GPSKey: GPS-based Secret Key Establishment for
Intra-Vehicle Environment

Edwin Yang
University of Oklahoma
Norman, OK, USA
edwiny @ou.edu

Abstract—With the advent of the in-vehicle infotainment (IVI)
systems (e.g., Android Automotive) and other portable devices
(e.g., smartphones) that may be brought into a vehicle, it becomes
crucial to establish a secure channel between the vehicle and an
in-vehicle device or between two in-vehicle devices. Traditional
pairing schemes are tedious, as they require user interaction (e.g.,
manually typing in a passcode or bringing the two devices close
to each other). Modern vehicles, together with smartphones and
many emerging Internet-of-things (IoT) devices (e.g., dashcam)
are often equipped with built-in Global Positioning System (GPS)
receivers. In this paper, we propose a GPS-based Key estab-
lishment technique, called GPSKey, by leveraging the inherent
randomness of vehicle movement. Specifically, vehicle movement
changes with road ground conditions, traffic situations, and pedal
operations. It thus may have rich randomness. Meanwhile, two in-
vehicle GPS receivers can observe the same vehicle movement and
exploit it for key establishment without requiring user interaction.
We implement a prototype of GPSKey on top of off-the-shelf
devices. Experimental results show that legitimate devices in
the same vehicle require 1.18-minute of driving on average to
establish a 128-bit key. Meanwhile, the attacker who follows or
leads the victim’s vehicle is unable to infer the key.

I. INTRODUCTION

Global Positioning System (GPS) receivers are popularly
available in modern vehicles and various devices (e.g., smart-
phones, tablets, cameras, or 10T devices). European Global
Navigation Satellite Systems Agency expects the number of
installed Global Navigation Satellite System (GNSS) receivers
will exceed 8 billion by 2025 [2], where GNSS includes GPS
(USA), Galileo (Europe), GLONASS (Russia), and BeiDou
(China). As such devices often carry privacy-sensitive infor-
mation, they are required to establish secure communication
channels [7], [17], [33]. For example, there is a growing
number of smart devices inside modern cars [6], and users
may need to pair such a device with the vehicle’s IVI system
or another in-vehicle device. Existing device pairing schemes,
however, are not user-friendly and may be unsafe to be
performed while driving. For example, the existing IVI systems
require a user to initiate the pairing process (e.g., activate
discovery/search mode), select a target device, and type a PIN
to verify the pairing procedure.
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In order to overcome such limitations, context-based pair-
ing schemes, where they extract secret key from common
observations (e.g., visual channel [29], ambient audio [9], [14],
timing of detected events [11], wireless signal strength [12],
[33] and wireless channel interference [19], [22]) without
requiring human interactions are proposed. However, these
schemes present two shortcomings: (1) The surrounding envi-
ronment may not consistently provide enough randomness for
effective key generations. For example, [11] requires a user
to generate additional events to reduce pairing time. (2) Some
channels may not available in a normal vehicle. For example,
audio signals in a vehicle can be easily interfered with by
noises and vibrations.

Recent research efforts propose context-based pairing
schemes for vehicular environments [6], [16]. They focus on a
fact that devices located in the same vehicle experience highly
similar movement, which can be captured by inertial mea-
surement unit (IMU) sensors (e.g., accelerometer, gyroscope,
and magnetometer). For example, [16] derives a key from the
vertical acceleration (perpendicular to lateral and longitudinal
acceleration) of a vehicle, which is affected by vehicle type
and road condition. [6] employs three different sensors, where
a vehicle’s lateral and longitudinal accelerations are captured
by an accelerometer, a gyroscope is utilized for measuring
the vehicle’s turns, and a barometer monitors altitude changes.
However, these schemes present two limitations: (1) IMU
sensor data can be easily disturbed by device movement, thus
may not be robust or provide a consistent performance when
the user uses or wear the device during key establishment.
(2) IMU sensor data are considered insensitive on modern
mobile devices, where any mobile applications can access them
without specific privilege [21], [35].

