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Abstract—The landscape of automotive vehicle attack surfaces
continues to grow, and vulnerabilities in the controller area net-
work (CAN) expose vehicles to cyber-physical risks and attacks
that can endanger the safety of passengers and pedestrians.
Intrusion detection systems (IDS) for CAN have emerged as a
key mitigation approach for these risks, but uniform methods
to compare proposed IDS techniques are lacking. In this paper,
we present a framework for comparative performance analysis
of state-of-the-art IDSs for CAN bus to provide a consistent
methodology to evaluate and assess proposed approaches. This
framework relies on previously published datasets comprising
message logs recorded from a real vehicle CAN bus coupled
with traditional classifier performance metrics to reduce the
discrepancies that arise when comparing IDS approaches from
disparate sources.

I. INTRODUCTION

Modern cars can contain tens to hundreds of electronic
control units (ECUs) that communicate with each other over
in-vehicle networks including the controller area network
(CAN) for enhanced performance, safety, and comfort. CAN
is a robust serial shared bus communication standard that aims
to be simple and efficient while delivering real-time and fault-
tolerant performance in harsh environments. A major concern
is that the CAN bus implements no security mechanism and
the increasing number of ECUs that communicate with each
other and external networks make the CAN bus an attractive
target for cyber attackers and has led to a rise in security and
privacy risks. The attack surface continues to grow proportion-
ally to new vehicle features, and the demonstrated exploits of
its vulnerabilities [1]–[6] have made vehicular security a con-
cern for all. Securing CAN is a significant step toward ensuring
that the critical systems which communicate on the bus are
protected from cyber and physical attacks. Approaches toward
CAN security include deploying an intrusion detection system
(IDS) [7], [8] on the network to detect indications of attacks
over the CAN bus, or using cryptographic techniques [9]–
[11] and authentications mechanisms [12]–[14]. Although an
IDS can be adopted without perturbing bus performance [15],
the latter approaches cannot be easily applied to in-vehicle

networks due to computational constraints and real-time re-
quirements [16]. Hence, an IDS is a promising method for
improving CAN security.

Despite their promise, adoption of IDSs poses significant
challenges because their efficacy is unclear due to variations
in the datasets, evaluation metrics, and experimental infras-
tructure used to validate proposed approaches. Also, it is
often infeasible to properly vet these approaches since the
documentation of their implementation and experimentation
are not comprehensive enough for comparative study: reported
success is often dependent on experimental setup procedures.
To address these challenges, we introduce a framework to
facilitate comparing CAN IDS performance in detecting at-
tacks. Using this framework, we investigate the differences
in the experimental settings of detection methods proposed in
prior work and conduct a comprehensive evaluation of their
performance using a consistent experimental methodology.

The contributions of this paper are:

• design and implementation of a novel framework to
facilitate consistent, fair comparisons of proposed CAN
IDS approaches;

• categorization and explanation of prior approaches pro-
posed for CAN IDS;

• and application of the framework to proposed IDS ap-
proaches in eight categories.

II. BACKGROUND AND RELATED WORK

Many IDSs have been proposed and developed to identify
attacks on the CAN bus, but inconsistencies in their experi-
mental evaluation hinders the adoption of these approaches in
practice as their comparative performance is unclear. Further,
the lack of predictable performance of these algorithms across
datasets and environments, including software versions and
host machine architecture, has resulted in difficulties in the
interpretation of comparative study results. When an algorithm
is trained and evaluated on a specific dataset and metric,
its performance in other contexts remains opaque. To effec-
tively compare proposed IDS algorithms, we have created a
framework for CAN IDS evaluation that aims to eliminate
the inconsistencies and enable a smooth, scalable, consistent
approach for comparison of each algorithm. In the remainder
of this section we discuss these inconsistencies and other
drawbacks of prior work in the area of CAN IDS evaluation.
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1) Disparate Training Dataset: The process used by IDSs
to identify attacks is heavily influenced by the nature of the
attack-free dataset used to train the underlying classification
algorithms. Inconsistencies in the training datasets and as-
sumptions used by the algorithms proposed to detect CAN bus
attacks leads to significant impacts on the performance evalu-
ation in the detection (testing) phase. For example, Marchetti
and Stabili [17] used a CAN dataset containing recurring
patterns within the sequence of message identifiers (IDs) or
CAN IDs to train their proposed algorithm. Unfortunately,
these repetitive patterns of CAN IDs are not always evident
in practice, leading to errors in the algorithm’s detection
phase. Another study [18] on CAN bus IDS trains the system
using 35 distinct datasets from varied driving behaviors. These
variations in training environments have a significant impact
on the detection phase.

