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Abstract—In this paper we investigate the use of graph
embedding networks, with unsupervised features learning, as
neural architecture to learn over binary functions.

We propose several ways of automatically extract features
from the control flow graph (CFG) and we use the structure2vec
graph embedding techniques to translate a CFG to a vectors
of real numbers. We train and test our proposed architectures
on two different binary analysis tasks: binary similarity, and,
compiler provenance. We show that the unsupervised extraction
of features improves the accuracy on the above tasks, when com-
pared with embedding vectors obtained from a CFG annotated
with manually engineered features (i.e., ACFG proposed in [39]).

We additionally compare the results of graph embedding
networks based techniques with a recent architecture that do
not make use of the structural information given by the CFG,
and we observe similar performances. We formulate a possible
explanation of this phenomenon and we conclude identifying
important open challenges.

I. INTRODUCTION

The current evolution trends in all industrial sectors, fa-
vored by phenomena like the Internet of Things and evo-
lutionary programs like Industry 4.0, strongly push for a
large number of heterogeneous common-off-the-shelf devices
to be integrated within the IT systems of large organizations.
While this approach is supposed to improve efficiency by
cutting costs and enabling new “smart” production processes, it
raises several concerns related to the security of such systems.
Security teams that work to guarantee the safe and correct
functioning of such systems, need to monitor a large num-
ber of interconnected devices running closed-source software,
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without any clue about their internals (but for the often scarce
and rarely updated documentation provided by vendors). This
problem is today raising the demand for new methodologies
and tools to analyze software in its binary form, the only form
such software is often available to security analysts.

The academic and industrial communities working in the
areas of software engineering and programming languages
have recently started to investigate new promising approaches
based on the statistical modelling of software source code.
The idea at the heart of these approaches is to leverage the
huge, readily available source base that is represented by
open-source software, to train models though machine learning
techniques. A recent survey [2] provides a detailed overview
of this, so called, Big Code movement. A fertile line in this
area of research is to use and adapt solutions from Natural
Language Processing (NLP) that, coupled with deep neural
networks, have been extremely successful in providing state-
of-the-art performance for several tasks: translation of source
code between different languages [12], detection of duplicate
semantic [10], variable misuses detection [3] and many others
[5], [11], [17]. Unfortunately, such techniques are tailored
to the analysis of source code and cannot be immediately
used on binary code. The source code compilation process,
for instance, destroys variables and functions naming, as well
as variable types, thus hampering the applicability of Big
Code techniques. We believe that transferring the Big Code
knowledge in the vast field of binary analysis is of urgent
interest, and such knowledge can be a precious aid in the
design of new, effective, and, easy to use binary analysis tools.

To the best of our knowledge, very few works have
used NLP techniques to analyse binary code [14], [21], [40].
Notably, [21] and [39] propose techniques based on embedding
the CFG in order to solve the binary similarity task. In [39],
as in [23], the CFG is first transformed into an ACFG, that is
CFG where the blocks are vector manual engineered features,
and then such ACFG is embedded, using the graph embedding
architecture proposed in [16], into a vector.

Building upon the results of these previous works, in this
paper we investigate several techniques to represent the blocks
of the CFG, without using manual selected features, and we
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examine how these techniques perform when they are used
end-to-end with a graph embedding architecture. In fact, a
really successful recent trend in machine learning is to de-
sign network architectures that introduce the smallest possible
human bias and that automatically learn the representations
needed from raw data [8], [30]. We argue that manually
selecting vertex features is prone to injecting human bias and
could potentially fail in capturing non-obvious syntactic and
semantic structure in the binary code.

Our final aim is to understand the suitability of super-
vised architectures working on graph embeddings for common
binary analysis tasks. To this end we consider tasks that
are markedly different from each others, having the specific
purpose of testing the flexibility and the usefulness of various
graph embeddings techniques, and, at large, on the use of the
bare CFG as an aid to learn the syntactic structure of binaries
by deep neural networks 3.

