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the effectiveness of attacks on other lane detection methods and
the security properties of these lane detection models against
adversarial attacks have not been well studied.

In this paper, We first taxonomize state-of-the-art DNN-
based lane detection models into 4 major categories (§II-A)
We then introduce state-of-the-art physical-world adversarial
attacks against ALC systems (§II-B). In §III, we construct a
methodology to fairly evaluate the robustness of the 4 major
types of lane detection models in the end-to-end evaluation.
To simulate end-to-end scenarios, we develop a bridge be-
tween lane detection methods and the vehicle lateral control
implemented in OpenPilot [7], an open-source production ALC
system. In §IV, we evaluate the robustness of 4 major types
of lane detection approaches against 3 types of physical-
world adversarial attacks by answering 3 research questions.
Throughout this study, we find that each type of lane detection
model has different security properties against adversarial
attacks: several models are even vulnerable to a naive attack
which just draws a white line on the road. Surprisingly, but
probably not coincidentally, popular production ALC systems,
Tesla Model S and OpenPilot [7], properly select the lane de-
tection approach which shows higher resilience to the drawing-
lane-line attack. We then discuss the conclusion and further
directions of our study in §VI.

II. BACKGROUND

A. DNN-based Lane Detection

We taxonomize state-of-the-art DNN-based lane detection
methods into 4 approaches. Similar taxonomy is also adopted
in prior works [8], [9].

Segmentation approach. Segmentation approach handles
lane detection as a segmentation task, which classifies whether
each pixel is on a lane line or not. Since this approach
achieved the state-of-the-art performance in the 2017 TuSimple
Lane Detection Challenge [2] (all top-3 winners adopt the
segmentation approach [10], [11], [12]), it has been applied
in many recent lane detection methods [13], [14], [15]. This
segmentation approach is also used in the industry. A reverse-
engineering study reveals that Tesla Model S adopts this
segmentation-based approach [6]. The major drawback of this
approach is its higher computational and memory cost than
the other approaches. Due to the nature of the segmentation
approach, it needs to predict the classification results for every
pixel, the majority of which is just background. Additionally,
this approach requires a postprocessing step to extract the lane
line curves from the pixel-wise classification result.
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Row-wise classification approach. This approach [16],
[17], [18], [9] leverages the domain-specific knowledge that the
lane lines should locate the longitudinal direction of driving
vehicles and should not be so curved to have more than 2
intersections in each row of the input image. Based on the
assumption, this approach formulates the lane detection task as
multiple row-wise classification tasks, i.e., only one pixel per
row should have a lane line. Although it still needs to output
classification results for every pixel similar to the segmentation
approach, this divide-and-conquer strategy enables to reduce
the model size and computation while keeping high accuracy.
For example, UltraFast[16] reports that their method can work
at more than 300 FPS with a comparable accuracy 95.87%
on the TuSimple Challenge dataset [2]. On the other hand,
SAD [14], a segmentation approach, works at 75 frames per
second with 96.64% accuracy. This approach also requires
a postprocessing step to extract the lane lines similar to the
segmentation approach.

Curve-fitting approach. The curve-fitting approach [19],
[20] fits the lane lines into parametric curves (e.g., poly-
nomials and splines). This approach is applied in an open-
source production driver assistance system, OpenPilot [7]. The
main advantage of this approach is lightweight computation,
allowing OpenPilot to run on a smartphone-like device without
GPU. To achieve high efficiency, the accuracy is generally
not high as other approaches. Note that prior work mentions
that this approach is biased toward straight lines because the
majority of lane lines in the training data are straight [19].

Anchor-based approach. Anchor-based approach [8],
[21], [22] is inspired by region-based object detectors such
as Faster R-CNN [23]. In this approach, each lane line is
represented as a straight proposal line (anchor) and lateral
offsets from the proposal line. Similar to the row-wise classifi-
cation approach, this approach takes advantage of the domain-
specific knowledge that the lane lines are generally straight.
This design enables to achieve state-of-the-art latency and
performance. LaneATT [8] reports that it achieves a higher
F1 score (96.77%) than the segmentation approaches (95.97%)
[14], [10] on the TuSimple dataset.