In this paper, we utilize a vehicle’s movement pattern in
GPS data to derive secret keys. The key idea is that two GPS-
enabled devices in the same vehicle may observe the same
vehicle movement with highly similar accuracy. The vehicle
movement is determined by a driver’s pedal control, which
contains randomness from the surrounding traffic environment.
Each device extracts secret bits from the observed vehicle
velocity when the vehicle is moving. While the devices may
get slightly different binary bit sequences due to observation
errors, they perform reconciliation to agree on the same key.

We implement a prototype of the proposed key establish-
ment scheme and perform real-world experiments to quantify
its performance. Extensive experimental results show that
the legitimate devices can establish a 128-bit key in a 71-



second driving period on average, while the attacker who
follows or leads the target vehicle fails to acquire similar GPS
observations. We also note that the proposed scheme can be
extended to other GNSSs (e.g., GLONASS, Galileo, BeiDou).

We summarize key contributions of this paper as follows:

e We propose a GPS-based key establishment scheme that
utilizes permission-protected GPS data that contain ran-
domness from driving as the secret key source.

e We design an algorithm that extracts randomness from
the observed vehicle movement in GPS data.

e Our real-world experiment results show that the proposed
scheme successfully establishes secret keys between legit-
imate GPS-enabled devices.

e We demonstrate that an attacker who follows or leads a
target vehicle cannot recover the same secret keys as the
legitimate devices.

The rest of the paper is organized as follows. We present
assumptions and the adversary model in Section II. We present
the detailed key establishment scheme in Section III, and
demonstrate real-world experiment results in Section I'V. Next,
we summarize related work that is closely related to our
scheme in Section V, and conclude the paper in Section VI.

II. ADVERSARY MODEL

We consider a general scenario, where two legitimate
GPSenabled devices within the same vehicle aim to establish
a secure channel by deriving the same secret key. The two
devices have no prior knowledge about each other, and the
user is free to move or use the devices during driving.

In our adversary model, we consider an attacker who aims
to recover the same key as the legitimate devices in the target
vehicle. We assume that the adversary knows how the proposed
secret key establishment works, however she cannot be within
the target vehicle during the key establishment process. We
note that this is a common assumption in other context-based
secret key establishment schemes [11], [6], [16], where a
moving vehicle provides a physical security boundary. Instead,
the adversary attempts to observe the target vehicle’s velocity
from outside of the target vehicle to get the same key as the
legitimate devices. Specifically, we consider the following two
attack scenarios:

o Stalking Attack: The adversary follows the target vehicle
to obtain similar velocity observation as the legitimate
device. Instead of utilizing dedicated speed measurement
systems, the attacker acquires velocity data using a GPS-
enabled device (e.g., smartphone).

e Leading Attack: The adversary obtains velocity data
while the target vehicle is following the adversary (e.g.,
follows the vehicle driven by the adversary). In this sce-
nario, the attacker aims to acquire highly similar velocity
observation as the legitimate devices by controlling or
limiting the target vehicle’s movement.

Meanwhile, GPS is vulnerable against spoofing attacks
where the adversary tries to inject falsified GPS signals over
the air to the victim’s GPS-enabled devices [34], [31]. GPSKey
can be targeted by such attacks, where the attacker tries to
make the legitimate devices to establish a key that can be

manipulated by the attacker herself. However, we note that a
GPS receiver may cross-check the collected GPS observations
with dead reckoning results based on IMU sensors (e.g.,
accelerometer) [34] or with the location acquired from the
cellular network to detect GPS spoofing attacks [25].

III. DESIGN OF GPSKEY

We present the architecture of the proposed key generation
scheme by introducing the three key processes: data pre-
processing, randomness extraction, and key generation.