Specifically, we test our solutions on the tasks of binary
similarity and compiler provenance:

1) Binary Similarity —In this task we train our model to
map CFGs into vectors of numbers (i.e. embeddings),
in such a way that similar graphs result in similar
vectors. We assume that two CFGs are similar if they
are derived from the same source code. As already
pointed out in [39], this assumption does not make the
problem trivial. The complexity lies in the fact that,
starting from the same source code, widely different
binaries can be generated by different compilers with
several optimisation parameters. To make things more
challenging the same source code could be compiled
targeting different architectures that use completely
different instruction sets (in particular we consider
AMD64 and ARM as target architectures for our
study). The binary similarity task is known to have
several practical use cases in the field of security like
vulnerability detection in closed-source software and
the phylogenic analysis of malware.

2) Compiler Provenance —In this task we train our
model to map a CFG into a class representing the
compiler family that generated it. This classification
task identifies the toolchain used to generate unknown
binaries and produces information that is required by
specific library detection tools such as IDA FLIRT4.

The main contributions of our work are the following:

• we describe a general network architecture for calcu-
lating binary function embeddings starting from the
corresponding CFGs that extends the one introduced
in [39] (Section IV);

• we introduce several designs for the Vertex Features
Extractor, a component that associates a feature vector
to each vertex in the CFG. These designs make use
of unsupervised learning techniques, i.e. they do not
introduce any human bias (Section IV-A);

3 The works on source code have shown that, in most cases, being aware of
the syntactic structure of code leads to better performances [2]. The majority
of them takes into account the syntactic structure by training the model on
the AST or some derived graph [3], [5]

4https://www.hex-rays.com/products/ida/tech/flirt/in depth.shtml

• we report on an experimental evaluation conducted on
these different feature extraction solutions considering
the binary similarity task and the compiler provenance
task; we show that unsupervised feature extraction
is better, on both tasks, than manually engineered
features (Section V);

• we discuss our findings in Section VI. We note that de-
spite taking into account the syntactic structure of code
using the CFG our techniques underperform or have
comparable performances, on both task, when com-
pared with a solution [29] that examine sequentially
all the disassembled instructions, without information
on the control flow given by the CFG. We discuss
our hypothesis on this phenomena, giving a possible
explanation on the shortcomings of blindly embedding
the CFG.

Finally, in the conclusions (Section VII) we propose two
interesting open challenges in this field.

II. RELATED WORK

Several works have investigated the use of deep neural
networks for binary analysis tasks like finding functions [7],
[24], [35]. At the best of our knowledge the first work that
has introduced NLP concepts in the field of binary analysis is
[14]. The paper introduces the use of the distributed represen-
tation of instructions, that is word2vec [30], for the purpose
of learning function signature in binaries using a Recurrent
Neural Network (RNN). We are not aware of works that
have investigated the use of graph embedding neural networks
automatically extracting the features from CFG blocks. In the
following we details the literature of the two tasks that we
investigate, specifically focusing on works using deep neural
networks.

A. Binary Similarity based on embeddings

Among all works on binary similarity [19] [27] [31] the
most related are the ones that propose embeddings for binary
similarity, or that use deep neural networks. We can divide
the works in single-architecture (that are able to compute the
similarity only for binaries compiled for the same architecture,
i.e. AMD64) and cross-architecture (that are able to compute
the similarity among binaries compiled for two or more
architectures, i.e. ARM and AMD64).

a) Single-Architecture solutions: — Recently, [21]
proposed a function embedding solution named Asm2Vec.
Asm2Vec builds a series of instruction traces by performing
random-walks over a function CFG, and then it embeds such
traces using a variation of the PV-DM model [28] for natural
language processing.

b) Cross-Architecture solutions: — Feng et al. [23]
computed the embeddings by using a clustering approach: they
first obtained clusters of training functions, then, they used
centroids of such clusters and a feature encoding technique to
associate an embedding vector to each function. Xu et al. [39]
proposed function embeddings that are computed using a deep
neural network. Interestingly, [39] shows that the proposed
architecture, namely Gemini, outperforms [23].
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Addr_1: mov eax,10
Addr_2: dec eax

Addr_4: jnz Addr_2
Addr_3: mov [base+eax],0

Addr_5: mov eax,ebx

Addr_1: mov eax,10

Addr_2: dec eax
Addr_3: mov [base+eax],0
Addr_4: jnz Addr_2

Addr_5: mov eax,ebx

Fig. 1. Assembly code on the left and corresponding cfg graph on the right.

