
MUVIDS: False MAVLink Injection Attack
Detection in Communication for Unmanned Vehicles

Seonghoon Jeong, Eunji Park, Kang Uk Seo, Jeong Do Yoo, and Huy Kang Kim
School of Cybersecurity, Korea University

{seonghoon, epark911, tjrkddnr, opteryx25104, cenda}@korea.ac.kr

abnormalities or intrusions on unmanned vehicles. Each un-
manned vehicle has various external I/O interfaces, which
could open up attack surfaces, notably inertial measurement
units, global positioning system, and network interfaces (e.g.,
Wi-Fi card). However, existing research has mainly focused
on the sensor- and GPS-based attack detection methods. Such
research detects abnormal signs and intrusions by predicting
the next sensor value and location information based on a given
mission and the current driving context [11]. A drawback of
proposed techniques is that sensor and GPS data highly rely
on the operation environment and some parameters need to be
tuned dependent on a specific vehicle. On the other hand, in the
context of network security studies, the majority is in vehicular
ad-hoc networks (VANETs). The main goal of such a study
is to keep availability and reliability of wireless communica-
tion, as well as providing secure “wireless” communication
channels.

Despite considerable efforts to detect intrusions for UAVs,
however, no study has been conducted on intrusion detec-
tion methods in the field of UAV-GCS communication. Al-
though sensor- or GPS-based anomaly detection methods could
identify network-level intrusions because the UAV will not
operate as expected, such previous methods will alert only
after being compromised. While a communication protocol for
unmanned systems and ground stations is getting used to major
autopilot systems [7], some vulnerabilities were discussed by
previous work. Kwon et al. [8] discover a vulnerability of
MAVLink used for UAV-GCS communication. By exploiting
the vulnerability (injecting a false command packet), they
succeeded in hovering the drone against the pre-uploaded
mission. In addition, through the fuzz test of the protocol,
several vulnerabilities were discovered that could cause the
autopilot system to crash. [5]. In summary, the studies imply
that the target UAV can be exploited by the attacker if an
attacker can inject false packets.

In this paper, we propose MUVIDS, a network-level in-
trusion detection system (IDS) to protect MAVLink-enabled
unmanned vehicles managed by GCS over the Internet. We
follow the previous literature [5], [8] that assumes an attacker
injects false MAVLink messages to a target UAV without
recognition of the connected GCS. Our goal is to let the GCS
identify whether a connected unmanned vehicle is under attack
or not based on a pattern of network traffic. For the experiment,
we set up a network testbed. A GCS is connected to a software-
in-the-loop (SITL) UAV simulator and a hardware-in-the-loop
(HITL) UAV simulator. For the connection, MAVLink1 is used,
which is the de facto standard protocol designed to exchange

1https://github.com/mavlink/mavlink, https://mavlink.io/en/

Abstract—MAVLink protocol is a de facto standard protocol 
used to communicate between unmanned vehicle and ground 
control system (GCS). Given the nature of the system, unmanned 
vehicles use MAVLink to communicate with a GCS to be moni-
tored and controlled. Such communication continues to grow on 
the Internet due to its rapidly grown nature. In the past few years, 
the unmanned vehicle security has been one of the key research 
topics in the security field. However, existing research has mainly 
focused on the sensor- and GPS-based attack detection methods. 
To this end, we propose MUVIDS, a network-level intrusion 
detection system to protect MAVLink-enabled unmanned vehicles 
managed by GCS over the Internet. MUVIDS includes two Long 
short-term memory models that leverage a sequential MAVLink 
stream from a victim vehicle. The two models are designed 
to solve a binary classification problem (in case of labels are 
available) and a next MAVLink message prediction problem (in 
case of no label is available), respectively. The experiment was 
performed on a software-in-the-loop unmanned aerial vehicle 
(UAV) simulator and a hardware-in-the-loop UAV simulator. The 
experiment result confirms that MUVIDS detects false MAVLink 
injection attacks effectively.

