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Abstract—Safety and security play critical roles for the success
of Autonomous Driving (AD) systems. Since AD systems heavily
rely on AI components, the safety and security research of
such components has also received great attention in recent
years. While it is widely recognized that AI component-level
(mis)behavior does not necessarily lead to AD system-level im-
pacts, most of existing work still only adopts component-level
evaluation. To fill such critical scientific methodology-level gap
from component-level to real system-level impact, a system-driven
evaluation platform jointly constructed by the community could
be the solution. In this paper, we present PASS (Platform for
Auto-driving Safety and Security), a system-driven evaluation
prototype based on simulation. By sharing our platform building
concept and preliminary efforts, we hope to call on the community
to build a uniform and extensible platform to make AI safety and
security work sufficiently meaningful at the system level.

I. INTRODUCTION

Safety and security play vital roles in the fact that Au-
tonomous Driving (AD) vehicles become a reality in our daily
lives. Since AD systems are usually designed with a collection
of AI models to handle the core decision-making process such
as perception, localization, prediction, and planning, safety
and security research in such components’ contexts receives
exponentially increasing attention especially in recent years.
The research works reveal that today’s AI models are generally
vulnerable to adversarial attacks [15, 38].

Since AI models are only components of the entire AD
system, it is also widely recognized that AI component-level
(mis)behavior does not necessarily lead to AD system-level
effect [11, 22, 33, 35], e.g., when the misdetected object is at
a far distance for automatic emergency braking [11, 35], or
the misdetection can be tolerated by subsequent AI modules
like object tracking [22]. However, we find that at this point
system-level evaluation is generally lacking in existing AD
AI security/safety works: We performed a survey of existing
such works that aimed at creating system-level impacts on
AD systems in most recent 5 years, but found that the
vast majority only adopted component-level evaluation (e.g.,
analyzing model accuracy without involving any interaction-
s/integration with other AI components in AD systems). The
gap from component-level to system-level effect may lead to
meaningless attack/defense progress of AD safety and security
research as pointed out by prior works [11, 22, 35]. To bridge
the gap, a common system-driven evaluation infrastructure

built jointly by the community could be an effective and
sustainable solution direction.

In this paper, we thus propose PASS (Platform for Auto-
driving Safety and Security), a simulation-based system-driven
evaluation prototype, to bridge the gap. PASS serves as
an easy-to-use and fair system-driven evaluation platform to
various AI safety and security works in the AD context. PASS
is built in a modular design in representative AD systems,
standardized attack/defense implementation interfaces, system-
level evaluation scenarios and metrics. With the modular
design, we expect existing works to be more easily reproduced,
and new attacks/defenses, AD systems, and scenarios can be
collectively developed by researchers to fit future needs.

We have implemented a preliminary prototype of PASS,
and share in this paper our previous attempts on using it for
system-driven safety and security evaluation in AD context
(in the form of AD Capture The Flag (CTF) competitions).
We will also provide a list of future direction to improve
the evaluation platform. We will fully open-source the cur-
rent prototype and welcome community contributions of new
attack/defense interfaces and implementations. In summary,
this work makes the following contributions: (1). To address
the critical gap between component-level and system-level
evaluations, we take the initiative to develop an open-source,
uniform, and extensible system-driven evaluation platform for
the AD AI safety and security research community. (2). We
have implemented a preliminary prototype of PASS and used
it to organize two international AD CTF competitions in recent
two years to raise the awareness of AD safety and security in
the research community. Over 100 teams across the globe have
participated in the competitions.

II. BACKGROUND AND DESIGN RATIONALE

A. Background
1) AI Components in AD Systems: A typical industry-

grade AD system relies on multiple AI components (e.g.,
localization, perception, and planning shown in Fig. 1) to make
logical, safe, and correct driving decisions.

Fig. 1. Typical AI components in an AD system (boxes with red border).
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Localization refers to integrating multiple data from the
hardware sensors such as camera, LiDAR, radar, etc. to locate
the position of the AD vehicle in an environment. Perception
also takes multiple sensor data to finish the tasks of perceiving
the surrounding environment such as object detection and
tracking, traffic sign and signal classification, and lane line
detection. Prediction is responsible for estimating the future
status of surrounding objects, including their position, orienta-
tion and speed. Planning generates an overall route navigation
decisions such as cruising, lane changing, stopping without vi-
olating any traffic rule. Then, the control component transmits
the specific driving decision to the hardware executor, so that
the vehicle will follow the planned route. We suggest readers
to refer to recent surveys [32, 46] for more details.