In Gemini the CFG of a function is first transformed into
an annotated CFG [22] [32], a graph containing manually
selected features, and then embedded into a vector using the
graph embedding model of [16].

Finally, in [40] a recurrent neural network based on LSTM
(Long short-term memory) is used to solve a sub-task of binary
similarity: finding similar CFG blocks.

B. Compiler Provenance

The compiler provenance problem was first afforded by
Rosenblum et al. [34]. They proposed a solution to infer the
compiler that produces a given executable using idioms, short
sequences of instructions that can be matched into an exe-
cutable. In [33] the same authors outperformed their previous
solution combining idioms with graphlets. Rahimian et al.
[32] proposed an approach based on annotated control flow
graph (ACFG) to recover the compiler provenance of a binary,
however their approach seems to be less accurate than [33].
Recently, Chen et al [13] proposed a deep neural network that
recovers the optimization level of different functions compiled
with gcc; they show that the learned model is explicable as it
learn common compiler convention.

III. PROBLEM DEFINITION AND SOLUTIONS OVERVIEW

Binary similarity and compiler provenance — We say that
two binary functions fs1 , f

s
2 are similar, f1 ∼ f2, if they are

the result of compiling the same original source code s with
different compilers. We see the compiler c has a deterministic
transformation mapping a source code s into a binary function
fsc . For us a compiler is the specific software, e.g. gcc-5.4.0,
together with the flags that influence the compiling process,
e.g. the optimization flags -O[0, ..., 3]. With the term compiler
family, we mean the specific compiler without considering the
version number, i.e. the family of gcc-5.4.0 is gcc, the
family of clang-3.4 is clang.

In the compiler provenance task we are given a set of
possible compilers C : {c1, c2, . . .}, and a a binary function
fscj and we have to guess the compiler family F (cj)|cj ∈ C.

Control Flow Graph — Given a binary function, we use its
representation as control flow graph (CFG) [4]. A control flow
graph is a directed graph whose vertices are sequences of
assembly instructions, and whose arcs represent the execution
flow among vertices. In Figure 1 there is a binary code snippet
and the corresponding CFG. We reduce the binary similarity

problem to the one of finding similar CFGs. Thus when we
say that two CGFs are similar we mean that the corresponding
functions are similar (the same holds for dissimilar CFGs).

We denote a CFG as g = (V,E) where V is a set of
vertices and E a set of edges. N (vi) is the set of neighbors
of vertex vi ∈ V . Vector xi is a d-dimensional features vector
associated with vertex vi, and Ivi is the set of instructions
contained in vertex vi. Without loss of generality, we assume
that all vertices contain the same number of instructions m5.

Overview of the solution — Our aim is to feed a CFG to
a deep neural network to solve the tasks of binary similarity
and compiler provenance. This is achieved using an embedding
neural network that maps a CFG g into an embedding vector
~g ∈ Rn. The first component of this network is a Vertex
Features Extraction mechanism that automatically generates
a feature vector xi for a vertex vi in the CFG using the set of
instructions Ivi .

For the binary similarity task we want that vector ~g pre-
serves the structural similarity relation between CFGs, and thus
between binary functions. That is, two vectors representing
similar CFGs should be close in the metric space. For the
task of compiler provenance we want that vector ~g contains
structural information about the compiler that generated the
CFG, in such a way that ~g can be feed to a classifier, a deep
feed-forward neural network in our case.