2) Disparate Evaluation Dataset: Each proposed CAN bus
IDS goes through an evaluation phase where it gets tested with
a CAN dataset containing attack messages. The efficacy of
the tested algorithm is highly dependent on the dataset used
to evaluate it. For example, Stabili et al. [19] evaluated their
proposed algorithm on a dataset containing fuzzy and replay
attacks assuming that the attack message will be inserted
after a predetermined number of regular messages; Marchetti
and Stabili [17] used datasets with bad and mixed injection
attacks; and Islam et al. [20] used denial-of-service (DoS)
and spoofing attack datasets. Comparing the performance of
these algorithms is difficult due to these differences in the test
datasets used for their original evaluation.

3) Disparate Evaluation Metrics: The evaluation of CAN
bus IDS requires the selection of appropriate metrics to
demonstrate the algorithm performance. However, in most
studies, there are inconsistencies among the chosen metrics.
For instance, Olufowobi et al. [21] calculated true-positive
rate, false-positive rate whereas Marchetti and Stabili [17] used
detection rate to show the efficiency of the proposed algorithm.

Previous studies have developed frameworks for comparing
anomaly detections and datasets used for IDS in CAN. Stabili
et al. [22] presented a benchmark framework for CAN IDSs,
which allows evaluation and comparison of four detection al-
gorithms. Similarly, Dupont et al. [23] provided an evaluation
framework to compare existing network intrusion detection
mechanisms for the CAN bus. Costa [24] designed a frame-
work for testing machine learning (ML) IDSs to determine
the best algorithm that alerts the adversary when a failure
in the integrity of the CAN data is identified. However, the
proposed frameworks in the literature can only compare a
fixed number of algorithms using the datasets provided in the
framework or a particular IDS approach. We present a flexible
framework that can be used to evaluate the existent state-
of-the-art algorithms focusing on classifier performance with
extensible plug-in capabilities for new datasets and algorithms.

III. THE FRAMEWORK

The evaluation of IDSs proposed for the CAN bus often
depends on different performance metrics. Comparing distinct

algorithms with different metrics does not provide a fair
judgment of the detection accuracies as attack settings of
the datasets and the objectives vary. Hence, we introduce a
framework to comprehensively and rigorously analyze IDS al-
gorithms using common input datasets and evaluation metrics.
With this framework, it is possible to train all the algorithms
using the same attack-free datasets, test the algorithms’ attack
detection mechanism using the same attack dataset, and evalu-
ate the efficiency of the algorithms by comparing measurement
values for the same metrics, thereby providing a level playing
field for comparison of IDS algorithms.

The design of our framework follows the architecture pre-
sented in Figure 1. The framework transforms raw datasets
into feature-rich data points in a preprocessing stage, which
is described in Section IV. This stage is then followed by
training the algorithms with the preprocessed data. Timing
and statistical algorithms work by computing the threshold
criteria for anomaly detection using the attack-free dataset,
while ML algorithms utilize a part of the attack dataset—the
training set—to learn patterns of the attacks. The trained ML
model is then tested on another set of input from the attack
set, called the testing set, to check the performance of the
model. Splitting the two sets helps to avoid bias. The non-ML
algorithms are tested on the entire attack dataset for anomaly
detection. Finally, the evaluated results are presented using
classification metrics, i.e., recall, precision, false-positive rate,
accuracy, and F1 score. The remainder of this section further
details the key components of the framework.