I. INTRODUCTION

Unmanned vehicles, specifically known as unmanned aerial 
vehicles (UAVs) and unmanned ground vehicles (UGVs), are 
getting special attention because of shifting paradigms in com-
mercial delivery, military operations, social protection such as 
rescue, disaster monitoring [4], and even keeping our health 
in the middle of COVID-19 pandemic [3]. Among unmanned 
vehicles, commercial drones are the most promising systems 
so far in which the drones are easy to be deployed due to their 
low dependence on ground infrastructure during flight. Given 
the nature of the system, UAVs communicate with a ground 
control system (GCS) using satellite links, radio frequency, 
Wi-Fi, LTE, 5G, and so on, to be monitored and controlled. 
Today, UAV-GCS communication continues to grow on the 
Internet due to its rapidly grown nature. Thus, the importance 
of ensuring secure UAV-GCS communications is highlighted.

While unmanned vehicles provide many positive effects 
on our lives, attacks against the vehicles lead to malfunction 
and fatal consequences for operators (lost vehicles) and the 
physical world (casualties). Some studies already showed the 
possibility of attacks targeting unmanned vehicles [8], [12]. 
Therefore, it is important to research methods for detecting
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Fig. 1. MAVLink 2.0 frame header. Each field contains a single byte unless noted otherwise.

messages between vehicle and GCS over various network me-
dia. At the GCS, MUVIDS captures inbound MAVLink packets
from the vehicle and detects injection attacks using LSTM-
based recurrent neural networks. Though we have labels for
training our models, we also provide another use case of
MUVIDS in a case of lack of the label information.

Our contributions can be summarized as follows:

• We propose MUVIDS to identify attacks on unmanned
vehicles using MAVLink communication between un-
manned vehicle and GCS.

• We extend false MAVLink injection attacks from
previous works [8], [12] to evaluate MUVIDS.

• By using deep learning-based detection models,
MUVIDS successfully detects three types of false
MAVLink injection attacks in both a SITL and a HITL
environment regardless of availability of label. That is
a huge benefit for unmanned vehicle operators because
they do not have to throw vehicles in the wild to
collect train set.

• MUVIDS works for monitoring various MAVLink-
enabled vehicles easily since it does not require any
parameters regarding vehicles.

II. BACKGROUND

A. MAVLink

MAVLink stands for Micro Air Vehicle Link. The goal
of MAVLink is to provide efficient and reliable commu-
nication and covers various common functionality used at
most GCSs, autopilot systems of unmanned vehicles. Unlike
its name, MAVLink supports not only air vehicles but also
ground/underwater vehicles. Thanks to the open-source policy
and hard-working team Dronecode underneath the Linux Foun-
dation to support many programming languages, MAVLink
is now one of the most commonly adopted protocols in per-
sonal and commercial vehicles (especially drones). Currently,
MAVLink 2.0 is the up-to-date protocol.

Fig. 1 shows the MAVLink 2.0 protocol header. We here
introduce packet fields briefly. Since MAVLink can be used on
various channels, the STX field implies that the next buffer is
a MAVLink 2.0 message. The LEN field means the length of
the PAYLOAD field. The SEQ field contains a number whose
value increases at each transmission. The SYS/COMP ID points
to a target vehicle and an in-vehicle component, respectively.
The MSG ID, which we use in this paper, indicates how the
PAYLOAD field should be parsed and consumed. Two flag
fields and the SIGNATURE field are designed for message
signing. However, message signing is not always available in
all implementations, unlike essential communication features.
Note that there is no security mechanisms like encryption and
authentication. To this end, some security solutions are dis-
cussed in the literature. For the technical details and following
state-of-the-art security solutions about the MAVLink protocol,
the reader is kindly referred to [7].

B. Communication between UAV-GCS

The MAVLink connection is established through the fol-
lowing brief explanations of the steps: A vehicle starts to
transmit a HEARTBEAT message in the broadcast domain or
to a designated address of GCS. At the same time, the GCS
listens to the HEARTBEAT message on the ground. When the
GCS discovers the vehicle, then both systems continuously
send a HEARTBEAT message to each other every second to
keep it alive. Then, the connection ends with some silence of
HEARTBEAT messages.

