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Abstract—Effective coordination of sensor inputs requires
correct timestamping of the sensor data for robotic vehicles.
Though the existing trusted execution environment (TEE) can
prevent direct changes to timestamp values from a clock or
while stored in memory by an adversary, timestamp integrity
can still be compromised by an interrupt between sensor and
timestamp reads. We analytically and experimentally evaluate
how timestamp integrity violations affect localization of robotic
vehicles. The results indicate that the interrupt attack can cause
significant errors in localization, which threatens vehicle safety,
and need to be prevented with additional countermeasures.

I. INTRODUCTION

For robotic vehicles (RV), sensor data are timestamped
before used by control software. Timestamp integrity is defined
as the consistency between timestamps attached to the sensor
data and the groundtruth timestamps when the data are cap-
tured by the sensor in the physical world. If the differences be-
tween these values are within a bound, then timestamp integrity
is maintained, otherwise it is violated. Timestamp is used in
Kalman filter-based [18] and deep learning-based [16], [15]
multi-sensor fusion. It is important in robotic vehicles because
an incorrect timestamp can lead to wrong perceptions and
actuation in the physical world, potentially causing irreversible
physical damages.

Timestamps are data stored in memory, and a compromised
application or an operating system (OS) may modify them
in memory. Besides, the source clock maybe tampered. What
is more, protecting the integrity of memory and clock is
not enough for timestamp integrity. Timestamp integrity has
unique properties that are different from the traditional data
integrity that only require trusted source and untampered data.
A timestamp must be read from a clock at the time when the
corresponding sensor input is taken.

Some existing trusted execution environments provide pro-
tection of data integrity against untrusted or compromised
OS, besides, trusted clock [6] already exists in the latest
commercial TEE such as SGX2 [1]. However, we showed
in this paper, that existing TEEs cannot protect timestamp
integrity. We demonstrate interrupt attack that injects a delay
between reading a sensor inputs and reading a timestamp

clock, which can compromise the timestamp integrity and
potentially cause significant impacts on robotic vehicles’ per-
ception and behaviors. RV software typically reads a sensor
input and a timestamp clock sequentially. Ideally, these two
operations should be performed atomically. However, that is
not guaranteed by existing hardware. In the interrupt attack,
a compromised OS injects an interrupt between the sensor
read and the timestamp clock read, so that there is a long
delay between them. As a result, the timestamp attached to
the sensor data becomes significantly different from the ground
truth timestamp.

In this paper, we study the impact of interrupt attack on
TEE-protected robotic vehicles. The main contributions of this
paper are as follows:

1) We analytically derived the relationship between
timestamp errors and the physical-world localization
errors;

2) We designed and implemented a TEE-based sen-
sor timestamp module using commercial-off-the-shelf
hardware and demonstrate the effect of the interrupt
attack on the timestamp integrity;

3) We demonstrated the interrupt attack on the ROS plat-
form, and provide quantitative studies on its impact
on localization errors.

Our preliminary results demonstrate proof-of-concept in-
terrupt attack on ROS, and we plan to show real-world impact
on commercial-grade autonomous driving platform like Apollo
[2] as future work. To protect interrupt attack, TEE requires
disabling interrupt from the OS. However, not all existing
commercial secure enclaves provide that capability. We plan
to evaluate some recent research prototype [5] which is able
to disable interrupt for secure enclave on commercial RV
platform.

II. THREAT MODEL

We target the robotic vehicle that runs a sensing application
and needs timestamps for processing different sensor data. The
goal of the attacker is to stealthily change the control decision
of a RV stealthily by compromising timestamp values in
software. We assume that the attacker is capable of exploiting
software vulnerabilities on the RV and taking control of an
OS. On the other hand, we assume that the adversary has no
physical access to the system and the sensor inputs from the
physical world is not affected by the adversary, i.e., there is
no physical spoofing.
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To protect against traditional software attacks, we assume
that the sensor processing software that performs timestamping
runs inside a TEE such as Intel SGX. We also assume that
the TEE’s clock is not tampered with and has secure IO
mechanisms to read sensors and control actuators. In that
sense, the adversary cannot directly change senor inputs or
timestamp values, and cannot compromise the integrity of
the control software. On the other hand, we assume that a
compromised OS can still interrupt RV software during its
execution inside a TEE (enclave). Note that today’s TEEs rely
on an OS for scheduling processes and performing complex
IO in order to reduce the size of the trusted computing base
(TCB) and allow efficient sharing of a platform between secure
and normal applications.