A. Data

The initial datasets used for this framework are from mes-
sages logged through the OBD-II port of a vehicle and cap-
tured in datasets provided by the Hacking and Countermeasure
Research Lab [25] that contains attack-free and four message
injection attacks used to compromise the vehicle’s operation.
These attacks are denial-of-service (DoS), fuzzy, and spoofing
of IDs related to the vehicles’ RPM and gear. Each dataset has
a record of each message: its timestamp, CAN ID, the data
length code ranging from 0 to 8, up to 8 bytes of data, and
a flag field indicating attack-free or compromised message.
The DoS dataset is injected with high priority messages of ID
0000 after every 0.3 milliseconds. The fuzzy dataset is injected
with random IDs and data every 0.5 milliseconds, while the
spoofing dataset is injected with messages every millisecond.
Table I shows an overview of the total number of messages
contained in each dataset.

TABLE I
OVERVIEW OF THE DATASET.

Attack Type Normal Messages Injected Messages Total Messages
DoS 3,078,250 587,521 3,665,771

Fuzzy 3,347,013 491,847 3,838,860
Gear Spoofing 3,845,890 594,252 4,443,142
RPM Spoofing 3,966,805 654,897 4,621,702
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Fig. 1. Framework architecture.

B. Attack Scenarios

To evaluate the effectiveness of the algorithms considered
in this paper, we consider the following attacks:

1) Denial-of-Service (DoS) Attack: The CAN bus is made
unavailable to legitimate nodes that intend to send messages
by flooding the bus with many messages of higher priority.

2) Fuzzy Attack: Randomly forged messages are injected
into the bus aiming to cause malfunctions in ECUs.

3) Spoofing Attack: The attacking node fabricates messages
normally sent by other nodes.

C. IDS Algorithms

Here, we briefly discuss the algorithms considered for this
framework. We broadly classify these algorithms as timing,
statistical, and ML-based.

1) Timing-based: During normal operations of a vehicle,
many message IDs have a regular frequency since messages
can be transmitted periodically, sporadically, or aperiodically.
Periodic message instances arrive at a regular interval with
a fixed length called a period. Sporadic messages recur with
a minimum inter-arrival time between successive instances,
while aperiodic message instances occur at arbitrary times or
possibly just once during each vehicle operation, e.g., when the
engine starts. However, when there is an attack, the frequencies
of the IDs affected will change [7]. Detection algorithms based
on timing use the inter-arrival time of messages to detect
anomalies in the network. In this section, we consider two
timing-based algorithms.

i. Timing Interval: Moore et al. [26] used inter-signal
arrival time to detect anomalies in CAN signals. The
algorithm evaluates the time difference, ∆i, between the
occurrences of each CAN ID using ∆i = ti − ti−1,
and the average timing interval, µ, is then determined
using µ =

∑n
i=1 ∆i/n. Where n is the total number of

occurrences of a particular CAN ID, ti is the time of the
i’th occurrence, and ti−1 is the time of the occurrence of
the ID before i. The maximum observed error, e, from
the expected interval is given by e = maxi |∆i − µ| and
a threshold value α = e + 0.15 ∗ µ is used to detect

anomalies.The threshold is determined for each ID in the
attack-free dataset and then compared with the timing
interval for IDs in the compromised dataset. An alarm
is raised if the observed error in the compromised dataset
is more than the threshold calculated from the attack-free
dataset.

ii. Frequency: Young et al. [27] implemented an IDS by
detecting changes in message frequency of particular
messages over a time window t. If t is a fixed time interval
for a set of m messages, the frequency, f is the rate of
m transmitted in time t, i.e., f = m/t. The algorithm
processes the attack-free dataset to determine the expected
frequency for each ID. For the compromised dataset, an
alarm is raised if the frequency exceeds twice the expected
frequency rate from the attack-free dataset.