We give a general overview of the approaches analyzed
for the Vertex Feature Extraction component, that can be
divided in the two broad families, namely (A) manual feature
engineering and (B) unsupervised feature learning.

a) Manual Feature Engineering (MFE): This is the
approach defined in [39] and represents the baseline in our
tests. The feature vector xi of vertex vi is computed by
counting the number of instructions belonging to predefined
classes (e.g. transfer instructions), together with the number
of strings and constants referred in vi, and the offspring
and betweenness centrality of vi in the CFG. Note that this
mechanism is not modified by the training procedure of the
neural network, i.e. it is not trainable.

b) Unsupervised Feature Learning: The main idea of
this family of approaches is to map each instruction ι ∈ Ivi
to vectors of real numbers ~ι, using the word2vec model [30],
an extremely popular feature learning technique in NLP. We
use a large corpus of instructions to train our instruction
embedding model (see Section V-A) and we call our mapping
instruction2vec (i2v). Note that such instruction vectors can
be both kept static throughout training or updated via back-
propagation (non-static) by the network. To generate a single
feature vector xi for each vertex vi we considered two different
strategies to aggregate the instruction embeddings:

• i2v attention: the main idea of this aggregation strat-
egy is to use an attention mechanism to learn which
instructions are the most important for the classifier
according to their position. In particular, we include
in the network a vector a that contains weights. The
features xi of vertex vi are computed as a weighted

5Concretely speaking, this is achievable by adding NOP padding instructions
to vertices that contain less than m instructions.
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mean of the vectors ~ι of instructions ι ∈ Ivi . Note
that the weights vector a is trained end-to-end with
the other network hyper-parameters. Rationale: this
strategy takes inspiration from recent works in neural
machine translation [6]. The presence of vector a
allows the network to automatically decide the impor-
tance of instructions relatively to their position inside
each vertex.

• i2v RNN: the feature xi of vi is the last vector of the
sequence generated by a Recurrent Neural Network
(RNN) that takes as input the sequence of vectors ~ι of
instructions ι ∈ Ivi . The RNN we consider in this
work is based on GRU cell [15]. This mechanism
is trainable, the weights of the RNN are updated
with the training of Structure2Vec. Rationale: this
method generates a vector representation that takes
into account the order of the instructions in the input
sequence.

IV. GRAPH EMBEDDING NEURAL NETWORK

We denote the entire network that compute the embedding
of a CFG graph as graph embedding neural network. The
graph embedding neural network is the union of two main
elements: (1) the Vertex Feature Extraction component, that is
responsible for associating a feature vector with each vertex
in g, and (2) the Structure2Vec network, that combines such
feature vectors through a deep neural architecture to generate
the final embedding vector of g. See Figure 2 for a schematic
representation of the overall architecture of the graph embed-
ding network, where the Vertex Feature Extraction component
refers to an Unsupervised Feature Learning implementation.

A. Vertex Features Extraction

The Vertex Feature Extraction is the component where we
focus the attention of this paper and where we propose most
of our contributions. The goal of this component is to generate
a vector xi from each vertex vi in the CFG g. We considered
several solutions to implement this component. As baseline
we consider the approach based on manual feature engineering
proposed in [39]. Moreover, we investigated solutions based on
unsupervised feature learning (or representation learning), bor-
rowing models and ideas from the natural language processing
community. These techniques allow the network to automati-
cally discover the representations needed for the feature vectors
from raw data. This replaces manual feature engineering and
allows the network to both learn the features and use them to
generate the final graph embedding. We will show in Section
V that this approach leads to performance improvements of the
overall graph embedding network. Finally, we tested a solution
that executes the different part of the CFG g using a synthetic
input and samples the results to generate the feature vector
xi, this solution is only discussed in the appendix for space
constraint and because is the one that has shown the worst
performances in our evaluation.

Manual feature engineering (MFE)

As in [39] for each block we use the following features:

1) Number of constants;
2) Number of strings;

3) Number of transfer instructions (e.g. MOV);
4) Number of calls;
5) Number of instructions;
6) Number of arithmetic instructions (e.g. ADD);
7) Vertex off-springs;
8) Vertex betweenness centrality;

The first six features are related to the code of the block.
Instead, the last two features depend on the CFG, hence they
bring some information about the structure of the control flow
graph inside each vertex.

