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Abstract—Autonomous Driving (AD) is a rapidly developing
technology and its security issues have been studied by various
recent research works. With the growing interest and investment
in leveraging intelligent infrastructure support for practical AD,
AD system may have new opportunities to defend against existing
AD attacks. In this paper, we are the firstt o systematically
explore such a new AD security design space leveraging emerging
infrastructure-side support, which we call Infrastructure-Aided
Autonomous Driving Defense (I-A2D2). We first taxonomize
existing AD attacks based on infrastructure-side capabilities,
and then analyze potential I-A2D2 design opportunities and
requirements. We further discuss the potential design challenges
for these I-A2D2 design directions to be effective in practice.

I. INTRODUCTION

As Autonomous Driving (AD) technology becomes in-
creasingly deployed and commercialized in the real world,
more and more people start to consider the security of AD
vehicles. There are a lot of researches trying to create adversar-
ial examples for fooling Al components in AD systems. Zhao
et al. introduce malicious stop signs that can not be detected by
AD vehicles [1], while Cao et al. create printable objects that
can not be perceived by both camera and LiDAR [2], leading
to serious crashes. Some other works focus on the localization
module. Shen et al. use GPS spoofing tolead the v ictim to
crash into an incoming vehicle on the opposite lane [3].

On the other hand, the AD system design patterns are also
evolving, with growing interests and investment in leveraging
infrastructure-side support. Specifically, a n ew d irection of
AD design called Infrastructure-Aided Autonomous Driving
(IAAD) is being developed recently, which uses infrastructure
side communication and sensing abilities to improve AD
reliability while reducing on-board sensing cost [4]. Today,
there are many ongoing IAAD testing, and even deployment
efforts by companies and institutes. For example, Baidu is
currently testing intersections with IAAD deployed in several
cities; to demonstrate the benefits o f s uch infrastructure-side
support on AD, they even showcase L4 AD capability only us-
ing infrastructure-side sensing without using any on-boarding
sensing [5]. Seoul Robotics proposes to use sensors embedded
in surrounding infrastructure to achieve L5 AD; BMW is
currently testing that system at its Munich manufacturing
facility [6]. HORIBA Institute for Mobility and Connectivity
(HIMaC2) at UC Irvine plans to equip 25 intersections in
Irvine with Velodyne’s LiDAR-based intelligent infrastructure
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TABLE I: Categorization of existing AD attacks from the
perspective of infrastructure-side capability requirements in I-
A2D2 designs. Full version is Table II in Appendix.

Category Attack I-A2D2 design
A1: Perception of Sign hiding [1, 11-17] Traffic sign
infrastructure-authoritative Sign appearing [1, 16-18] Traffic sign
information Traffic light changing [19, 20] Traffic light

Object hiding [2, 21-38] Obstacle detection
Object appearing [18, 20, 35, 38—42] Obstacle detection
Object relocation [43-46]
Object detection disabling [35, 47]
Trajectory shifting [3, 20, 48-50]
Localization disabling [35]

A2: Perception of
dynamic road objects Obstacle detection

Obstacle detection

L Localization
A3: Localization —
Localization and lane

solution [7]. Among various different AD deployment sce-
narios today, JAAD is most attractive and thus likely to be
first utilized by robo-taxi/ride-hailing services due to the cost
considerations [8]. On the government side, some countries
have already realized the importance and benefits of such
smart transportation infrastructures not only to practical AD
deployment but also to city functions (e.g., mobility and
environmental aspects), and are thus making proactive policies
for building such infrastructures [9, 10].

Considering such a new AD design trend, it is important
to explore whether and how it may influence the existing
AD security design space. In this paper, we are the first
to systematically discuss the opportunities and challenges for
such a new AD security design space leveraging emerging
infrastructure-side support, which we call Infrastructure-Aided
Autonomous Driving Defense (I-A2D2).

II. I-A2D2 DESIGN OPPORTUNITIES

With infrastructure-side sensing and communication abili-
ties, many existing attacks against AD systems can potentially
have new defense opportunities. Due to the different nature
of the attacks, different infrastructure-side capabilities can be
required for effective and systematic I-A2D2 defense designs.
We thus started by performing a comprehensive survey of rep-
resentative AD attacks published in recent years, and classified
them into 3 categories from such I-A2D2 design requirement
perspective: (A1) Perception of infrastructure-authoritative
information; (A2) Perception of dynamic road objects; (A3)
Localization. A short version of such categorization is in
Table [; the full version is Table II in Appendix.