A. System Overview

GPSKey aims to make two GPS-enabled devices located
in the same vehicle establishing the same key. To achieve
this, we focus on the GPS velocity measurement obtained by
each of the devices. First, the legitimate devices co-located
in the same vehicle continuously record GPS velocity data
when the vehicle is moving. The variations in the observed
velocity data are affected by the randomness that comes from
the road ground conditions, the traffic situations. Next, each
device removes noises in the collected velocity data to deal
with GPS velocity observation error. Then, the devices agree
on a starting point of the key extraction, and the driving
data that do not present enough randomness are filtered. Each
device then extracts a secret bitstream from the velocity data
with enough randomness. As there may exist mismatching bits
between Alice’s and Bob’s bitstreams, a reconciliation process
is performed. Figure 1 demonstrates how GPSKey works.

B. Data Pre-processing

Due to environmental noise and GPS signal loss, velocity
observations between the legitimate devices may introduce
inconsistency. Thus, we first perform interpolation on each
device to enable each device to achieve a consistent sampling
rate. Next, each device performs noise reduction to obtain more
accurate velocity observation.

1) Interpolation: Each GPS receiver obtains velocity mea-
surement from the GPS signals sent by the GPS satellites.
However, due to various environmental factors (e.g., weather,
buildings), there is no guarantee that the devices always
obtain GPS data samples at a constant rate. In real-world
driving environments, we empirically observe that the GPS-
enabled devices occasionally obtain null GPS data samples. To
compensate for the empty samples, and considering that the
velocity of a vehicle is not drastically changed, we perform
linear interpolation to estimate the missing samples.

Meanwhile, typical GPS receivers usually present a low
sampling rate (1 Hz). As this may slow down the key genera-
tion process, we perform up-sampling to the obtained GPS
velocity data using linear interpolation. Thus, each device
achieves a 2 Hz of GPS data sampling rate. We note that up-
sampling is a widely utilized pre-processing method for secret
key establishment schemes [28], [20]. Although we perform
up-sampling to GPS velocity data, the correlation between the
generated secret bits and the velocity data are removed after
performing quantization (i.e., the GPS velocity data cannot be
restored from the corresponding bit sequence).
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Fig. 1: System overview of GPSKey.

2) Noise Reduction: We observe that the vehicle
movement-related variations in GPS data are primarily located
at low frequencies. To preserve valuable velocity variations
and mitigate random high-frequency noises introduced by
environmental interference or hardware imperfection, we apply
Butterworth low-pass filter [26].

C. Randomness Extraction

To agree on the same secret key, two legitimate devices
need to synchronize the starting point of the secret bit gener-
ation. Meanwhile, when the vehicle is stopped or cruising for
a long time, the corresponding velocity observation may not
present enough randomness, and the resultant secret key may
be easily inferred (e.g., a long sequence of 0 or 1). To mitigate
such cases, the randomness extraction phase extracts velocity
observations that present enough randomness by utilizing a
stop and cruise period detection algorithm.

1) Starting Point Determination: In the real-world driving
scenario, a vehicle may require some time to acquire GPS
data after ignition (e.g., required time to acquire initial GPS
data sample), and a vehicle moving at too low speed may not
present enough randomness in the corresponding GPS data.
To avoid collecting GPS data under such cases, two legitimate
devices record potential starting timestamps when the vehicle
velocity exceeds a threshold V;y,, for the first time. However,
there is no guarantee that the two devices always agree on
the same starting time due to velocity observation errors. To
ensure that the legitimate devices get the same starting point,
we allow one device that initiates the key establishment process
to notify the obtained starting point (i.e., GPS timestamp) to
the other device. We note that GPS timestamps are accurate,
as clocks GPS are based on high precision atomic clocks, and
they are periodically corrected and synchronized by the Master
Control Station on the earth [10].

2) Redundant Period Removal: When the vehicle is
stopped or cruising for a long period, the corresponding
velocity observations may not present enough randomness.
To mitigate such cases, we propose stop and cruise period
detection algorithms.