B. Physical-world Attacks on Automated Lane Centering

After researchers found DNN models generally vulnerable
to adversarial examples or adversarial attacks [3], [4], the
following work further explored such attacks in the physical
world [24], [25], [26]. Recent studies demonstrate that ALC
systems, Level-2 driving automation, are also vulnerable to
physical-world adversarial attacks.

Dirty Road Patch Attack [5]. Dirty Road Patch (DRP)
attack is proposed as a domain-specific adversarial attack to
DNN-based ALC systems [5]. DRP attack pretends to be
a benign but dirty road patch. The dirty surface pattern is
generated by a white-box optimization-based method to work
as an adversarial example to lane detection models. To mimic
a road patch, the DRP attack has stealthiness constraints such
as the gray-scale color restriction and perturbable area ratio.
While it has high attack success rates, DRP attack requires
white-box access to the target system and relatively heavy
deployment effort.

Drawing-Lane-Line Attack. As the nature of lane detec-
tion, drawing a line on the road can be an effective attack
vector. A recent work [6] demonstrates that they can mislead
Tesla Model S to the adjacent lane by putting several small
stickers on the road without the original lane line. Phantom
attack [27] also demonstrates that they can mislead Tesla
Model S by projecting fake lane lines from a drone in the
nighttime. The drawing-lane-line attack is not as effective as
the DRP attack based on our experience, but its vulnerability to
this attack is more severe because of its ease of deployability.

III. METHODOLOGY

To fairly evaluate the security properties of the 4 major
types of lane detection approaches, we design evaluation
methodology in end-to-end driving scenarios under 3 types
of physical-world adversarial attacks.

A. Attack Implementation

We implemented 3 types of state-of-the-art physical-world
adversarial attacks based on prior attacks against ALC systems
discussed in II-B.

White-Box DRP Attack We implement the DRP at-
tack [5]. While the original DRP attack uses the lane bending
objective function, we apply a newly-designed attack objective
discussed in §III-B to conduct a fair comparison with other
attacks and to deal with the output space different from the
original DRP attack, which outputs the detected lane lines in
the bird’s-eye view. All lane detection methods evaluated in
this study detected lane lines in the driver’s view.

Black-Box DRP Attack To make the DRP attack work in
a black-box setup, we apply a query-based black-box attack
approach [28] to extend the DRP attack to a black-box attack.
We replace the gradient calculation in the original white-box
DRP attack with the gradient estimation technique NES [28].

Black-Box Drawing-Lane-Line Attack We explore the
most effective line with a metaheuristic strategy according
to prior work [6]. We parameterize the drawing lane line
as the start point, endpoint, and line width and optimize
the parameters with the tree-structured Parzen estimator [29]
implemented in Hyperopt [30]. As the objective of the original
attack [6] is only applicable to the segmentation approach, we
optimize our original attack objective introduced in §III-B to
conduct a fair comparison with other attacks.

B. Attack Objective

To fairly evaluate the attack capability of each attack, we
formulate an attack objective function that can be commonly
used for all 4 types of lane detection models. We named it the
expected road center function, which averages all detected lane
lines weighted with their probabilities. Intuitively, the average
of all lane lines is expected to represent the road center. If the
expected center locates at the center of the input image, its
value will be 0.5 in the normalized image width. We maximize
the expected road center to attack to the right and minimize it
to attack to the left. Detailed calculation of the expected road
center for each method is in our preprint paper [31]. When
attacking multiple frames, we average the objective of each
frame over all attacking frames.
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C. End-to-End Simulation

To evaluate the system-level consequence in autonomous
driving, we simulate vehicle trajectories under attacks with
the same methodology used in [5]. We combine a vehicle
motion model [32] and perspective transformation [33], [34]
to dynamically synthesize camera frame updates according
to a driving trajectory. This approach enables us to evaluate
the attacks on the real-world driving traces in a lightweight
way. To control a vehicle based on the lane detection results,
we develop a bridge between the lane detection model and
the vehicle lateral control implemented in OpenPilot [7], an
open-source production ALC system. It calculates the desired
driving path based on detected lane lines and makes a steering
plan to follow the desired driving path with Model Predictive
Control (MPC) [35]. In our implementation, the desired driving
path is the center of the left and right lane lines.