2) Statistical-based: Statistical-based algorithms detect
anomalies based on statistical models built from the attack-free
dataset. These algorithms monitor messages to discover de-
viations from statistical thresholds determined during normal
vehicular operation. These thresholds are determined using
metrics such as mean, median, mode, variance, and standard
deviation. We consider five statistical-based algorithms.

i. Cumulative Sum (CUSUM): Olufowobi et al. [21]
proposed a cumulative sum change-point algorithm for
CAN that detects abrupt changes in the frequency of
a message sequence. A change in message sequence is
modeled using two hypotheses, θ0 and θ1. The hypothe-
ses represent the statistical distribution of the message
sequences before and after a change occurs. Let Di =
{D1, D2, D3, ..., Dn} be a random set of independent and
uniformly distributed sequential CAN messages and has
a probability density function (PDF), pdf(Di, θ) with a
known mean µ and variance σ2. If θ is changed at time
t, then θ = θ0 before change, and θ = θ1 after change.
The instantaneous log-likelihood ratio is given by

Si = (
µDi − µD0

σ2
D

)(Di −
µDi + µD0

2
). (1)

Using the cumulative sum equation Sn =
∑n

i=0 Si, real-
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time detection in CAN bus is found using Sn = Sn−1 +
Sn. An attack is detected when there is a change in the
process mean after five average run length.

ii. Entropy: Müter and Asaj [28] proposed an intrusion
detection method based on the entropy change in CAN ID.
To calculate entropy, the authors used the entropy function

H(X) =
∑
xϵCx

P (x)log
1

P (x)
(2)

where P (x) is the probability of the CAN ID x within a
specified interval of time and Cx is the list of the CAN
IDs in that timing window. After computing the entropy
in the timing windows from an attack-free dataset, the
IDS observes the entropy differences in the attack dataset.
However, this entropy difference could only detect the
presence of an attack. To specify the particular CAN ID,
the authors utilize the relative entropy changes of CAN
IDs among the same timing window. The equation for
computing relative entropy is

RelEnt(p/q) =
∑
xϵCx

p(x)log
p(x)

q(x)
(3)

where q and p are the probability distribution of CAN IDs
in the attack-free and attack scenario, respectively.

iii. Graph Based: Islam et al. [20] proposed a graph-based
algorithm using statistical analysis that transform the CAN
bus messages into a graph structure. The algorithm creates
a graph for each window of 200 messages. This window
size is defined for design robustness and can be changed.
For each window, the common graph properties such as
node (message ID) count, edge (ID sequence) count, and
maximum degree (number of IDs sequential to current ID)
are derived and the algorithm computes the χ2 value, then
the threshold value for the population window. The chi-
squared test can be described by the following equation:

χ2
DoF =

DoF∑
i=0

(Oi − Ei)
2

Ei
(4)

where, O is the observed frequency and E is the expected
frequency. DoF is the degree of freedom which can be
calculated by DoF = (i−1)(j−1), where i and j are the
total number of message ID sequences and the sample
size, respectively. The first stage of the detection phase
is to compute the chi-squared value for the test dataset,
denoted as “t” in χ2

t > Thaf , and compare it to the
threshold calculated for the attack-free dataset, referred as
to “af”. Then the second stage is to perform the median
test using Mediant > (Medianaf+SDaf ), where SD is
the standard deviation. If either of these equations holds,
there is an anomaly in the test dataset that gets flagged.

iv. ID Sequences: Marchetti and Stabili [17] proposed an
algorithm that monitors the sequence of unique IDs in
the attack free dataset to create a transition matrix from
the recurring ID patterns. The transition matrix represents
a data structure that recognize all the transitions that

occurred in an attack free scenario. In a dataset with m
unique IDs, the transition matrix is a square matrix of
size m × m, with all elements initialized to False (i.e.,
no legitimate transition is detected). For a message ID a
followed by message ID b in the attack free dataset, row
a and column b of the matrix is changed to True. The
final transition matrix containing True and False values is
used to detect attacks in the compromised dataset. If any
of two consecutive IDs are not present in the transition
matrix, an alarm is raised. Also, if the two IDs are present
but there are no legitimate transitions indicated by True
in the transition matrix, an alarm is raised.