A. Al: Perception of Infrastructure-Authoritative Information

Opportunities. Like human drivers, AD has to follow
traffic rules, such as obeying the speed limit and waiting for
a red light. Quite some existing works target their perception
and thus trick the victim to break traffic rules; as in Table I,



there are 8 attacks trying to hide the traffic signs from being
detected by AD vehicles, e.g., using stickers [1]; 4 attacks try
to create non-existing traffic signs, e.g., using a projector [17];
3 attacks try to change the traffic light result detected by AD
vehicles, e.g., by exploiting ROI designs [19].

However, since traffic signs and traffic lights are under
authoritative control of the government transportation agencies,
the infrastructure is able and also authoritative to provide such
information. For example, the infrastructure may broadcast the
existence of a stop sign at a GPS coordinate to all passing-by
AD vehicles. This can at least provide another (if not more
trustworthy due to the source authoritativeness) information
source to AD vehicles, which thus can enable at least direct
attack detection capabilities against all these existing attack
vectors targeting infrastructure-authoritative information such
as traffic signs and lights.

Required infrastructure-side capability. To inform the
AD vehicle of authoritative information, the infrastructure
must be able to communicate with the AD vehicle in time.
Currently, DSRC and C-V2X are the commonly used wireless
communication technologies for cars, both of which are able
to deliver a message within 100ms [51, 52]. On the other
hand, since the information to transmit is known in advance,
the infrastructure can send it before the AD vehicle needs to
react to the information, such as informing the AD vehicle
200 m away from a stop sign. Thus, if designed properly, the
infrastructure should be able to always ensure the information
can arrive in time to the AD vehicle side to enable effective
defense design opportunities. Such authoritative information
also needs to be sent with the location information, e.g.,
absolute GPS coordinates. The AD vehicle can then use its
own real-time localization to react at the correct position, e.g.,
stop when it’s right in front of a stop sign.

B. A2: Perception of Dynamic Road Objects

Opportunities. To avoid collision, AD vehicles need to
detect dynamic road objects and avoid them proactively. Some
attacks aim at the obstacle detection component and try to hide,
relocate, or create non-existing objects in front of the victim.
The others directly disable the obstacle detection component.
We find 20 attacks trying to hide objects using a variety of
methods, e.g., using malicious shape changes [2]; 8 aim at
adding non-existing objects to the detection results, e.g., using
sensor spoofing [35, 39, 42]; 4 try to change the location
of the object in the detection results, e.g., using malicious
stickers/posters [46]; and 4 try to disable obstacle detection,
e.g., using sensor jamming [35, 47]. To defend against such
attacks, the infrastructure-side perception capabilities (e.g.,
camera and LiDAR) in the emerging IAAD designs [4-7]
(§I) can be leveraged to help perceive maliciously hidden
objects or eliminate attacker-introduced fake objects. The AD
vehicle side can fuse their own detection results with such
infrastructure-side detection results, which can at least detect
(if not able to correct) the attacked results.

Required infrastructure-side capability. Defending
against A2 requires better communication capabilities com-
pared to Al in both latency and bandwidth. The AD vehicle
needs to be informed of the object in time so that it can
have adequate time to make decisions and react (e.g., stop
before crash or change lane). Since the objects are dynamic,
to achieve this the infrastructure need to frequently transmit
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Fig. 1: Estimation of the maximum allowed obstacle perception
errors for I-A2D2 designs against A2 attacks.

the most recent detection results, which thus requires a much
smaller latency and higher bandwidth than Al. Failing to do
that, the infrastructure can end up sending obsolete information
that can be even misleading in extreme cases.

Besides the communication capability requirements, the
infrastructure-side perception also needs to be accurate enough.
To more concretely understand such accuracy requirement, we
perform an estimation of the maximum allowed perception
errors based on common lane width and car width. Here, the
most error-sensitive scenario takes place when the detection
results indicate that all obstacles are out of the current lane
boundaries, but in reality the detection errors are large to the
extent that there can be a misdetected obstacle with which a
collision cannot be possibly avoided by the AD vehicle. Fig. |
shows such a setup with the least error tolerance, where an
obstacle is detected to locate on the boundary of the adjacent
lane, but its actual location can collide with the AD vehicle
even if the AD vehicle is choosing the safest possible route
in the ego lane (e.g., on the rightmost side in Fig. 1). In this
case, the maximum allowed detection error of such obstacle
is LaneWidth — VehicleWidth. According to USDOT, the
lane width (LaneWidth) of a local road should be at least
2.7 m [53]. As for vehicle width (VehicleWidth), we take
the width of a common AD vehicle model, Lincoln MKZ,
which is 2.12 m. Therefore, the maximum allowed errors for
infrastructure-side dynamic object detection cannot be over
0.58 m (Fig. 1).