Attack Goal. To judge the attack success in the end-to-
end simulation, we follow the criteria proposed in the DRP
attack [5]. We use the attack goal achieving over 0.735 m
lateral deviation on the highway within the average driver
reaction, 2.5 sec. 0.735 m is the required distance to touch the
lane line when a vehicle driving at the center of a 3.6m-wide
highway lane. The lateral deviation is calculated between the
generated trajectories with attack and without attack. Since the
original human driving in the dataset sometimes does not drive
at the center of the road, we compare the case with attack and
without attack to more precisely measure the attack effect. For
each scenario, we consider two attack success criteria: Targeted
goal is the case that the vehicle deviates over 0.735 m to the
attacking direction. Untargeted goal is the case that the vehicle
deviates over 0.735 m to either the left or right.

We also quantify the ability to drive in a benign scenario.
We define a metric called benign failure rate, which is whether
the human driving and the simulated trajectory deviate by more
than 0.735 m. Although the benign failure rate is expected to
be always zero because ALC systems should be able to handle
normal scenarios, some failure cases occur due to several
reasons such as motion model inaccuracy and unstable human
driving, e.g., not driving at the center of the road.

IV. EXPERIMENTS

We conduct a large-scale evaluation of 4 major types of
lane detection approaches against 3 adversarial attacks: white-
box DRP, black-box DRP, black-box drawing-lane-line attacks.
This evaluation is designed to answer the following questions:

RQ1: Is black-box attack as effective as white-box attack?
RQ2: Which attack vector is more effective to attack?
RQ3: Are attacks transferable to other models?

A. Evaluation Setup

We evaluate the robustness of 4 major types of lane
detection approaches against 3 adversarial attacks: white-box
DRP, black-box DRP, black-box drawing-lane-line attacks. For
each approach, we select a representative model for each
approach as shown in Table I with the selection reasons. The
pretrained weights of all models are obtained from the authors’
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Fig. 1: Examples of the end-to-end benign and 3 different
attack scenarios on Comma2k19. Each image is taken at the
4th frame (0.2 sec after the start of the attack). The red and
blue lines are the detected left and right lines respectively.

TABLE I: Target lane detection methods and its selection rea-
son. Acc. is the accuracy of the TuSimple Challenge dataset [2]
in the reference papers.

Approach Selected Method Acc. Selection Reason

Segmentaion SCNN [10] 96.53% TuSimple Challenge
winner’s model

Row-wise classif. UltraFast (ResNet18) [16] 95.87% Highest accuracy among those
whose official code is available.

Curve-fitting PolyLaneNet (b0) [19] 88.62% Highest accuracy among those
whose official code is available.

Anchor-based LaneATT (ResNet34) [8] 95.63% Highest accuracy among those
whose official code is available.

or publicly available websites1. All pretrained weights are
trained on the TuSimple Challenge training dataset [2].

We collect 20 free-flow2 highway driving traces from the
comma2k19 dataset [36]. For each driving trace, we consider
two attack scenarios: attack to the left, and to the right. Thus,
in total, we evaluate 40 different attack scenarios. For the
lateral control, we use OpenPilot v0.7.0. For the longitudinal
control, we used the velocity in the original trace. For the
motion model, we use the parameters of Toyota RAV4 2017
(e.g., wheelbase), which is used to collect the traces of the
comma2k19 dataset. We manually adjust the input image size
and field-of-view to be similar to the TuSimple dataset. We use
a 5.4 m x 36 m patch size, which is the same as the one used
in the DRP attack [5]. The patch is placed at 7 m away from
the vehicle at the first frame. When the patch covers lane lines,
we draw lane lines on the patch to keep the original lane line
information. When generating the attack, we use the first 20
frames (1 second). When evaluating the attack, we use all 50
frames (2.5 seconds), the average driver’s reaction time. More
details of each attack implementation and parameters are in
our preprint paper [31].

