduate students or office workers. Ta-
ble IV shows the final teams’ overall scores and detection
algorithms. We listed the teams in order of finals detection
score. As shown in Table IV, Participant’s detection scores
decreased significantly compared to the preliminary round;
-0.13 points based on the highest score. We surmised that
there were two main reasons; 1) any information of attacks
prepared by participants were not shared with other teams—
unlike training sets provided in preliminaries, 2) the requests
of the team varied vehicle settings during the attack session,
so it increased diversity of normal traffic.

1) Detection algorithms: Interestingly, all teams except
Team G used rule-based or tree-based ensemble classifiers
(e.g., Random Forest, XGBoost, Light GBM) in finals. While
many teams also used tree-based models in the preliminary
round, five teams out of 19 submitted teams used deep learning
models, such as BERT, CNN, autoencoder, and LSTM. How-
ever, even the teams that used deep learning models changed
their algorithms to rule-based or tree-based models in finals.
Final round teams preferred such models because of fast in-
ference speed to submit results within the time limit (20 min).
Also, the models did not lack detection performance compared
to deep learning models in our competition environment.

2) Features: There were two major features that the final
teams focused on-time interval and data field patterns.
Time interval. Most of the CAN IDs have regular transmitting
cycle in normal status. When attack messages targeted on
certain CAN ID are injected, time interval values becomes
much shorter than the normal cycle, as shown in Fig. 4a.
Data field patterns. Several CAN IDs have constant, counter,
or CRC (Cyclic Redundancy Check) bytes in the data field
[12]. When an attack message is injected between normal
messages, it breaks the pattern of such data bytes. For example,
Fig. 4b shows abnormal counter bytes when an attack message

Timestamp | ID Data

o
o
o

120.78377[490/00(/00|{08|21|00/00 3C|7C

o
=
=

120.83318 490/00|00/08|21|00|10 3C|c8

o
I=}
@

120.88338 490|00|00|08|21/00/20|3C|09

o
o
R

Time interval

120.90583|490|03 |00/ 08|21|00|00|3C|7C

e Normal

ot
o
=

120.93318|490|00|00/08|21|00 |30 3C BD

Spoofing

o

o

S
-
o
S

.98348|490/00/00|/08|21|/00|40 3C|96

0 160 260 360 460

Timestamp 120.03387{490|00|00/08|21|00|50|3C| 22

(a) Time interval example (b) Counter example

Fig. 4. Feature values observed in CAN ID 0x490. (a) shows a scatter plot
of time interval values. Normal messages have regular intervals around 0.05
sec, while spoofing messages have intervals smaller than 0.005 sec. (b) shows
sample data bytes of counter pattern. The red row is a spoofing message. It
shows a wrong counter value while the data byte of normal messages increases
0x10 each time.

is injected. Rule-based models used certain condition of CAN
ID, data byte, and type of pattern (e.g., constant, counter)
while developing the rules. Tree-based models used data byte
difference from last same CAN ID message as a feature, so
they could train the pattern of change in data bytes.

3) Proposed attacks: To achieve high attack scores in the
competition, severity of attacks and detection difficulty are
major indicators.

Severity of attacks. The attacks were divided into two main
categories: controlling powertrain and false alert. Attacks that
could make changes on powertrain modules, such as steering
wheel and brake, got high severity scores. These attacks may
cause critical accidents by controlling the car’s movement.
False alerts are the attacks that spoof signs on the dashboard.
Various scenarios were proposed, e.g., hiding door open sign,
showing wrong gear sign, turning on the ADAS signs or
warnings. The purpose of these attacks was to confuse the
driver and interfere with driving. They got relatively low
severity scores than powertrain related attacks.

Detection difficulty. To avoid detection, the process of re-
ducing the frequency of attack messages and making them
similar to normal messages was important. Regardless of the
severity, the low frequency decreased time interval violation
and the probability of detected by other teams’ algorithms.
Also, avoiding unused IDs and data bytes also helped.

B. Team A’s detection algorithm (detection score rank 1)

Team A used only rule-based algorithm. Their algorithm
mainly worked as following steps; 1) detect unused CAN
ID and DLC, 2) check each data byte whether specific byte
has wrong constant, counter, or CRC value, 3) check if time
interval of packets is outside of normal range. These features
were commonly used by other teams, though their strength was
thorough analysis of each CAN ID and data bytes; they tried to
discover each byte’s pattern type (e.g., constant, counter, CRC,
or reflecting sensor input) for all CAN IDs. Interestingly, it was
the fastest algorithm among all teams; it took only 33 seconds
in average to submit detection results of 10 min traffic, while
other teams took 1-6 minutes generally.

C. Team C’s attacks (attack score rank 1)

Team C endeavored to find attacks that could succeed with
the minimum number of messages. They repeated fuzzing on

CAN ID and data fields to find messages that effects functions
such as steering wheel, brake, autohold, and cruise control.
Also, they tried ID elimination test—checking the car’s reaction
after eliminating certain ID from the collected traffic and
replaying it. These process made them available to find the
exact message that could control the car with small amount
of messages. They injected only 2,000 messages while other
team’s injected at least 6,000 to at most 160,000 messages. As
result, they got remarkable score on the detection difficulty.

VI. DISCUSSION: LIMITATIONS AND POTENTIAL
IMPROVEMENTS

As we held data-driven hacking and defense style compe-
tition in the car security field for the first time, we would like
to mention the limitations and factors that could be improved
in the future.