C. A3: Localization Attacks

Opportunities. Localization is a key component for AD
to accomplish tasks such as navigation and path planning. The
AD vehicles need to know where it is on the road or in the map
to follow the lane and to decide whether to make a turn. It’s
also required to know the vehicle’s ego position when using
infrastructure-side authoritative information in Al defenses
(§8II-A). We find 5 attacks targeting localization (Table I), e.g.,
using GPS spoofing [3] and dirty road patches [49], which
can cause severe consequences such as driving off the road
and even crashing into the incoming vehicle from the opposite
direction. Since camera is usually used for lane centering in L2
AD systems, camera blinding attack [35] can also disable the
AD system’s localization ability, which may cause potential
shifting of the vehicle position.

Similar to A2 attacks (§II-B), the infrastructure-side per-
ception capability can enable defense opportunities against A3
attacks. Specifically, the infrastructure side can keep sending
information such as locations of all perceived in-road vehicles
to the AD vehicle side. On the AD vehicle side, when it first
receives such information, it uses its own localization result
(e.g., from GPS) to find the closest infrastructure-side detected
vehicle as the representation of itself . It then performs object



tracking of such a vehicle in subsequent infrastructure-side
sent frames, taking its real-time location as infrastructure-aided
localization results. When the attack happens, there will be a
mismatch between the AD vehicle’s self-localization and such
infrastructure-aided localization results; the AD vehicle can
thus use the latter as an additional information source to at
least perform attack detection. Note that such a design follows
the trust-on-first-use (TOFU) assumption, i.e., assuming that
the AD vehicle is not under localization attack the first time
it receives the infrastructure-side information, so that it can
correctly find the matching result from infrastructure-side
detected vehicles.

Required infrastructure-side capability. Defending
against A3 attacks requires similar communication capa-
bility as those against A2, as they both require real-time
infrastructure-side perception. In terms of localization accu-
racy, in the infrastructure-aide localization discussed above,
performing localization of AD vehicle is essentially perform-
ing object detection like [-A2D2 defenses against A2 (§1I-B).
However, comparing to A2 attacks, defending against A3
attacks needs a higher Eerception accuracy, as a deviation of
LaneWidth— VehwleWzdt which is 2.7-2.12 __ = 0.29m if usmg
the same LaneWzdth and VehicleWidth values as in §II-B,
is already enough to cause a vehicle to have lane departure.
To achieve such infrastructure-aided localization capabilities,
it thus requires the infrastructure side to have better sensing
ability and more reliable algorithm to perceive objects from
the input data in the real time.

III. I-A2D2 DESIGN CHALLENGES

A. Precise Self-localization from Infrastructure Perception
As discussed in II-C, to defend against localization attacks
(A3), the infrastructure side needs to achieve sufficiently-
accurate localization of pass-by vehicles. However, we find
that achieving such required accuracy is non-trivial based on
our preliminary experiments in a real IAAD-deployed road.

Experiment setup. We perform our preliminary experi-
ments on a real road where IAAD is deployed for testing
purposes. The TAAD-supported road segment is over 1000
meters long with full IAAD coverage. We experiment with
two LiDAR obstacle detection models on the collected data:
(1) the built-in segmentation model used in Apollo 5.0 [54],
an open source industry-grade AD system, which we denote
as “Apollo5”; (2) PIXOR [55] from Uber ATG. Among all the
objects detected in each frame, we select the one closest to
the ground truth as the infrastructure-aided localization result,
and compare it with the ground truth. We calculate the error
in each frame to evaluate the performance.

Results. The distribution of the errors of each frame and
also their median are plotted in Fig. 2. As shown, the median
error of Apollo5 is 0.68 m, while that of PIXOR is 0.82 m,
both of which cannot meet the requirement identified in II-C
(0.29 m). To understand the causes, we examine whether the
distance from the infrastructure-side LiDAR to the vehicle can
affect the accuracy of localization. We collect such distance
and localization errors of the Apollo5 model in each frame,
and plot all data points in Fig. 3a. As shown by the red line, the
errors almost monotonically increase with the distance. That
is likely because when the vehicle is farther away from the
LiDAR, the laser points become more sparse and thus makes
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Fig. 2: Error distribution of both the Apollo LiDAR perception
model (“Apollo5”) and the PIXOR model.
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Fig. 3: Localization error of the Apollo LiDAR perception
model (“Apollo5”) at different distance.
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it more difficult to have accurate perception. We further group
data points based on distance, and draw a box plot in Fig. 3b.
One interesting observation is that, when the distance is small,
there are some outliers with big errors. This is likely because
the LiDAR is mounted in a high position (around 3 m), and
only a few laser channels with large pitching angle can cover
close areas, resulting in a sparse point cloud for nearby objects.