III. TIMESTAMP INTEGRITY IN RV

Let us assume that the vehicle locations are
(t1v,x

1
v), ..., (tnv ,x

n
v ), where xi

v is the location of the
vehicle v corresponding to the static frame at time tiv , and
that the position of a point p correspond to the vehicle v in
the pointcloud returned by the LiDAR is xp,v , at time tp. As
the LiDAR sampling time tp is usually not synchronized with
the odometry sampling time, the location of the vehicle at
time tp needs to be interpolated. Using linear interpolation,
the vehicle location x(tp) corresponding to the static frame
can be represented as:

x(tp) =
xj
v(tj+1

v − tp) + xj+1
v (tp − tjv)

tj+1
v − tjv

(1)

Then, the location of the point p in reference to the static
frame xp can be represented as

xp = x(tp) + xp,v =
xj
v(tj+1

v − tp) + xj+1
v (tp − tjv)

tj+1
v − tjv

+ xp,v

(2)
where tjv ≤ tp ≤ tj+1

v .

Thus, a ∆tp change in tp will result in ∆xp in location
represented by the following:

∆xp =
xj+1
v − xj

v

tj+1
v − tjv

∆tp = v∆tp (3)

where v is the velocity of the vehicle at time tjv . Equation (3)
indicates that the localization error of an obstacle increases
with the speed of the vehicle as well as the timestamp error.

IV. INTERRUPT ATTACK ON TIMESTAMP INTEGRITY

The interrupt attack can compromise timestamp integrity
even in the presence of a hardware-protected trusted execution
environment (TEE) and a trusted clock. Today’s TEEs provide
strong protection for confidentiality and integrity from a com-
promised OS. With a TEE, an OS cannot modify the timestamp
in memory directly. In addition, with a trusted clock source, the
attacker cannot affect the timestamp value that the protected
software inside a TEE reads from the clock. Figure 1 shows
an architecture that uses a TEE (secure enclave) and a trusted
clock to protect timestamp integrity. Raw data arrive from a
sensor via a trusted IO [14] interface. The timestamp module

reads a trusted clock to obtain a timestamp for the sensor data,
and the timestamped data are sent to the control software via
a secure communication channel.
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Fig. 1. An architecture that uses TEE (secure enclaves) to protect the data
integrity of the timestamp, the code shown in Listing 1 runs in the left secure
enclave.

Listing 1 shows the conceptual code of the times-
tamp module that runs inside a secure enclave. The
function OnSensor() creates object StampedData sd,
reads the raw sensor data sd.d via trusted IO using
getSensorData(), then it gets the timestamp sd.t and
returns the object sd. Since the timestamp and the sensor data
are from a trusted clock and a trusted IO respectively, the
values are trusted. Besides, the untrusted OS cannot modify
object sd or the timestamp sd.t since the code is executed
inside a secure enclave.

Listing 1. Conceptual code for timestamping sensor data.
s t r u c t {

i n t 6 4 d ; / / da ta measurement
i n t 6 4 t ; / / t i m e s t a m p o f t h e da ta

} StampedData ;

StampedData OnSensor ( ) {
StampedData sd ; / / c r e a t e o b j e c t
sd . d = g e t S e n s o r D a t a ( ) ;
/ / read s e n s o r from t r u s t e d IO
sd . t = ge tTimes tamp ( ) ;
/ / g e t t h e t i m e s t a m p
re turn sd ;
/ / f u n c t i o n r e t u r n s

}

However, an interrupt attack can still violate the times-
tamp integrity even with the secure enclave, the trusted
clock, and the trusted IO. The interrupt attack is per-
formed by a compromised OS that injects interrupts be-
tween getSensorData() and getTimestamp(), such
that there is a long delay between them. As a result, the
timestamp sd.t being attached to the sensor data sd.d is
no longer representative of when the data is actually sampled.

Because an OS controls the scheduler, a compro-
mised OS can raise interrupts inside an enclave. There
are multiple instructions inside getSensorData() and
getTimestamp(). The attacker can inject multiple inter-
rupts in to compromise the timestamp integrity.

Since sensor timestamping is just a small portion of the
entire control program, a successful interrupt attack have to
interrupt only the execution of the enclave but not other parts.
(Otherwise, the entire control program will execute very slow,
making the attack easy to be discovered.) We can achieve the
interrupt attack on timestamp integrity using SGX-Step [24],
which injects multiple interrupts in secure enclave with a rela-
tively short duration. Figure 2 shows the result. By decreasing
the SGX-Step timer interval SGX_STEP_TIMER_INTERVAL
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(which controls how often the program is interrupted), more
instructions are interrupted and the timestamp error increases.
When the parameter SGX_STEP_TIMER_INTERVAL is 127,
the timestamp error is hundreds of milliseconds and sometimes
greater than 1 second. As we will see in Section V, even tens
of milliseconds can cause significant localization errors to a
robot.
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Fig. 2. Timestamp error vs the SGX step timer interval.