2) Recent AD AI safety/security works and the scientific
gap regarding system-level evaluation: As AI components
are playing an increasingly important role in AD systems,
relevant safety and security research works have also received
attention. Recent works have shown that even in the phys-
ical world, AI components are often vulnerable to physical
adversarial perturbations [5–7, 12, 24]. However, since the
targeted AI components are only a subset of the entire AD
system, it is widely recognized that such AI component-level
misbehavior does not necessarily lead to AD system-level
effect [11, 22, 33, 35]. However, we found that system-level
evaluation is generally lacking in existing works. Specifically,
one of our ongoing works analyzes recent AI security and
safety works [36] aimed at creating system-level impact on AD
systems in recent 5 years published in commonly-recognized
top-tier venues [2] in closely-related fields to AD AI (i.e.,
security, Computer Vision (CV), Machine Learning (ML), AI,
and robotics), as well as a few well-known works published
in arXiv and other venues based on our best knowledge.
Particularly, for the top-tier venues, we exhaustively search
over the paper lists from 2017 to 2021 to find the ones that fall
into our scope above. Due to the page limit, we only show the
preliminary results in the most representative subset of them
that attack camera object detection component, which is the
most essential and extensively-studied AI component in AD
systems, in Table I.

In particular, among these 23 camera object detection at-
tack works, the vast majority (86.96%) only adopt component-
level evaluation (e.g., analyzing model accuracy without in-
volving any interactions/integration with other AI components
in AD systems). However, in the CPS area, it is actually
already widely-recognized that for CPS with AI components,
AI component-level errors do not necessarily lead to system-
level effects [11, 35]. For AD systems, this is especially true
due to the high end-to-end system-level complexity and closed-
loop control dynamics, which can explicitly or implicitly create
fault-tolerant effects for AI component-level errors. In fact,
various such counterexamples have already been discovered
in AD system context, e.g., when the object detection model
error is at a far distance for automatic emergency braking
systems [11, 35], or such errors can be effectively tolerated
by downstream AI modules such as object tracking [22]. This
means that even with high attack success rates shown at
the AI component level, it is actually possible that such an
attack cannot cause any meaningful effect to the AD vehicle
driving behavior. For example, as concretely estimated by Jia
et al. [22], for camera object detection-only AI attacks (e.g.,

Eval. level

Paper Targeted Component Component-level System-level
Lu et al. [27] object detection ✓

Eykholt et al. [12] object detection ✓
Chen et al. [7] object detection ✓
Zhao et al. [48] object detection ✓
Xiao et al. [44] object detection ✓

Zhang et al. [47] object detection ✓
Nassi et al. [30] object detection ✓ ✓
Man et al. [28] object detection ✓
Hong et al. [17] object detection ✓
Huang et al. [19] object detection ✓

Wu et al. [43] object detection ✓
Xu et al. [45] object detection ✓
Hu et al. [18] object detection ✓

Hamdi et al. [16] object detection ✓
Ji et al. [21] object detection ✓

Lovisotto et al. [26] object detection ✓
Köhler et al. [23] object detection ✓
Wang et al. [40] object detection ✓
Zolfi et al. [51] object detection ✓
Wang et al. [41] object detection ✓
Zhu et al. [50] object detection ✓

Wang et al. [42] Traffic light detection ✓
Tang et al. [39] Traffic light detection ✓

TABLE I. EVALUATION METHODOLOGIES OF EXISTING AD CAMERA
OBJECT DETECTION ATTACK WORKS.

those in Table I), a component-level success rate of up to
98% can still be not enough to affect object tracking results.
Thus, we believe that such current general lack of system-
level evaluation is a critical scientific methodology-level gap
that should be addressed as soon as possible.

B. Design rationale of system-driven evaluation infrastructure

To enable system-level evaluation, prior works adopt
two types of methodologies: real vehicle-based [30] and
simulation-based [5, 17, 34, 39] evaluations. However, a fun-
damental design trade-off exists between these two evaluation
methodologies. Specifically, real vehicle-based is more fidel
since the vehicle, sensors, and physical environment are all in
the evaluation loop. However, it requires costly full AD sys-
tems (e.g., $250K per vehicle [9]) and testing tracks, which are
generally unaffordable for most academic research groups. On
the other hand, the simulation-based methodology is better in
all other important research evaluation aspects, ranging from a
much lower cost, free of safety issues, high scenario flexibility,
convenience of attack deployment, much faster evaluations,
to high reproducibility. The main concern is the evaluation
fidelity. However, the simulation fidelity technology is still
evolving as this is also the need for the entire AD industry [10],
for example recently there are various new advances in both
industry [4] and academia [8, 29]); Considering the benefits,
we thus adopt a simulation-based design for the system-driven
evaluation infrastructure.