After a connection is established, the vehicle continually
reports the current status toward the connection so that the
GCS can follow the vehicle’s status. The frequency of reports
may vary depending on vehicle types, autopilot systems, link
bandwidth, etc. On the other hand, the GCS sends MAVLink
messages to the connected vehicle when triggered by humans
(e.g., uploading mission, sending a new command), instead of
a periodic transmission. The MAVLink message parser does
not refer to any value in other protocol headers, such as source
IP address. Thus, MAVLink communication is vulnerable to a
false message injection if the message has a valid payload.

C. False MAVLink injection attack

Here, we introduce false MAVLink injection attacks, which
we want to detect using MUVIDS. The attacks are more critical
than sensor- or GPS-level attacks in terms that the attacks can
be performed by an far remote attacker even she/he does not
have any specially designed hardware. We assume the ability
of the attacker, the GCS, the UAV as follows: (1) The attacker
can access the target UAV through the compromised network.
(2) The GCS does not become aware of the attacker’s existence
or false packets generated by the attacker. (3) The UAV and
the GCS use plain text (no encryption) by following a standard
implementation. (4) The attacker interferes with an established
session between UAV-GCS because the target UAV only listens
to an established session.

The attacker’s goal is to disguise an accident as occurring
on UAVs. Here, we consider flooding attacks to occupy the
drone’s resources and reduce its capacity, such as limited action
radius by battery drain, insufficient object perception. Based on
the assumption, we present three types of attacks as follows:

• Heartbeat flooding. The message is consumed by the
MAVLink receiver process and does not pass across
the inside of the autopilot system.

• Ping flooding. The ping message is designed for
networks that do not support ICMP. The receiver needs
to send a ping response to the opposite system.

• Request flooding. The request message is used to
query the value of a specific parameter. The receiver
sends the opposite system the requested parameter. It
consumes much more computing power because of
additional kernel tasks.

2



(a) Process list in NuttX OS. The MAVLink message receiver over-
consumes the CPU in our Pixhawk 4 autopilot system.

(b) Simulated UAV crash due to the considered flooding attack

Fig. 2. False MAVLink injection attack realized in our HITL simulator
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Fig. 3. Architectural overview of MUVIDS. The attacker inject false messages
to the UAV whereas the IDS receives MAVLink communication from the UAV.

Fig. 2 shows the impact of the attack on our HITL
simulator. The flooding attacks make the Arm processor of
our Pixhawk 4 busy. The more messages an attacker sends
per time, the busier the CPU becomes. As a result, the victim
will consume much more battery power. Due to the bandwidth
limitation in our Pixhawk 4 device, it seems the attacks does
not overwhelm the system. However, the flooding may lead to
blocking messages from GCS. Furthermore, when the target
drone starts autonomous driving, the CPU utilization rises
nearly 100%, and the drone falls in the simulation environment.
In the meantime, the GCS receives usual status reporting
messages and a large number of awkward ping/parameter
responses.

III. MUVIDS: IDS FOR MAVLINK-ENABLED
UNMANNED VEHICLES

We focus on the communication characteristics of UAVs
that periodically report current driving situations. We assume
that the periodic reports of a UAV will be ruined when the
UAV is struggling with flooding attacks. In other words, we
suppose the inherent sequence pattern of MAVLink messages
will change. Consequently, we try to detect intrusion using
MSG ID sequences from the MAVLink stream.