1We obtained the pretrained models from:
LaneATT https://github.com/lucastabelini/LaneATT
SCNN https://github.com/harryhan618/SCNN Pytorch
UltraFast https://github.com/cfzd/Ultra-Fast-Lane-Detection
PolyLaneNet https://github.com/lucastabelini/PolyLaneNet

2Vehicle has at least 5-9 seconds headway.
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TABLE II: Attack success rate under the end-to-end benign
and 3 different attack for targeted and untargeted goals. Benign
is the benign failure rate defined in §IV-B. The bold and
underlined letters mean the highest and lowest attack success
rates, respectively.

Targeted Goal Untargeted Goal
Benign WB DRP BB DRP BB Draw WB DRP BB DRP BB Draw

LaneATT 20% 78% 53% 90% 98% 88% 95%
SCNN 30% 78% 43% 58% 98% 75% 70%
UltraFast 25% 75% 50% 83% 90% 48% 93%
PolyLaneNet 5% 48% 25% 30% 78% 43% 48%

B. Evaluation on End-to-End Driving Scenario

To evaluate the system-level effects in autonomous driving,
we conduct an end-to-end evaluation with the methodology
introduced in §III-C. Table II shows the results of the end-
to-end evaluation. As shown, PolyLaneNet demonstrates the
highest robustness as it has the lowest attack success rates
in all attack scenarios. We can observe a typical trade-off
of accuracy and robustness. As in Table I, PolyLaneNet is
reported as a lesser performance model. However, in terms of
the robustness, PolyLaneNet has the best robustness among 4
major lane detection models.

RQ1: Is black-box attack as effective as white-box attack?

Generally, the white-box attack has more attack capabil-
ity as it can leverage more specifications of target models.
However, recent studies report that black-box attacks can
outperform white-box attacks [37] because gradient descent-
based methods tend to suffer from local minima. In our
evaluation, the same phenomenons are observed: the black-box
drawing-lane-line attack outperforms to the white-box DRP
attack on LaneATT and UltraFast. The black-box DRP attack
has generally lower attack capability than the white-box DRP
attack. We think that the stealthiness constraints of the DRP
attack (e.g., gray-scale color and perturbable area ratio) could
be too complex to be effectively optimized by the NES-based
gradient estimation. Meanwhile, the black-box DRP attack has
a high attack success rate (88% for the untargeted goal) against
LaneATT. Our results demonstrate that the black-box attacks
have close or even effectiveness as the white-box attacks.

RQ2: Which attack vector is more effective to attack?

The black-box drawing-lane-line attack has the highest
attack effectiveness on LaneATT and UltraFast. For Poly-
LaneNet, the black-box drawing-lane-line attack is more ef-
fective than The black-box DRP attack, while the white-box
DRP attack is the most effective. SCNN has less vulnerable to
the black-box DRP attack and the black-box drawing-lane-line
attack, as the black-box drawing-lane-line attack has a higher
attack success rate on the targeted goal, but the black-box
DRP attack has a higher attack success rate on the untargeted
goal. In summary, each lane detection approach has different
sensitivity to the drawing-lane-line attack vector. For LaneATT,
it could be due to the structure of anchor proposals as discussed
in §II-A. However, LaneATT is the only anchor-based method
that the source code is available so far. Further research is
required to confirm if the vulnerability to the drawing-lane-
line attack is derived from a particular design of LaneATT
or a fundamental problem of the anchor-based approach. For
UltraFast, it shows different sensitivity to the drawing lane
line attack compared to SCNN, even though both UltraFast
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Fig. 2: Transfer success rate of all pairs of models for the
untargeted goal in the end-to-end scenarios. Each row indicates
the source model that generates the attack and each column
indicates the target model.

and SCNN predicts the lane line for each pixel. Due to the
divide-and-conquer strategy of UltraFast, it may rely too much
on local features, i.e., SCNN may judge the lane lines based
on more global features such as semantics on the road (e.g.,
lane lines should be roughly parallel with other lanes). Due
to the ease of attack deployability, the vulnerability to the
drawing-lane-line attack is severe. For autonomous driving, we
should choose relatively robust models against naive attacks
like drawing-lane-line attacks.