Unsupervised feature learning

This family of techniques aim at discovering low-
dimensional features that capture the underline structure of
the input data. The first step of these solutions consist in
associating an embedding vector with each instruction ι con-
tained in Ivi . In order to achieve this we train an embedding
model i2v using the skip-gram method outlined in the pa-
per that introduces word2vec technique for computing word
embeddings [30]. The idea of the skip-gram model is to use
the current instruction to predict the instructions around it. A
similar approach has been used also in [14].

We use the mnemonics and the operands of each assembly
instruction as tokens to train the i2v model. Note that, we
filter the operands of each instruction and we replace all
base memory addresses with the special symbol MEM and
all immediates whose absolute value is above some threshold
(we use 5000 in our experiments, see Section V-A) with the
special symbol IMM. The motivation behind this choice is
that we believe that using raw operands is of small benefit,
e.g. the relative displacement given by a jump is useless
(e.g., instructions do not carry with them their memory ad-
dress), and, on the contrary, it may decrease the quality of
the embedding by artificially inflating the number of differ-
ent instructions. As example the instruction mov EAX,6000
becomes mov EAX,IMM, mov EAX,[0x3435423] becomes
mov EAX,MEM, while the instruction mov EAX,[EBP−8] is
not modified. Intuitively, the last instruction is accessing a
stack variable different from mov EAX,[EBP−4], and this
information remains intact with our filtering.

After obtaining an embedding for each instruction we still
need to aggregate such vectors in order to obtain a single
feature vector xi to associate with vertex vi. In this paper, we
investigate two different instruction embeddings aggregation
techniques: i2v attention, i2v RNN.

i2v attention — In i2v attention we compute a weighted
average of the instructions Iv using an end-to-end trained
vector a that associates a different weight with each instruction
position. The feature vector xi is:

xi =

∑m
j=1 a[j] · ~ιj

||
∑m

j=1 a[j] · ~ιj ||
(1)

where a[j] is the j-th component of vector a.

i2v RNN — To fully take into consideration the instruction
position we also considered a solution that incorporates a
Recurrent Neural Network (RNN) [26] into the overall network
architecture. This RNN is trained end-to-end, takes in input all
the instruction embedding vectors in order, i.e. (~ι1, ..., ~ιm) and
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Addr_1: mov eax,10

Addr_2: dec eax
Addr_3: mov [base+eax],0
Addr_4: jnz Addr_2

Addr_5: mov eax,ebx
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Fig. 2. Graph Embedding Neural Network Architecture. The vertex feature extractor component refers to the Unsupervised Feature Learning case.
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Fig. 3. Structure2Vec Deep Neural Network

generates m outputs and m hidden states (h(1), ..., h(m)). The
final feature vector xi is simply the last hidden state of the
RNN, that is:

xi = h(m) (2)

B. Structure2Vec deep neural network

The Structure2Vec component is based on the approach of
[16] using the parameterization of [39]. In order to compute
the embedding of the graph g, a p-dimensional vector µi is
associated with each vertex vi. The µ vectors are dynamically
updated during the network training following a synchronous
approach based on rounds. We refer with µ(t)

i to the µ vector
associated with vertex vi at round t.

We aggregate vertex-specific µ vectors and features fol-
lowing the topology of the input graph g. After each step, the
network generates a new µ vector for each vertex in the graph
taking into account both the vertex features and graph-specific
characteristics, see Figure 3.

In particular, the vertex vector µi is updated at each round
as follows:

µ
(t+1)
i = F

(
xvi ,

∑
uj∈N (vi)

µ
(t)
j

)
,∀vi ∈ V (3)

The vertex µ vectors at round zero µ(0) are randomly
initialized and F is a nonlinear function:

F
(
xvi ,

∑
uj∈N (vi)

µ
(t)
j

)
= tanh

(
W1xvi + σ(

∑
uj∈N (vi)

µ
(t)
j )
)
(4)

where W1 is a d × p matrix, tanh indicates the hyperbolic
tangent function and σ is a nonlinear function:

σ(y) = P1 × ReLU(P2 × ...ReLU(P` × y)) (5)

The function σ(y) is an ` layers fully-connected neural net-
work, parametrized by ` matrices Pi(i = 1, ..., `) of dimension
p × p. ReLU indicates the rectified linear unit function, i.e.,
ReLU(x) = max{0, x}.
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The final graph embedding ~g is obtained by aggregating
together the vertex µ vectors after T rounds, as follows:

~g = W2

∑
vi∈V

µ
(T )
i (6)

where W2 is another p× p matrix used to transform the final
graph embedding vector.