Our method is intended to recognize the network-level
attacks toward UAVs effectively. The use case of the proposed
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Fig. 4. MUVIDS scheme representing two models M1 and M2, and the
model evaluation approaches

methodology against the attacker is shown in Fig. 3. The IDS
is installed along with the GCS. The IDS takes every packet
that comes from the UAV. Then, the IDS parses the value of
the MSG ID field in any MAVLink messages and enumerates
the sequence of observed values in the order of arrival. The
sequence is then sliced into fixed-size subsequences by the
sliding window method. Finally, the subsequences are fed to
an intrusion detection model. To build the intrusion detec-
tion model, we implement recurrent neural networks using
long short-term memory (LSTM) cells. The LSTM cell is
commonly adopted in intrusion detection model exploiting
sequential data where the output correlates a sequence of
inputs.

To respond to various situations, we design two types of
detection models. The first model can be chosen when the IDS
can use both an attack-free dataset and an intrusion dataset in
a training phase. For training the model, we design the first
model to solve the binary classification problem that judges
whether the remote UAV is under attack at a specific time or
not. Broadly speaking, the more intrusive cases the train set
contains, the more accurate estimates the deep learning model
can infer. On the contrary, if the IDS has not been faced an
attack yet or is not aware of attack models, the first model
should work for nothing. Such a case is a common problem in
the area of intrusion detection studies. To this end, we design
a second model that can be trained with only an attack-free
dataset. Fig. 4 shows the proposed intrusion detection scheme,
which is composed of the data preprocessing step and the
classification/prediction step as follows:

Data preprocessing. The data preprocessor receives inbound
MAVLink messages stream at the GCS and outputs a w × 4
size of an array into the deep learning model, where w is the
window size, and the value 4 means the size of the integer. At
the beginning of the procedure, w-sized queue is initialized.
On the arrival of every MAVLink message, the preprocessor
cast the three bytes of value in the MSG ID field to the four
bytes Int32 type, then puts the value in the queue. If the queue
is not full after queueing, then wait for the next message.
Otherwise, if the queue is full, the preprocessor yields the
queue’s entire values, then dequeues the oldest value. The
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procedure continues until the input stream is closed.

Intrusion detection modelM1. TheM1 is designed to solve
a binary classification problem of whether a UAV generates the
given subsequence under attack-free or under attack. To this
end, a supervised intrusion detection model is built using a
deep neural network. Specifically, the model is composed of
an embedding layer, followed by two LSTM layers and a single
dense layer. The embedding layer is used to convert an integer
array (i.e., a subsequence of MAVLink MSG IDs) into a fixed-
size vector for the LSTM layers. Two LSTM layers then extract
features from given sequential data. As depicted in Fig. 4, the
first LSTM layer returns a full sequence, whereas the second
LSTM layer returns only the last output. The dense layer
returns the detection result for each subsequence in a single
floating point value of between 0 to 1 activated by a sigmoid
function. To train the model, the operator should prepare
benign and intrusive MAVLink stream and labels describing
the situation (i.e., benign or under attack) of the given stream.
The stochastic gradient descent algorithm is used to optimize
the weights and biases of the model.

Message prediction model M2. In case of lack of label
information, we further implement a predictive model that
calculates the most promising value of the next MSG ID,
instead of binary status, with a given subsequence of previous
MSG IDs. Basically, the model shares the architecture of M1

that we discussed above, except the dense layer. The dense
layer in M2 returns a vector representing possibilities of
appearing MAVLink MSG ID. The Adam optimizer algorithm
is used for the optimization of the model. In the training phase,
only a “benign” MAVLink stream is required to allow the
model to learn the next MSG ID. We expect that the trained
M2 shows the poor prediction result when the input comes
from an UAV under attack.

While incoming MAVLink messages contain operation in-
formation such as attitude and location of a vehicle, we design
MUVIDS not to use them because using such data consumes
much effort from a UAV operator for feature engineering,
parameter tuning, by a specific vehicle model.

IV. EXPERIMENT RESULT

This section provides our packet generation environment,
hyper-parameters for the proposed model, and the performance
evaluation result. Our proposed method is tested by three
common evaluation metrics: Precision, Recall, and F1-score.