Future improvements. We plan to explore the follow-
ing directions in the future to improve this: (1) Use newer
point cloud object detection models and train them with
infrastructure-side data; (2) Use Kalman Filter on the
infrastructure-aided localization.

B. Adaptive Attacks

Attack infrastructure-side perception. Since the sensors
and the Al components used for such perception are similar to
those used on AD vehicles, the attackers can apply/adapt ex-
isting vehicle-side perception attacks to the infrastructure side,
or even attack both AD vehicle and infrastructure perception
at the same time [2].

Exploit fixed sensor positions. Because TAAD sensors
are in fixed positions, when facing the same sensor attack,
infrastructure can be more vulnerable comparing to AD vehicle
(e.g. no need to perform tracking and aiming for laser shooting
attacks [39]). In a similar vein, generating adversarial exam-
ples can be easier as well, since it no longer requires taking
the vehicle motion dynamics into consideration like in [1, 49].

New cyber-attack surface. In IAAD/I-A2D2, the com-
munication between infrastructure and AD vehicle can expose
AD vehicle’s interior system to other devices, which thus
introduces a new cyber-attack surface.

IV. CONCLUSION

In this paper, we are the first to systematically discuss the
opportunities and challenges for the new Infrastructure-Aided
Autonomous Driving Defense (I-A2D2) design space. We first



taxonomize existing AD attacks based on infrastructure-side
capabilities, and then analyze potential I-A2D2 design opportu-
nities and requirements. We further discuss the potential design
challenges for these I-A2D2 design directions to be effective in
practice. We hope that our discussions and insights can inspire
more future research into this promising but currently under-
explored defense design space for AD system security.
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TABLE II: Categorization of existing AD attacks based on infrastructure-side capability requirements in I-A2D2 defense designs.

Impact I-A2D2 design
g
g =
LE 25z £z E
s © w T % B E =
2 35220858 S
g g = £ s & g g|@ = L g
T &8 3883838 38F|€&E ¢ 3
& o 2 2 2 &2 &2 F 8|8 E B B2 8
Category Attack Threat model n n = O O O O F A|F =H A O A
Lu et al. [11] Stop sign poster v v
Chen et al. [12] Stop sign poster v v
Lovisotto et al. [13] Projection to camera v v
Zolfi et al. [14] Patch to camera len v v
A1 Perception of Duan et al. [15] Laser shooting to camera v v
. . N Nassi et al. [18] Projection and billboard v v
1nfraslrl}clure—aqthontatlve Song et al. [16] S an v %
information .
Zhao et al. [1]  Stop sign patch and poster | v v v
Man et al. [17] Projection to camera v 7/ v
Tang et al. [19] GPS spoofing v v
Wang et al. [20] IR lights v v
Man et al. [17] Projection to camera v v
Wiyatno and Xu [21] Poster v v
Xiao et al. [22] Malicious object v v
Zhang et al. [23] Patch on obstacles v v
Tu et al. [24] Malicious object v v
Wu et al. [25] Patch on obstacles v v
Xu et al. [26] Adversarial T-shirts v v
Hau et al. [27] Laser shooting to LiDAR v v
Zhu et al. [28] Patch with bulbs v v
Ding et al. [29] Malicious object v v
Tu et al. [30] Malicious object v v
Li et al. [31] GPS spoofing v v
Wang et al. [32] Patch on obstacles v v
Kohler et al. [33] Laser shooting to camera v v
Zhu et al. [34] Board and drone v v
Cao et al. [2] Malicious object v v
Yan et al. [35] Ultrasonic foaming v v
A2: Perception of dynamic Nakka and Salzmann [36] Patch on road v v
road objects Nesti et al. [37] Billboard v v
Wang et al. [20] IR lights v v
Cao et al. [39] Laser shooting to LiDAR v v
Sun et al. [40]  Laser shooting to LiDAR v v
Yang et al. [41] Malicious object v v
Nassi et al. [18] Projection and billboard v v
Sun et al. [42] mmWave shooting v v
Ji et al. [38] Ultrasound to inertial sensors v / v
Yan et al. [35] Ultrasound shooting v / v
Jia et al. [43] Patch on obstacles v v
Jha et al. [44] Malware v v
Hong et al. [45] Compromised ROS node v v
Chen et al. [46] Patch on obstacles v v
Wang et al. [47] Patch 4 v
Yan et al. [35] Laser shooting to camera v v
Yan et al. [35] mmWave jamming v v
Yan et al. [35] Ultrasonic jamming v v
Shen et al. [3] GPS Spoofing v v
Kong et al. [48] Billboard v v v
. oo Wang et al. [20] IR lights v v v
A3: Localization Sato et al. [49] Road patch v v v
Jing et al. [50] Road patch v v v
Yan et al. [35] Laser shooting to camera v v v
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