v. Hamming Distance: Stabili et al. [19] used the Hamming
distance, which two strings by evaluating the minimum
number of substitutions that converts one of the strings
to the other to detect anomalies. The Hamming distance
between two strings a and b of equal length l can be
evaluated using Hl(a, b) =

∑l
i=1 |ai − bi|. For CAN

datasets containing a maximum of 64 bits of payload,
the Hamming distance, Hl between the payloads of two
consecutive instances of an ID is evaluated as

Hl(Pt, Pt+1) =

64∑
i=1

Pi,t ⊗ Pi,t+1. (5)

Here Pi,t and Pi,t+1 are bits of the payload of an ID i at
time t and t + 1 respectively. The Hamming distance is
determined by summing the results of the bitwise XOR
operation between the individual bits of the payloads.
An alarm is raised if the Hamming distance computed
from the compromised dataset is outside the range of the
calculated Hamming distances of the same ID from the
attack-free dataset.

3) ML-Based: IDSs based on ML identify patterns in CAN
transmissions to classify messages and flag intrusions with
little human intervention [29]. ML-based algorithms can be
unsupervised or supervised. A supervised algorithm requires
labeled data for training, while an unsupervised algorithm
finds patterns in unlabeled data. We consider artificial neural
network (ANN), a machine learning algorithm modeled to
imitate biological neurons in our framework.

Artificial Neural Network: Paul and Islam [30] proposed
an anomaly detection based on ANN architecture consisting
of 4 layers—an input layer, two hidden layers, and an output
layer. The input layer receives a preprocessed dataset contain-
ing ID fields and 8 bytes of data fields. Each hidden layer
consists of 16 neurons that evaluate the summation of the
multiplication of weights and inputs. The result from each
layer passes to an activation function that determines the
values fed as inputs to the next layer. For anomaly detection,
the output of ANN gives a binary classification of either 1 or
0 to signify legitimate messages and compromised messages,
respectively.

IV. EXPERIMENTAL VALIDATION

To evaluate the performance of the algorithms in our
benchmark framework, we used real vehicle CAN traffic,
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TABLE II
COMPARATIVE ANALYSIS OF MENTIONED ALGORITHMS BASED ON PROPOSED DECOUPLED FRAMEWORK

Metrics
Time Interval Frequency CUSUM Entropy Graph ID Sequences Hamming ANN
[7], [31], [32] [27], [33] [21] [18], [28], [34] [20], [35] [17], [36] [19] [30]

Attack Type 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Recall 0.83 0.97 0.0 0.0 0.18 0.99 0.05 0.07 1.0 0.99 1.0 1.0 0.02 0.03 0.06 0.06 0.69 0.98 0.75 0.53 0.96 1.0 0.33 0.42 0.95 0.99 0.0 0.0 1.0 0.98 0.86 0.87

Precision 0.60 0.51 0.0 0.0 0.99 1.0 0.89 0.9 1.0 0.48 1.0 1.0 0.25 0.33 016 0.21 0.98 0.99 0.99 0.99 0.57 0.63 0.41 0.59 0.10 0.99 0.0 0.0 0.99 1.0 1.0 1.0

F1 0.70 0.67 0.0 0.0 0.3 0.99 0.1 0.12 1.0 0.65 1.0 1.0 0.03 0.05 0.08 0.1 0.81 0.99 0.86 0.69 0.71 0.78 0.37 0.12 0.97 0.99 0.0 0.0 0.99 0.99 0.92 0.93

Accuracy 0.95 0.96 0.83 0.83 0.86 1.0 0.86 0.86 1.0 0.64 1.0 1.0 0.63 0.68 0.74 0.71 0.80 0.99 0.82 0.67 0.87 0.92 0.83 0.87 0.99 0.99 0.85 0.86 0.99 0.98 0.86 0.87