Experiment environment. We deploy a network topology
created with three virtual machine instances (i.e., GCS,
SITL/HITL UAV simulator, an attacker) in a VMware ESXi
hypervisor. Both SITL and HITL simulators are specially de-
signed to replicates a real-world drone, including MAVLink 2.0
communication system. The only difference is that an autopilot
system hardware (Pixhawk 4 in our experiment) operates
actuators and executes MAVLink commands, whereas only a
software-based autopilot system operates the SITL simulator.
We use QGroundControl as the GCS to communicate with the
UAV. Also, we implement three attack models (described in
§II-C) using a Python library, pymavlink, that floods MAVLink
messages to the UAV simulators. We implementM1 andM2

using Keras on a GeForce RTX 2080 installed PC. We set
w = 128, the input/output dimension of embedding layer to

TABLE I. PERFORMANCE EVALUATION USING INTRUSION DATASET

Simulator Attack type Epochs Precision Recall F1-score

SITL
Heartbeat flooding 93 0.98 0.97 0.98
Ping flooding 1 1.00 1.00 1.00
Request flooding 1 1.00 1.00 1.00

HITL
Heartbeat flooding 2 1.00 1.00 1.00
Ping flooding 1 1.00 1.00 1.00
Request flooding 1 1.00 1.00 1.00

512/32, the units of each LSTM layer to 128, and the dropout
ratio to 0.3. We set the learning rate to 10−3 and 10−4 for
M1 and M2, respectively.

Dataset. At the GCS, we collect four separated packet captures
in the following situations: (1) attack-free, (2) heartbeat flood-
ing, (3) ping flooding, and (4) request flooding. Consequently,
we have eight datasets in total because we have two UAV
simulators. The GCS and the UAV use UDP for MAVLink
communication. We then generate a set of MSG ID subse-
quences using our data preprocessor. Note that each packet
capture contains packets generated by an UAV and does not
contain any packets generated by the attacker.

M1 evaluation. To trainM1, we label the attack-free set to 0
and another set of each attack to 1, concatenate them, shuffle
them, and split them into 80% of the train set and 20% of the
validation set. The result of a performance evaluation using the
validation set is given in Table I. The epochs column specifies
when the model shows its best intrusion detection performance
for the validation set. The experiment result shows that M1

provides satisfactory intrusion detection result. Interestingly,
ping flooding and request flooding are completely identified by
the proposed method. The subsequence is mostly dominated
by response messages triggered as many as attacker requests,
whereas such responses rarely appear in attack-free states. The
heartbeat flooding is hard to be identified because it does not
trigger any out-of-context messages from the target UAV to
the GCS. Still, we confirm that M1 can accurately detect the
heartbeat flooding after being trained with one more epoch.
Note that the SITL is more robust to flooding with respect
to computational power; a server CPU operates the autopilot
firmware instead of a low-power embedded device. We find
that some cases of heartbeat flooding are ambiguous to be
identified in the SITL simulator, even after over 90 epochs of
training. We achieve the best F1-score of 0.98 at 93 epochs.

M2 evaluation. We use the attack-free set to train M2.
We randomly choose 20% of the attack-free dataset as the
validation set to measure the prediction ability of trained
M2. Table II provides the prediction evaluation of M2. For
the reader’s understanding, we use a descriptive name of the
type instead of the MSG ID value. The empty count means
no such message type found in the corresponding simulation
environment. In summary, we achieve a F1-score of 0.96 in
both simulators, which means that the M2 almost completely
predicts which message will arrive at the GCS next time based
on their given context MAVLink messages. However, it turns
out that theM2 does not predict all message types well due to
the nature of the packet generation strategy running on a UAV
autopilot system. Specifically, we find that sporadic messages
and event-driven messages were not correctly predicted by
M2, while M2 predicts high-frequent low-jitter MSG IDs,
e.g., attitude, location. Indeed this can be treated as a drawback
of the proposed method since our model is not designed to
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TABLE II. F1-SCORE FOR PREDICTION EVALUATION