RQ3: Are attacks transferable to other models?

As shown in Fig. 2, the attack success rate is mostly
less than the attack generated with the target model (diagonal
cells). However, the transfer success rates still keep high attack
success rates. Moreover, the attack generated with LaneATT
has high transferability to PolyLaneNet in the drawing-lane-
line attack: The transfer success rate is 90% attack success rate
in the untargeted Goal. The results indicate that PolyLaneNet
also has a vulnerability to the drawing-lane-line attack, but the
robustness of PolyLaneNet makes it more difficult to generate
attacks. Hence, the attacks to one lane detection model are
likely to have high transferability to another model, and it is
sometimes helpful to find the vulnerability of lane detection
models which are robust to normal adversarial attacks.

V. DISCUSSIONS

While the vulnerability of DNN models against adversarial
attacks is widely reported, we may have optimistic expecta-
tions that it is almost impossible to exploit it in autonomous
driving due to the low deployability mentioned in [5] and
the lack of demo in reasonable settings. For example, the
demo in [6] is in the intersection without lane lines, which
are generally out of the operational domain of ALC. Thus,
to our knowledge, I have not observed that any production
autonomous driving systems have defense mechanisms against
adversarial attacks. However, it does not mean that we can
select a lane detection method just based on benign per-
formance. Several lane detection approaches may have high
sensitivity against naive attacks like drawing-lane-line attacks.
Surprisingly, the production ALC systems we mention select
the lane detection approach which shows higher resilience
against the drawing-lane-line attack: Tesla Models S adopts the
segmentation approach and OpenPilot [7] adopts the Curve-
fitting approach. We think this is not coincident but due to
the careful design choice of the company. In the near future,
more and more automakers will install autonomous driving
features in their products. We would like to facilitate more
research to build robust lane detection methods so that as
many automakers as possible are aware of the risks involved
in algorithm selection.

Possible Defenses: So far, effective DNN model-level
defenses against adversarial attacks are not reported. Accord-
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ing to [5], none of the input transformation-based defenses
can effectively defend against their attack without harming
performance in normal scenarios. Another possible defense is
cross-checking with other data sources. For example, Level-
4 autonomous driving systems typically obtain driving lane
information from HD maps. However, this method incurs large
additional costs as it needs quite accurate localization and
continuous maintenance of the HD map.

VI. CONCLUSION AND FUTURE DIRECTION

In this work, we report the recent progress on conducting
the first large-scale empirical study to evaluate the robustness
of 4 major types of lane detection methods under state-of-
the-art 3 physical-world adversarial attacks in autonomous
driving scenarios. We find that each lane detection method has
different security properties. Particularly, several models show
high vulnerability to the drawing-lane-line attack. Thus, it is
essential to be aware of the robustness to such naive attacks as
Tesla and OpenPilot choose relatively robust methods against
the drawing-lane-line attack. We hope that our research will
help as many automakers as possible to recognize the risks in
choosing lane detection algorithms. In future work, we plan
to evaluate a more wide variety of lane detection models and
adversarial attacks, especially effective black-box attacks. We
also plan to explore more research questions such as dataset
transferability. Although Comma2k19 and TuSimple datasets
are similar driver’s view images, there can be some domain
shifts between them. The evaluation of the attack applicability
and transferability on different datasets is also a considerable
aspect of the robustness of lane detection models. Based on the
insight of this study, we would like to work on the development
of effective defense methods and robust model training that can
improve the robustness of lane detection models in practical
autonomous driving.
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