Stop Period Detection: When the vehicle is stopped, we
observe that the obtained velocity data present non-zero (but
close to zero) velocity or null values. For this reason, entirely
relying on the velocity data may not be accurate. Thus, we
utilize both location (i.e., GPS coordinates) and velocity to
determine if the vehicle is stopped. Let v; and d; denote
thresholds that denote maximum observation errors for velocity
and coordinate, respectively, when the vehicle is stopped. By

Algorithm 1 Cruise Period Detection

Input: A velocity stream v with N samples; pre-defined
maximum velocity variance v, 4., sliding window size w,
target cruising duration d

Output: A set of cruising periods C

11+ 1
2: while : < N do
3: C < [Ui7~-_~ ;'Uierfl]
4: V4 % Z;:iu_l Vj
50 0 23T 0 —0)?
6: ifw>d # Cruise period detected
then
7: C+Cu {c}
8: L1+ w
continue
9: end if
10 if 0 < V4. then
11: w+—w+1
continue
12:  else
13: 11+ 1
14:  end if

15: end while

investigating if the observed velocity is lower than v; and the
coordinate change is smaller than d;, we determine the stopped
state of the vehicle.

Cruise Period Detection: To identify if the vehicle is
traveling at a constant velocity, we first define the maximum
velocity variance v,,q, Which denotes the maximum velocity
fluctuations during a cruising period. We note that v,,,4, can
be obtained by profiling cruising velocity data.

We employ Algorithm 1 to identify cruise periods in a
series of velocity observations consists of N samples, v =
[v1,v9, - ,vy]. Algorithm 1 first checks if the candidate
period c presents small variations by comparing its variance o
and the threshold v,,q.. If 0 < V42, it increases the window
size w by 1 and compare o and v,,q, again. If w exceeds a
pre-defined cruise period d, c is then considered as a cruise
period, thus is added to a cruise period set C'.

After running both stop period and cruise period de-
tection, each device obtains r redundant periods R, =

[(ts1,te1), -, (tsr, ter)] from the velocity data, where t,; and
te; denote the start and end timestamps of 7*" redundant period
(¢t € {1,--- ,7}). From the observed velocity data stream v,

the redundant periods R, are then removed. However, due



to errors in GPS velocity measurement, there is no guarantee
that the legitimate devices always identify the same redundant
periods. To resolve this problem, we allow one party to share
the identified redundant periods with the other party.

D. Key Extraction

In the key extraction phase, each device extracts secret
bits from the processed GPS velocity data by performing
quantization. As two legitimate devices may not achieve the
same key after the quantization process, a secure sketch [5] is
utilized to correct the bit mismatches.

1) Quantization: To extract secret bits from a series of
velocity samples, we first investigate traditional value-based
quantization techniques that utilize a single threshold. Without
loss of generality, if a sample value exceeds a pre-determined
threshold value, the sample is encoded as 1, otherwise, it is
encoded as 0. However, applying a single threshold over a
velocity data stream may return a series of long, consecutive
1 or O sequences, thus they cannot be utilized.

Instead of utilizing a single threshold over whole input data,
we quantize the input data by applying a variable threshold.
For a velocity stream V = [vy1,- - ,vn], Wwe employ a moving
window of k-second period to determine the threshold Tg.
For a k-second period V' = [v;, - -+ , v;4%—1], we define T =
3 Z;Jj_l V', i.e., average velocity. For each sample v; in V",
we extract a bit as follows:

1, Ty >
0, otherwise’

fvg) = { 1)
After extracting k-bits, we move the window to the next k-
samples (i.e., from (i + k)" to (i + 2k — 1)*" samples), and
iterate the process until all samples are quantized.

2) Reconciliation: Due to hardware imperfections in GPS
receivers and environmental interference, both legitimate de-
vices may experience a small number of mismatching bits after
obtaining their initial bitstreams. To make Alice and Bob agree
on the same key, we employ a secure sketch [S], which can
correct the mismatching bits between the legitimate devices.