Call for community-level effort. For such system-driven
evaluation infrastructure, it is highly desired if its devel-
opment can be a community-level effort, since (1) the en-
gineering efforts spent in instrumenting AD simulation for
security research evaluation share common design/implemen-
tation patterns (e.g., common attack entry points); and (2)
in AD context, the system-level attack effect can be highly
influenced by driving scenario setups (e.g., large braking
distance differences in highway and local roads [3] and thus
the system-level evaluation results are only comparable (and
thus scientifically-meaningful) if the same evaluation scenario
and metric calculation are used. Considering the criticality
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of such a methodology-level scientific gap, in this work we
thus take the initiative to lay the groundwork to foster such a
community-level effort, which is detailed in the next section.

III. PASS: A PLATFORM TO BRIDGE THE GAP

In this section, we present PASS, our initial efforts to
bridge the aforementioned scientific gap regarding the current
general lack of system-level evaluation (§II-A2), by designing
a simulation-based system-driven evaluation platform.

AD-internal 
attacks/defenses
(e.g., ML backdoor, 

Model improvement)

Physical-world 
attacks

(e.g., stop sign 
attacks)

Sensor 
attacks/defenses
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All-in-one AD systems
(e.g., Apollo, OpenPilot, Autoware)
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(e.g., SVL)

AD Model Plant ModelB
ridge (e.g., P

ython A
P

I)

Modular AD pipelines
(i.e., AI components + control)

Object
detection ControlObject

tracking Fusion
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Attack/ Defense Plugins

ScenariosScenarios

Metric Library
(e.g., collision, traffic 

rule violation)
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Fig. 2. Design of PASS (Platform for Auto-driving Safety and Security).

A. Design goals

The main goal of PASS is building a uniform and exten-
sible system-driven evaluation platform for various AI safety
and security works in the AD context. To achieve uniformity,
evaluation scenarios and metrics need to be unified so that the
evaluation results of different works can be intuitively visible
and comparable. Attack/defense implementations, evaluation
setup and AD design should be standardized and modular
so that the existing works can be easily reproduced and new
attacks/defenses, AD system designs, and evaluation scenarios
can be collectively developed by researchers to fit future needs.

B. PASS overview

As show in Fig. 2, guided by the design goals, we build a
simulation-based evaluation platform prototype with five main
modules: AD model, plant model, bridge, attack/defense
plugins and metric library.

1) AD model: PASS provides a modular AD system
pipeline similar to industry-grade AD systems, including AI
components commonly targeted by recent attacks/defenses.
Each AI component is designed to be replaceable for future
needs. PASS also provides some all-in-one AD systems such
as Apollo Opensource [14], OpenPilot [31] and Autoware [13].

2) Plant model: The plant model consists of vehicle kine-
matics and physical driving environment. PASS chooses a
high fidelity industry-grade simulator SVL [25] to provide the
plant model. Compared to real vehicles and testing tracks,
simulation-based plant model has great advantages in afford-
ability, efficiency, and safety (§II-B). The plant model also
defines a list of driving scenarios to describe the evaluation
setup including AD vehicle’s initial position, equipped sensors,
drivable area, and surrounding environmental dynamics (e.g.,
vehicles, pedestrians, traffic signals). The driving scenarios

are formalized as human-readable configuration files for easy
modification and contribution.

3) Bridge: The bridge serves as a communication channel
between the AD and plant models, allowing sensor data to be
read and the AD vehicle to be actuated. It supports function
hooking for modifying communication data at runtime for
better extensibility.

4) Attack/defense plugins: The attack/defense implemen-
tation is abstracted as three types of plugins in PASS. The
plugins allow researchers to deploy their attacks and defenses
directly in the platform without worrying the low-level imple-
mentation. In particular, each plugin is designed as a Python
API that takes different kinds of attack/defense as input. For
example, physical-world attack plugin can load adversarial
patches (e.g., famous stop sign attacks ShapeShifter [7], Robust
Physical Perturbations [12], and Seeing Isn’t Believing [48])
to the simulation world at arbitrary locations; AD-internal
attack/defense plugin can replace simple AI components in-
side the AD systems; And sensor attack/defense plugin can
modify/check sensor information on the bridge.

5) Metric library: Metric library is in charge of collecting
measurements from all other modules in the platform and
calculating the scenario-dependent evaluation metrics. With the
measurements from the plant model, metric library can quan-
tify the impact of safety&security works at system-level (e.g.,
collision rate [20, 34]), traffic rule violation (e.g., lane depar-
ture rate [34, 37]), trip delay, etc. We also include component-
level metrics (e.g., frame-wise attack success rate [7, 12, 48])
for comprehensiveness.

IV. EXPERIENCES FROM PRELIMINARY EFFORTS

We have implemented a preliminary prototype of PASS;
in this section, we share our previous attempts on using it for
system-level attack/defense evaluation in the AD context. We
also provide a list of future actions to improve the platform.