MAVLink message type (MSG ID) SITL HITL
F1-score Count F1-score Count

HEARTBEAT 0.96 126 0.76 111
SYS STATUS 0.95 126 1.00 111
SYSTEM TIME – – 0.96 110
PING 0.00 12 0.70 111
GPS RAW INT 0.97 126 0.90 2130
SCALED IMU – – 0.97 2769
ATTITUDE 0.97 6302 1.00 5538
ATTITUDE QUATERNION 0.99 6302 0.98 5538
LOCAL POSITION NED 0.98 6302 0.92 3323
GLOBAL POSITION INT 0.03 727 0.99 1108
SERVO OUTPUT RAW 0.99 6302 1.00 2215
MISSION CURRENT – – 0.78 1047
VFR HUD 0.93 504 0.94 2215
ATTITUDE TARGET 0.98 6302 – –
POSITION TARGET LOCAL NED 0.99 6302 – –
POSITION TARGET GLOBAL INT – – 1.00 1108
HIGHRES IMU – – 0.97 5538
TIMESYNC – – 1.00 1108
ACTUATOR CONTROL TARGET – – 0.99 3323
ALTITUDE 1.00 126 1.00 1107
BATTERY STATUS 0.36 63 0.00 55
ESTIMATOR STATUS 1.00 63 1.00 554
VIBRATION 1.00 12 1.00 554
HOME POSITION 0.00 63 0.00 55
EXTENDED SYS STATE 0.75 126 0.78 221
UTM GLOBAL POSITION 0.06 63 – –

F1-score, total sample count 0.96 39949 0.96 39949

understand a complete operational context of UAV.

Next, we demonstrate detecting false MAVLink injection
attacks using pre-trained M2 in SITL/HITL simulators. For
the experiment, datasets are fed to the M2 in order of time.
As discussed above, the prediction accuracy of the attack-free
dataset is expected to be very high in an obvious manner.
Meanwhile, the accuracy should be low when a victim UAV
is under attack because the attack causes a concept drift of
message sequences. We can identify the intrusion by applying
a threshold to the average prediction accuracy.

In Fig. 5, we plot the 1000-messages moving average of
accuracy over a series of MAVLink messages. We can see
the significant differences between the attack-free dataset and
the others. It proves the usefulness of M2 trained with only
attack-free dataset. The gap between the heartbeat dataset and
the attack-free dataset is interesting since the two datasets
consist of a set of the same MSG IDs. The same applies to the
heartbeat dataset of the HITL simulator; however, it fluctuates
from time to time. It implies that our Pixhawk 4 hardware and
the NuttX OS therein are lagging due to the attack. Notably,
the fluctuation is not extreme. Thus, we can identify the three
attacks by setting a detection threshold of 0.9 in a heuristic
manner.

V. RELATED WORK

In the past few years, UAV security has been one of the key
research topics in the security field. The directions of research
are heading two purposes: vulnerability analysis and intrusion
detection.

Vulnerability analysis. The vulnerability analysis research
analyzes the UAV security characteristics and designs potential
possible attacks. Kwon et al. [8] investigated network vul-
nerabilities using the MAVLink protocol. As the MAVLink
communication protocol uses no message encryption, the re-
searchers insisted ICMP flooding attacks are possible. Besides,
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Fig. 5. Average accuracy of MAVLink MSG ID prediction over a continuous
series of MAVLink traffic

packet injection attacks are possible, considering the protocol
as a Waypoint protocol. A study conducted by Rani et al. [12]
examined the Wi-Fi protocol’s vulnerabilities for analyzing
UAV’s security. Using one of the known WEP vulnerabilities,
they demonstrated an attack that forces UAVs to be unauthen-
ticated. Rodday et al. [13] offered a packet broadcasting attack
adding to the research of Rani and others. The attack collected
initial vector values by sending random packets to targets and
exploited a WEP vulnerability using the vectors.