A secure sketch is a pair of functions, including the
sketching function SS and the recover function REC. SS
outputs a public sketch s from its input w, revealing little
information about w. Meanwhile, REC takes s and another
input w’ to exactly obtain w. To correct the mismatch between
w and w’, the construction of a secure sketch is based on an
error correction code (ECC). The idea is to use ECC to correct
errors in w by shifting the code so that a codeword matches
up with w and sharing the shift as the sketch s.

Let one legitimate device, Alice, obtains a bitstream w,
while the other legitimate device, Bob gets w’, where w and
w’ present a small number of mismatching bits. Then, Alice
and Bob perform the following process:

(1) Alice generates a sketch s = SS(w) = w — ¢, where ¢ is
a random ECC codeword.

(2) Alice sends s to Bob via the public channel.

(3) Bob performs ¢’ = w’ — s, and decode ¢’ to obtain c.

(4) Bob recovers w = ¢+ s, i.e., REC(w', s) = w.

Alice Bob
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Fig. 2: Detailed flow diagram of GPSKey protocol.

Without loss of generality, we utilize the basic code offset
construction [5] and employ Reed-Solomon (RS) code, i.e.,
RS(n,k) which has n symbols of p bits each. The first k
of the n symbols are information bits, and the rest n — k
bits are parity bits. The parity bits are derived based on the
RS algorithm and the information bits. Given a symbol size
[, the maximum length of the codeword C' is m = 2P — 1,
thus 7 < m. Correspondingly, the RS decoder can correct any
n—k symbol errors in the codeword. Figure 2 presents the flow

2
diagram of GPSKey.

E. Discussion

IMU-based Velocity Estimation: IMU sensors (e.g., ac-
celerometer) can also be utilized to measure the vehicle
velocity and popular mobile operating systems often give third-
party applications unrestricted access to such sensors. One
concern is thus whether an adversary can infer the secret key
via the measurements of IMU sensors. To estimate accurate
vehicle velocities using IMU sensors, the attacker must first
pre-know the orientation of the target device. Also, the device
cannot be moved during the key establishment process. Both
requirements impose a great hurdle for the attacker. Moreover,
velocities obtained through IMU sensors or GPS may not
match due to unpredicted GPS observation errors.

Integration into V2X Communication Systems: In the
IEEE 1609.2 Vehicle-to-everything (V2X) Standard, in order
to improve the information that other nearby drivers have about
the traffic conditions in their immediate vicinity, each on-board
unit (OBU) device would broadcast a basic safety message
(BSM) (including the vehicle’s current GPS-based position
and velocity) at a rate of 10Hz [1]. Such meta-information,
however, may endanger the privacy of drivers, enabling a
passive eavesdropper to trace a vehicle via a consistent series
of BSMs belonging to the vehicle [4], [8]. One of the primary
means for achieving privacy in V2X systems is to use group
signatures that rely on pseudonyms (short-lived identifiers) [1],
[3]. During the key establishment period, if multiple vehicles
around the attacker have the same group identifier with the
target vehicle, the attacker may not be able to link two different
BSMs (transmitted at the two locations) to the target vehicle.
As a result, without the full GPS velocity time series of the
target vehicle for key generation, it would be difficult for the
adversary to generate the same key with the legitimate devices.



) ! ‘
D —Pd__<x) ~Pd._<x)
H s pi-gt pi-aw
s é 0.8 | Pl g <X) Py <)
D, 206} |Pldyge<¥) - Py <X)
i Q J
‘D, D, £04
D  : (=
D. 1 Y w 0.2

100 200 300 400
Eucliden Distance x

hom

Fig. 4: The empirical CDFs of
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Fig. 3: Different devices placed
at different locations.