FPR 0.03 0.04 0.02 0.02 0.0 0.0 0.0 0.0 0.0 0.45 0.0 0.0 0.03 0.02 0.08 0.08 0.02 0.0 0.01 0.02 0.15 0.09 0.08 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0
* 1 = DoS Attack, 2 = Fuzzy Attack, 3 = RPM Spoofing Attack, 4 = Gear Spoofing Attack

which contains DoS attacks, fuzzy attacks, spoofing attack
datasets. These datasets are preprocessed for use by all the
algorithms in the framework. In these datasets, the flag “R”
represents an attack-free message, while “T” represents a
compromised message. We trained the statistical and timing
detection methods using the attack-free dataset, while the
machine learning algorithm was trained using 80% of the
compromised datasets. Furthermore, we have retained most
of the original settings for the parameters in the ANN model
and introduced batch normalization and dropout layers after
the hidden layers to reduce overfitting.

To evaluate the algorithms, we used standard metrics, such
as recall, precision, F1 score, accuracy, and false-positive
rates (FPR). The recall is the proportion of correct attack
predictions in the attack class, given by R = TP

(TP+FN) , where
TP and FP are the true positive and false negative values
respectively. The precision gives the proportion of identified
attacks that were actually correct, denoted as P = TP

(TP+FP )
where FP is the false negative value. F1 score gives a view
of the weighted average of the precision and recall, given by:
F1 = 2∗(Recall∗Precision)

Recall+Precision . Accuracy, A = TP+TN
TP+FP+TN+FN ,

is the proportion of right predictions in the total observations
and TN is the true negative value. FPR represent the prob-
ability of raising a false alarm for an attack, calculated as
FPR = FP

(FP+TN) .

V. DISCUSSION

Table II shows the performance of different approaches
on the dataset. We observe that each method has its merits
and weaknesses, and performance varies by the basis of the
attack. On fuzzy attacks, the timing interval algorithm works
best as detection of an anomaly becomes easier when there
is an aberration from the expected pattern of a CAN ID.
However, sole reliance on CAN IDs makes the performance
of the same approach questionable in detecting an attack of
different forms, such as spoofing. Straightforward techniques,
such as measuring Hamming distance and calculating entropy
changes, are computationally inexpensive and work well on
DoS attack detection where there is no reliance on different
attributes of an ECU. However, these algorithms lack the
required sophistication for detecting interrelated relationships
in vehicular features, i.e., dependencies between CAN IDs
that cause them to change transmission behavior with respect
to each other and the physical state of the vehicle. CUSUM

provides a frequency-based statistical approach that gives a
consistent performance in detecting attacks. However, more
generalized approaches can detect additional forms of attacks.
Our understanding suggests that graph-based algorithms [20]
and ML approaches such as ANN [30] can discover better
correlations among the features, which in turn helps in improv-
ing anomaly detection. ML approaches can also benefit from
automation of parameter tuning, i.e., feature selection, finding
optimum threshold values for detection, average intervals, or
window sizes [37]. Generally the ML models have better
performance with more computational resources and feature-
rich datasets, but these may not be easily available.

In light of our observations, we suggest the methods that
consider the interrelationship between messages, such as ML
models and graph-based models, are better suited for the CAN
bus datasets. In addition to comparing the performance of al-
gorithms for IDS in CAN, our framework provides a standard
evaluation platform that allows seamless incorporation of new
algorithms that can be tested against the algorithms already
in the framework. With a preprocessing stage, the framework
also allows the use of new datasets to evaluate the performance
of the algorithms already implemented.

VI. CONCLUSION

This paper presents a framework for benchmarking CAN
IDS algorithms to compare them using consistent metrics,
which facilitates fair and reproducible experiments. Future
work can add more IDSs [38], [39], attacks [40], datasets [41]–
[43], metrics [44], and runtime performance evaluation.
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