Rule-based approach. Another field of study focused on
attack detection beyond vulnerability analysis. There are two
approaches to detect attacks. First, we introduce researches
that detect attacks by setting rules or in a heuristic manner.
Sedjelmaci et al. [15] designed a rule-based IDS to detect
network attacks, such as GPS spoofing, jamming, and false
information injection. The researchers proposed algorithms to
track network traffic and detect attacks by abnormal traffic
changes. The research by Birbaum et al. [2] estimated pa-
rameters to detect attacks on UAV. Their proposed method
predicted the parameters for UAV’s operational conditions,
such as system parameters and control parameters, and it
identified attacks through differences from confidence intervals
implying no attacks. They conducted the experiments in a sim-
ulated environment using the MAVLink protocol and extracted
sensors and actuators data. Muniraj et al. [10] investigated
which sensors were susceptible to damage by which attacks
and defined the information as an attack signature. With safe
sensors getting no damage from any attack, the detection
system disclosed attacks based on other sensors’ status.

Machine learning approach. Some other works proposed
machine learning- or deep learning-based approaches to de-
tect intrusion. Sedjelmaci [14] proposed an IDS containing
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a security game framework using the Bayesian game model.
The framework monitored the network to catch abnormalities
and ejected attackers in the case of attacks. Lukas et al. [9]
researched on attack detection model using deep learning.
Their research focused on network attacks such as a denial of
service, command injection, and malicious code injection, and
the proposed model combined multilayer perceptron (MLP)
and LSTM. Arthur [1] designed a lightweight IDS that could
be applied for UAVs using sensor data. With 27 kinds of
sensor data collected in the simulated environment, the IDS
was composed of self-taught learning and a multi-class support
vector machine (SVM). Additional research that used the SVM
model was a state estimation analysis done by Panice et al.
[11]. The research was directed to estimate the UAVs’ state,
and it focused on GPS spoofing with other various attacks.
Shoufan [16] studied to establish the operators’ signature.
The research used UAV’s sensor data to build operators’
behavior patterns and classify pre-defined operators based
on their signatures. The classification experiment utilized a
random forest classifier, and it demonstrated the significant
performance of the identification. Kim et al. [6] used the MLP
model to detect attacks and correlate them with a generative
adversarial network to examine its effects. They composed a
SITL simulator using MAVLink protocol and extracted sensor
data for the experiment.

In other domains, several researchers decided to use sensor
and actuator data from UAV for security purposes. The data
gives us more intuitive views of the current state. Despite the
advantage, sensors are too sensitive to the drone’s operation
environment, and actuators can be too many to consider
in the lightweight system. For these reasons, we used the
data extracted from the MAVLink protocol. It covers both
sensor/actuator data and network communication. The protocol
is specialized to the UAV and other vehicles to represent the
UAV operation system.

VI. CONCLUSION

This paper proposes a novel IDS, MUVIDS, to detect false
MAVLink injection attacks toward unmanned vehicles. To the
best of our knowledge, this study is the first intrusion detection
method analyzing MAVLink communication. Based on the
experiment result, MUVIDS gives the following benefits to
unmanned vehicle operators. First, the experiment result shows
that MUVIDS can detect the three types of false MAVLink
injection attacks effectively, even without label information.
Second, MUVIDS works for various MAVLink-enabled vehi-
cles. We confirm that by using both SITL and HITL UAV
simulators. Third, MUVIDS does not require any vehicle-
and environment-specific parameters. Fourth, the operator can
implement MUVIDS at the GCS. Consequently, the operator
does not have to risk failure while adding components to the
vehicle directly.

The limitation of our work is that only a few flooding
attacks are considered to validate MUVIDS. It is due to the
lack of prior systematic study of attacks on MAVLink-enabled
vehicles. At this moment, only three types of false MAVLink
injection attacks in which the actual impact (e.g., resource
consumption and vehicle crash) occurs in our simulators were
used in the study. In future work, we will extend this work
with various attacks. Also, we will use MAVLink payloads that

contain sensor/actuator/GPS information to enhance intrusion
detection performance on real driving/flying vehicles.
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