Meanwhile, if every vehicle (including the target) within a
geographic area were in its own group, the group identifier
thus becomes a unique vehicle identifier. In this extreme case,
GPSKey should not be launched as the adversary would get
access to the same GPS velocity times series with the target
vehicle and then be able to infer the same key with the
legitimate devices.

IV. EXPERIMENTAL EVALUATION
A. Experiment Setup

We implement a prototype of GPSKey on commercial GPS-
enabled devices as well as a popular GPS module in navigation
systems (i.e., Ublox NEO-6M [32]). In our experiments, two
legitimate devices are placed in a common vehicle. Each device
could be an Android device (LG G8X ThinQ smartphone,
Samsung Galaxy Tab S7 tablet), an iOS smartphone (iPhone
SE), a smartwatch (Apple Watch 3) on a driver’s wrist, or
Raspberry Pi connected with a NEO-6 GPS module. We
launch GPSKey when the vehicle is moving on urban and rural
roads. Meanwhile, an attacker drives another vehicle with an
adversary GPS-enabled device. The attacker follows or leads
the target vehicle to obtain similar driving data as the legitimate
devices, and attempts to recover the same secret key shared
between the legitimate devices. In our attack experiments, we
assume a stronger attacker, who can apply optimal time offset
to the collected driving data to minimize mismatch between
the attacker’s driving data and the driving data collected by
the legitimate devices.

Experimental Metrics: We quantify the performance of
the proposed scheme by utilizing the following experimental
metrics that are frequently utilized in the existing key genera-
tion schemes (e.g., [13], [17], [19]):

e Secret Bit Rate (SBR): SBR is the number of secret bits
generated per second. Thus, SBR determines the required
driving duration to establish a secret key with the required
key length.

e Bit Error Rate (BER): BER is the percentage of mis-
matched bits between the initial keys after the quantiza-
tion phase at the two devices. The lower BER reduces the
burden on the reconciliation phase.

e Bit Randomness: To verify if generated bitstreams present
enough randomness, we utilize the standard NIST ran-
domness test suite [24].

B. Impact of Device Type and Proximity

GPSKey takes advantage of the fact that GPS receivers on
legitimate devices present highly similar accuracy in the same
vehicle. If this fact does not hold, generated bitstreams may
present a high number of mismatching bits, where the devices
would fail to acquire the same key. To verify this, we place
the legitimate devices at different in-vehicle locations as shown
in Figure 3. We place iPhone SE, LG G8X ThinQ, Samsung
Galaxy Tab S7, and Raspberry Pi with NEO-6M at positions
D1, Dy, D3 and Dy, respectively, and let the driver wear an
Apple Watch 3 on the left wrist during driving (depicted as
Ds). We let the user drive a compact vehicle under real-world
roads while an attacker drives her vehicle to launch the stalking
and leading attacks. For each driving, we collect 300 GPS
samples and perform the experiment 100 times.

Figure 4 depicts the empirical cumulative distribution func-
tions (CDFs) of Euclidean distances between legitimate device
pairs as well as between a legitimate device and an attacker’s
device. For the legitimate devices, we denote Raspberry Pi,
Samsung Galaxy Tab S7, iPhone SE, LG G8X ThinQ, and
Apple Watch 3 as pi, se, ¢8, and aw, respectively. For the
stalking and leading attack scenarios, we denote the Euclidean
distance between the attacker’s observation and the legitimate
user’s observation as dgq; and djeqq, respectively.

We can see that 95.6% of the Euclidean distances between
the legitimate devices are less than 18.5, while dgqx and djeqq
are at least 111.2 and 122.7, respectively, thus the attacker
fails to observe similar driving data. The result shows that
the GPS-enabled devices in the same vehicle observe highly
similar velocity data. We note that a smartwatch on the driver’s
wrist also presents highly similar driving data, demonstrating
the practicality and robustness of the proposed scheme.