V. EVALUATION OF INTERRUPT ATTACK ON RV

In this section, we demonstrate the impact of the interrupt
attack with a varying length (latency) on the localization of
a vehicle and obstacles using ROS [3]. Many commercial
autonomous driving platforms, such as Baidu Apollo shares
similar low-level architecture. We perform our experiments on
an Intel STK2MV64CC computer with a SGX-capable dual-
core processor (Core m5-6Y57), running Ubuntu 16.04. We
simulate a Jackal robot [4] in the Gazebo simulator, in which
Jackal’s software is controlled by ROS. The maximum speed of
the robot is set to be 0.5 m/s. The LiDAR periodically scans
every 100 ms, and we tested interrupt attacks with varying
latency from 0 ms to 100 ms. The interrupt attack did not
affect the frequency of the LiDAR scans1. Figure 3 shows the
map used for the experiments.

We implement an TEE-protected timestamp module in
ROS. To mimic the interrupt attack caused by an adversarial
OS while controlling timestamp error more precisely, we force
the timestamp module to sleep for a specific duration before
the timestamp is returned. Effectively, the sleep duration can
represent the interrupt latency an attacker injects. we use ROS
time for timestamps2.

Impact on Obstacle Localization: In this experiment, the
vehicle gets its own location from the odometry. In order
to navigate through the obstacles, the vehicle has to localize
the obstacles on a given map. The obstacle localization is
based on the LiDAR. Since the obstacles (walls on map)
are distributed continuously, we do not directly measure the
localization error for each individual obstacle. Instead, we
compare the actual path the vehicle is taking to reflect the
obstacle localization errors. In a straight hallway (from A
to B in Figure 3) surrounded by two parallel walls, without
any obstacle localization error, the vehicle should move in
a straight line. However, obstacle localization errors caused

1For each LiDAR scan, ROS invokes a new thread to process and timestamp
the input. For each thread, even though the sum of the interrupt latency and
the execution time might be greater than the scanning period, the next scan
does not have to wait until the processing of the first scan is finished.

2We assume ROS time is not tampered with by the attacker.
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Fig. 3. A Jackal race track map used for evaluating the impact of the interrupt
attack. The white space represents flat ground the vehicle can move on while
the grade space represents the walls/obstacles the vehicle needs to avoid. The
coordinates of A, B are (0,0), (-7,7), (0,8) and (-9, -9), respectively.

by the interrupt attack sometimes change the perceived wall
locations to the center of the straight path, which causes the
vehicle to deviate from the straight path to avoid collision with
the perceived wall.

We consider the case when the vehicle is initially at A
facing south and the destination is B on Figure 3. Figure 4 and
Figure 5 show the straight paths and actual paths of the vehicle
when there is no interrupt attack (0 ms interrupts) and when
there is an interrupt attack with 100 ms interrupts, respectively.
The maximum deviation between the straight path and the
actual path is 0.171 m and 0.647 m, respectively. A longer
interrupt leads to a larger error in obstacle localization, which
drives the actual path farther from the straight line.
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Fig. 4. The vehicle path
with no interrupt attack. The
maximum deviation from the
straight line is 0.171 m
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Fig. 5. The vehicle path
with 100 ms interrupts. The
maximum deviation from the
straight line is 0.647 m

Figure 6 shows the average and maximum deviations of
the actual path from the straight path. The figure shows that
the deviation generally increases with the interrupt latency
(length). However, we see a drastic increase when the latency
is 100 ms. As shown from Figure 5, the actual path of the
vehicle becomes unstable, oscillating around the straight path.

Impact on Ego Localization: We use AMCL for ego localiza-
tion, which uses both odometry and LiDAR inputs to localize
the vehicle’s location. The vehicle initially is at point A and
moves to B, C, and D sequentially. Because ego localization
interacts with path planning in a close loop, an error in ego
localization leads to a different planned path, which in turn
further affects the localization error. To exclude the effect of
path planning and quantifying only the impact of interrupt
latency on ego localization, we use trace-based experiments
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Fig. 6. Average obstacle localization error vs
interrupt latency.
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Fig. 7. Ego localization error distribution vs
interrupt latency.
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Fig. 8. The average deviation vs the speed of
the vehicle when the interrupt latency is 90 ms.

where we first record raw (i.e., without timestamp) LiDAR and
odometry data traces without an interrupt attack, and replay the
traces to have the localization module perform the localization
task. Because the experiments use recorded traces, there is
no path planner running during localization and the odometry
trace does not change in response to the localization errors.
Thus, the error between the ground truth location and the
estimated location of the vehicle is purely from the localization
error at each point and not affected by the path planner.

We show the relationship between the localization error
distributions along the path and the interrupt latency in Fig-
ure 7. The average and maximum localization errors along
the path increases with the interrupt latency. The maximum
localization error almost doubles to around 0.4 m when the
interrupt latency is 100 ms compared to around 0.2 m when
the latency is 0 ms.