1) Limited vehicle status: Using a commercial vehicle
enables developing attacks and detection algorithms that work
in practice; however, it inevitably causes cost and safety prob-
lems. The non-driving status was only allowed at the finals and
the testbed because of safety issues such as driver injury due to
unexpected movement while testing attacks. Therefore, some
attacks, like changing the vehicle’s speed by malfunctioning
ADAS systems, were hard to develop in this competition. A
proven testing place with a chassis dynamometer or a track
should be reserved to provide a driving status. Otherwise,
we may consider building a simulator similar to the real car
environment. Also, the contest hall for the finals was an indoor
place, so there were difficulties in resetting the wrong alarms
on the car by driving. We removed the remaining error codes
via the OBD-II scanner and disconnected the battery for more
than 10 min to solve this problem; this process was repeated
between all attack sessions.

2) Accessibility to a real vehicle: A real car is a costly
device, especially for individuals. Although few teams owned
or rented the same vehicle model, the other teams had to test
their skills within a limited period at the testbed (at most two
days per team). For a future competition, it is recommended
to increase the testbed providing period more sufficiently by
considering the schedule from the planning stage.

3) Extending the scope of challenge: As we mentioned in
chapter III, only C-CAN was the competition’s scope. We
may consider extending the scope by adding other sections:
P-CAN (connected to engine/transmission/powertrain, fuel in-
jection pump, vehicle dynamic control modules, etc.) and
B-CAN (connected to a seat position control module, etc.).
Also, considering other important layers of a vehicle, such as
Bluetooth/USB modules, infotainment, and gateway devices,
would be challenging but valuable competition items.

VII. CONCLUSION

The Car Hacking: Attack & Defense Challenge 2020 is
the first car security competition that held both attack track
and detection track concurrently. Several security companies,
researchers, and students participated and tested their detection
system performance in the real-car environment. Surprisingly,
the top-ranked detection algorithm was a rule-based model.
The model scored 0.87 Fl-score on binary classification per
message (‘Normal’ or ‘Attack’). It used precise rules of time

intervals and data byte patterns of each CAN ID. The team with
the highest attack score earned both great scores on severity
and detection difficulty. They tried to find out the exact CAN
message that could control the car with a small amount of
injection.

There is a lot of room to expand the competition, such as
targeting multiple vehicle models or preparing more various
vehicle status. Continuing to hold competitions will help
discover talented researchers and activate automotive security
research.

ACKNOWLEDGMENT

This work was supported by Institute for Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2020-
0-00866, Challenges for next generation security R&D).

REFERENCES

[11 K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks makes
them vulnerable,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 1044-1055.

[2] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “Voltageids: Low-
level communication characteristics for automotive intrusion detection
system,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 8, pp. 2114-2129, 2018.

[3] J. den Hartog, N. Zannone et al., “Security and privacy for innovative
automotive applications: A survey,” Computer Communications, vol.
132, pp. 17-41, 2018.

[4] E. Gavas, N. Memon, and D. Britton, “Winning cybersecurity one
challenge at a time,” IEEE Security & Privacy, vol. 10, no. 4, pp.
75-79, 2012.

[5] B. Gorenc, “Pwn20wn returns to vancouver for 2020,”
https://www.zerodayinitiative.com/blog/2020/1/8/pwn2own-returns-
to-vancouver-for-2020, accessed on: Jan. 11, 2021.

[6] FE. Guo, Z. Wang, S. Du, H. Li, H. Zhu, Q. Pei, Z. Cao, and J. Zhao,
“Detecting vehicle anomaly in the edge via sensor consistency and

frequency characteristic,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 6, pp. 5618-5628, 2019.

[71 M. L. Han, B. I. Kwak, and H. K. Kim, “Anomaly intrusion detection
method for vehicular networks based on survival analysis,” Vehicular
communications, vol. 14, pp. 52-63, 2018.

[8] Infosec In the City, “Overview of SINCON car security kampung,”
https://www.infosec-city.com/post/sin20-ctf-car-security, accessed on:
Jan. 11, 2021.

[9] M. Kneib and C. Huth, “Scission: Signal characteristic-based sender
identification and intrusion detection in automotive networks,” in Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 787-800.

[10] B. I. Kwak, M. L. Han, and H. K. Kim, “Cosine similarity based
anomaly detection methodology for the can bus,” Expert Systems with
Applications, vol. 166, p. 114066, 2021.

[11] Y. Lin, C. Chen, F. Xiao, O. Avatefipour, K. Alsubhi, and A. Yunianta,
“An evolutionary deep learning anomaly detection framework for in-
vehicle networks-can bus,” IEEE Transactions on Industry Applications,
2020.

[12] M. Markovitz and A. Wool, “Field classification, modeling and anomaly
detection in unknown can bus networks,” Vehicular Communications,
vol. 9, pp. 43-52, 2017.

[13] C. Miller and C. Valasek, “Remote exploitation of an unaltered passen-
ger vehicle,” Black Hat USA, vol. 2015, p. 91, 2015.

[14] Robert Bosch GmbH, “CAN specification 2.0,”
http://esd.cs.ucr.edu/webres/can20.pdf, 1991, accessed on: Jan.
11, 2021.

[15] H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network intrusion
detection using deep convolutional neural network,” Vehicular Commu-
nications, vol. 21, p. 100198, 2020.