C. Driving Data Uniqueness

While GPSKey derives secret keys from the observed
vehicle movement on the road, the uniqueness of the generated
keys depends on the uniqueness of the corresponding driving
data. To verify the feasibility of GPSKey, we explore if
collected GPS data for each trip present unique property. We
allow a target user to drive on the same typical urban road
100 times while collecting driving data with two legitimate
devices (Dev_A and Dev_B). We derive Euclidean distance
between the GPS velocity data from different trips to verify
the uniqueness of GPS velocity data.

Figure 5 demonstrates single-trip GPS trajectories on the
map at the two legitimate devices. To preserve the privacy of
the driver, we do not show the corresponding longitude and
latitude values. We can see that the legitimate devices acquire
highly similar GPS information during the trip. Figure 6 plots
the empirical CDFs of the Euclidean distance dj.q4i; between
the velocity data of Dev_A and Dev_B, as well as dgeir
between the velocity data obtained by the same device for
different trips on the same road. We observe that dseis is
greater than 65.97 with a probability of 0.95, while djcg;: is
smaller than 14.73 with a probability of 0.95. The result shows
that each trip on the same road would generate quite a unique
velocity stream due to uncontrollable environmental factors
(e.g., weather) and traffic situations (e.g., traffic lights).
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D. Key Generation Performance

We evaluate the performance of GPSKey with different key
generation parameters, as well as its resistance against the
stalking and leading attack. To derive a secret key, the size w
of a quantization window must be determined. We note that w
is related to the randomness of the generated bit sequence. On
one hand, too small w may introduce an increased bit error rate
as the threshold T\ may not accurately represent the average
velocity of each w-second period. On the other hand, using
too large w may result in a long sequence of 1 or 0, as using
a large w is the same as applying a fixed threshold.

Considering the randomness of the generated bitstream,
we investigate the impact of different w on key generation
performance by varying 4 < w < 10 in increments of 1. For
each w, we perform 100 attempts of generating a key with
length of L (L € {128,160, 192}). For the stalking and leading
attacks, we also attempt 100 key establishments.

Legitimate Key Establishment: Figures 7 and 8 illustrate
the average secret bit rate and bit error rate between the
bitstreams generated between a pair of legitimate devices
before the reconciliation phase is executed. We have the
following observations. First, we can see that average SBR
ranges from 1.74 to 1.89, where GPSKey presents consistent
SBRs for different quantization window size w and key length
L. We note that the achieved SBRs are smaller than the ideal
SBR (i.e., 2.0 bps). This is due to inevitable redundancy in
the driving data, where the driver needs to stop the vehicle
or maintain constant velocity on cleared roads. Second, we
observe that the average BER between legitimate devices
ranges from 0.05 to 0.07, which indicates that the devices
derive highly similar bitstreams from their GPS observations.

Stalking/Leading Attack Resistance: In Figure 9 and 10,
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TABLE I: p-Value of NIST Test Result

NIST Test p-value
Frequency 0.2159
Block Frequency 0.3397
DFT 0.1443
Longest Run 0.2986
Cumulative Sums 0.3146
Runs 0.0353
Serial 0.0461
Approximate Entropy 0.0546

we can see that the adversary achieves much higher BER
with stalking attack (0.44 - 0.49) and leading attack (0.54 -
0.59), respectively. The results show that the attacker cannot
achieve significantly reduced BER with optimal time offset to
the collected driving data. We can also observe that the leading
attack presents the higher BER on average. We think that this is
due to slower reaction time and less precise velocity adjustment
performed by the victim, as the victim has no intention to
accurately synchronize vehicle velocity.

Meanwhile, we can determine the ECC that is required for
a secure sketch in the reconciliation phase. The ECC should
allow the legitimate devices to agree on the same key, however,
it must not allow the adversary to recover the key. We observe
that the maximum BER between the legitimate devices is 0.07,
while the minimum BER at the attacker is 0.44 (i.e., an ECC
that has error correction capability above 0.07 while below
0.44 satisfies the condition). Therefore, we select RS(63,37),
which can correct up to 13 symbols among a codeword with
63 symbols (i.e., with error correction capability of 0.21).