Figure 9 and Figure 10 also show examples of how the ego
localization errors, when coupled with the path planner, can be
dramatically magnified and significantly change the vehicle’s
path. The vehicle starts at (0,0) towards the destination at (6,
-7). When the interrupt latency is 30 ms, the vehicle can reach
the destination with only small errors in localization. However,
when the interrupt latency increases to 60 ms, not only the
localization error is obvious, but the vehicle fails to reach the
destination because of the large localization error.
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Fig. 9. Ground truth and estimated
location of the ego vehicle when
interrupt latency is 30 ms. The av-
erage error is 0.095 m.
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Fig. 10. Ground truth and esti-
mated location of the ego vehicle
when interrupt latency is 60 ms.
The average error is 1.45 m.

Impact of Vehicle Speed: As Equation (3) shows, theoret-
ically, the localization error is proportional to the velocity v
of a vehicle. We show the impact of the vehicle’s speed on
the impact of the interrupt attack. Figure 11 and Figure 12
show the path of a vehicle when the speed of the vehicle
is 0.5 m/s and 5 m/s, respectively, with the interrupt attack
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Fig. 11. The actual path and the
straight path of a vehicle when the
maximum speed is 0.5 m/s.
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Fig. 12. The actual path and the
straight path of a vehicle when the
maximum speed is 5 m/s.

with is 90 ms interrupts. Figure 8 shows the average and the
maximum deviation of the vehicle when the vehicle has a
different maximum speed. The general trend shows that both
the average deviation and the maximum deviation increase
with the speed. A vehicle often moves at a higher speed in
the real world (e.g., 30 m/s on a highway), and the deviation
can be as much as several meters in such cases. Considering
the lane width is only about 4 m, such a large deviation can
be a serious concern for the safety of a vehicle.

VI. RELATED WORK

The importance of accurate timestamps has been discussed
in the context of wearable sensors for healthcare [19]. For more
accurate timestamps, previous work also reads timestamps
twice at the beginning and the end of the execution [17].
This approach was applied to mobile health monitoring [20]
and blockchain [25]. While the previous studies discussed
timestamp integrity in sensor inputs, this paper represents the
first to discuss and evaluate the timestamp integrity problem
in the context of RVs.

We perform the interrupt attack and evaluate the impact
on RVs. There are other time-related attacks that may affect
RV safety. In the Butterfly attack [12], the attacker leverages
variations in computation time to destabilize UAVs. In Out of
Control [8], the attacker creates an artificial delay by running
computational intensive applications on the same platform to
divert robot vehicles. In the time delay attack [11], the attacker
threatens smart grid stability by delaying the communication
packets that transport the state information among nodes.
These attacks show the importance of time in RV safety, but
are orthogonal to the timestamp integrity.
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Secure hardware techniques include secure enclave, trusted
clock, trusted IO, and availability protection. Many of them
are necessary for timestamp integrity protection. Intel SGX
provides a trusted clock with the precision of seconds for the
enclave. However, a “secure” version of a high-precision clock
was removed in the latest version due to its insecurity. Without
a trusted hardware clock, people are using a software clock
inside an enclave [6], [22] as a trusted high-precision clock. We
need the trusted IO capability that directly connects a secure
enclave to a sensor input without allowing a compromised OS
to modify it. Trusted IO for SGX is proposed in [14]. In [26],
the authors provide integrity of IO configurations and firmware
leveraging system management mode. ARM TrustZone, on the
other hand, has native support for secure IO [10], which is used
in sensors for connected vehicles [9].

The interrupt attack shows how the timestamp integrity
may be compromised even when protected by a TEE. The
previous studies also identified other attacks on the TEE. For
example, Foreshadow [23] and SGXSpectre [7] compromise
confidentiality using a covert channel. PlunderVolt [13] and
CLKScrew [21] show that the integrity of a TEE can be broken
by exploiting a hardware vulnerability. These vulnerabilities
are mitigated by firmware updates from processor vendors.
Interrupt attack, on the other hand, is hard to be directly fixed
by a simple firmware update. Implementing a novel interrupt
policy that prevents interrupt attack while not overprivileging
the enclave program might require hardware change.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the interrupt attack on the
timestamp integrity of TEE-protected RV. The interrupt attack
can break the consistency between the timestamp and sen-
sor data without overwriting a timestamp value in memory,
effectively violating timestamp integrity. We experimentally
studied the impact of interrupt latency on the ego and obstacle
localization errors, which pose a threat to vehicle safety.
This study suggests that we need additional protection for
timestamp integrity even when RV software is protected by
a TEE. We plan to implement TEE-protected timestamping in
the state-of-the-art autonomous driving platform like Apollo
and demonstrate the attack it and evaluate the consequences.
We also plan to evaluate some recent research TEEs which
have instructions for disabling interrupt for RV timestamp
integrity protection.
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