Fig. 3. Demonstration of the ”Invisible Truck” challenge

A. Our preliminary efforts

We used the preliminary prototype to organize two AD se-
curity Capture The Flag (CTF) competitions [1]: AutoDriving
CTF @ BCTF and AutoDriving CTF @ DEF CON 29 in the
year 2020 and 2021, respectively. Unlike the AD safety and
security works in many academic research, which mainly use
component-specific metrics (e.g., AI model detection rate) to
demonstrate the effect, our AutoDriving CTF challenges are
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designed to study how the attacks/defenses can affect the AD
vehicles with respect to the end-to-end system-level behaviors
(e.g., whether AD vehicles collide with obstacles or not).

Leveraging these CTF challenges, we visually demonstrate
that successful attacks at the component-level might not deliver
a successful result at the system-level. Fig. 3 shows the
“invisible truck” challenge. Players are asked to generate
adversarial patches, which will be attached on the side panel
of a truck. The player’s goal is to make the truck undetectable
by the object detection component and consequently make
the AD vehicle crash into the truck. The AD vehicle is
equipped with both an object detection component and a
tracking component [49]. The latter one tracks detected objects
in a frame sequence to tolerant the occasional false positions
and false negatives. Clearly, players need to overcome a system
with both components in order to score in such challenge.
Causing a single frame misclassified by the object detection is
not enough, instead, the players need to maintain mis-detection
in a long sequence of continuous frames.

(a)

(b)

(c)
Fig. 4. Some examples of failed and successful attacks in the “invisible truck”
challenge submitted by participating teams in AutoDriving CTF @ BCTF.

Fig. 4 presents a few sample submissions from various
teams in AutoDriving CTF @ BCTF. The attacks that cannot
achieve component-level success such as the naive drawing
shown in Fig. 4-(a) cannot make the AD vehicle crash into the
truck. While some adversarial patch that can achieve relatively
high component-level performance (e.g., the patch shown in
Fig. 4-(b) has over 60% success rate), it cannot fool the
tracking component and thus fails to pass the challenge. Only
few attacks (e.g., the patch shown in Fig. 4-(c)) can deceive
continuous frames and eventually lead to collisions. For more
details of the challenge and team submissions, you can find
the video demo at https://shorturl.at/nvhrz.

Apart from the aforementioned camouflage patch chal-
lenge, we also presented other challenges related to AD safety
and security such as sensor spoofing/hijacking; multi-sensor
fusion manipulations; robust control, etc. We hope that through

these CTF challenges, the community can intuitively under-
stand the need for system-level evaluation. With the simulation
of the physical world interactions, it also encourages the
research teams to overcome physical world attack challenges
such as color distortions and viewing angle variations.

B. Towards a better evaluation platform

Based on the above experience, we summarize a few
follow-up direction (and welcome community feedback) for
building a better system-driven evaluation infrastructure:

(1.) More AD system designs. The most important and
attractive feature of the future infrastructure should include
a variety of AD systems, especially those used in real/-
commercial AD vehicles. In the current version of PASS,
we implement 3 variations of modular AD pipelines based
on the availability of map information and fusion methods.
Understanding the difficulties of reproducing commercial AD
pipelines or contributing a new one, we hope to work with the
community to propose data communication standards between
different components within the modular AD pipelines so that
different AD system designs can be easily plugged into the
infrastructure. (2). More attack/defense interfaces. To cover
the emerging research works in AD safety and security, more
types of attack/defense interfaces are needed. In the current
version of PASS, we implement 3 general attack/defense
interfaces including physical-world attack interface (e.g., load-
ing adversarial patches to the simulation world at arbitrary
locations), sensor attack/defense interface (e.g., sensor data
modification), and AD-internal attack/defense interfaces (e.g.,
simple AI model replacement). We hope to work with the
community to propose more types of attack/defense interfaces
in the future. (3). More evaluation scenarios. Although
the simulation-based evaluation platform greatly accelerates
the generation of driving scenarios compared with real road
tests, these scenarios cannot cover all unexpected ones in the
real world. The current version of PASS covers 45 stop
sign scenarios and almost 1,000 traffic light scenarios across
different environment setting such as road type, speed limit,
weather, and lighting. We hope to work with the community
to standardize and parameterize the driving scenarios so that
everyone can quickly expand the scene data set.

We hope PASS can initiate a community-level effort
to collaboratively build a common system-driven evaluation
infrastructure for AD safety and security. We will open-source
the platform completely and welcome community contribu-
tions of new attack/defense interfaces, new AD systems, and
new system-level evaluation scenarios (e.g., driving scenarios).

V. CONCLUSION

In this paper, we present our initial efforts to develop an
open-source, uniform, and extensible system-driven evaluation
platform for the community. By sharing our evaluation infras-
tructure building efforts we hope to call on the community
to foster more extensive, realistic, and democratized future
research into the critical research space of AD AI security.
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