Randomness of Generated Keys: It is crucial to guarantee
that the established secret key is random since it would be used
for encryption. To evaluate the randomness of the generated
key, we run 8 randomness tests that are available in the NIST
randomness test suite. The NIST test suite has 16 different
statistical tests in total, however, as the bitstreams generated
in this research satisfy the input requirement of the 8 tests
only [24]. Each test returns a p-value as a result. To pass a
test, p-value must exceed 0.01. Table I demonstrates the test
results of a generated key, where the obtained p-values are all
greater than 0.01 in all 8 tests.



V. RELATED WORK
A. Traditional cryptographic secret key establishment

Traditional secret key establishment schemes (e.g., Diffie-
Hellman key exchange [15]) are not practical solutions for
mobile or IoT devices, as they require fixed key management
structures, and mobile devices usually suffer from limited
battery life and computational resources. Most importantly, the
traditional schemes may suffer from usability issues for the
large numbers of devices brought into a vehicle. Meanwhile,
when a user pairs two devices using Bluetooth Secure Simple
Pairing [27], the user is required to type a PIN or authorize
the pairing process by responding “yes/no”. However, the
IoT devices may not always provide a user interface (e.g.,
touch screen, keypad), and the pairing procedure becomes
cumbersome with multiple devices.

B. Context-based secret key establishment

The context-based secret key establishment schemes are
proposed to overcome the aforementioned limitations of the
traditional secure channel establishment techniques. They uti-
lize the randomness embedded in the surrounding environment
as a source of the secret key. As the user does not need
to directly type PINs or confirm the pairing process, these
schemes remove the requirement of human intervention for
the device pairing process. A common idea of the context-
based key establishment methods is that legitimate devices
co-located within the same space may acquire highly similar
sensor observations (e.g., ambient light and audio signal [23],
acoustic signals [30], color shift observation over light chan-
nel [18], wireless signal strength [13] or wireless channel state
information [19], [22]). However, these approaches share the
following shortcomings: (1) they can be easily affected by
environmental interferences (e.g., noise), (2) the user may need
to inject artificial events to decrease pairing time. For example,
a user’s hand touch [33] for generating a channel between the
wristband wearable device and the touched device, shaking
or moving both devices for establishing the key by observing
motion trajectories [17].

The IMU-based device pairing schemes for vehicular envi-
ronments [6], [16] extract secret keys from the vehicle move-
ment or environmental changes obtained from IMU sensor
readings. However, they introduce two limitations: (1) As
IMU sensor data can be easily interfered with by device
movement or orientations, they require the legitimate devices
to be fixed (e.g., taping the devices) inside of the vehicle.
(2) Unlike permission-protected GPS data, IMU sensor data
are considered insensitive, thus any mobile applications can
obtain the data without explicit permissions [21], [35]. Instead,
GPSKey utilizes GPS data to reduce impact of device move-
ment/orientation. Our experiment results in Section IV-B show
that a smartwatch on the driver’s wrist obtains highly similar
GPS data as the other legitimate devices.

VI. CONCLUSION

We propose a novel secret key establishment scheme,
called GPSKey, for secure intra-vehicle communication. With
GPSKey, the legitimate devices utilize highly similar GPS
velocity observations in a moving vehicle to agree on the same
key. The idea is to utilize the randomness embedded in GPS

data as a source of the secret key. The daily driving scenarios
present randomness from various uncontrollable factors, in-
cluding traffic situations, and surrounding environments. We
derive the secret key from GPS velocity data with enough
randomness. Furthermore, we utilize a secure sketch to correct
mismatching bits between the legitimate devices. Real-world
experiment results show that legitimate devices can establish a
128-bit key in a 1.18-minute driving period, while an adversary
following or leading the target vehicle fails to recover the
legitimate devices’ keys.
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