V. EVALUATION

We conducted an experimental study on datasets extracted
from collections of real binary code. Before delving in the
evaluation of Task 1 - binary similarity (in Section V-B) and
Task 2 - compiler provenance (in Section V-C), we discuss
implementation details common to both tasks.

A. Implementation details

We developed a prototype implementation of the graph
embedding neural network and of all the different vertex
feature extraction solutions described in IV using Python
and the Tensorflow [1] framework6. For static analysis of
binaries we used the angr framework [36]. We trained the
network using a batch size of 250, learning rate 0.001, Adam
optimizer, feature vector size |xi| = 100, function embeddings
of dimension p = 64 (this is the same dimension of µ
vectors), number of rounds T = 2, and a number of layers
in Structure2Vec ` = 2. These values have been chosen
with an exhaustive grid search over the hyperparameters space.
Tensorflow requires training batches of uniform dimension,
therefore we manipulate each vertex vi to contain the same
number of instructions; i.e. we fix the length of Ivi to 150,
this is done by either padding with a special instruction or
by truncation. Padding vectors contain all zeros. We fix the
maximum number of vertices in each CFG to 150, removing
CFGs larger than this threshold. In our dataset less than 4% of
the graphs were above such threshold. Finally, the RNN used
in i2v RNN is a multi-layer network with 2 layers and GRU
cell.

1) i2v details; datasets and training: For i2v we used
the word2vec skip-gram implementation of [37]. The model
parameters are: embedding size 100, window size 8, and word
frequency 8.

Assembly source codes corpus to train i2v — We decided to
capture the semantics and syntactic of the two architectures
by building two different models, one for each instruction
set. For each model we built two training corpora, one for
AMD64 model and one for ARM model, by collecting the
assembly code of a large number of functions. We built the
corpora by disassembling several unix executables and libraries
using IDA PRO7, the libraries and the executables have been
randomly sampled from repositories of linux distributions. We
avoided multiple inclusion of functions by using a duplicate
detection mechanism; we tested the uniqueness of a function
computing an hash of all instructions, where instructions

6The source code of our prototype is available here:
https://github.com/lucamassarelli/Unsupervised-Features-Learning-For-
Binary-Similarity

7We used IDA PRO because of its performance in disassembling executa-
bles. However, the prototype we will publicly release is compatible with open
source alternatives like angr and Radare2.

operands containing immediate and memory locations are
replaced with a special symbol. From 2.52 GBs of AMD64
binaries we obtained the assembly of 547K unique functions.
From 3.05 GBs of ARM binaries we obtained the assembly of
752K unique functions. Overall the AMD64 corpus contains
86 millions of assembly lines while the ARM corpus contains
104 millions of assembly lines.

To validate the benefits of an instruction embedding model
we tested also what happens with random instruction em-
beddings. In particular, we associate a random vector to
each instruction appearing more than 8 times in the training
documents described above. All instructions appearing less
than 8 times are mapped into the same random vector.

B. Task 1: Binary Similarity

Learning function embeddings: the siamese architecture

In this task we train the architecture of Section IV to
generate CFG embeddings that preserve the similarity of the
original CFGs. To do so we use, as in [39], a pairwise approach
called siamese network [9]. This approach uses two identical
graph embedding networks (i.e., the two networks share all
the parameters) and join them with a similarity score. In
this way the final output of the siamese architecture will
represent the similarity score between the two input graphs.
Technically speaking, from a pair of input graphs < g1, g2 >,
first we obtained two vectors < ~g1, ~g2 > using the same graph
embedding network, and then, these vectors are compared
using cosine similarity:

similarity(~g1, ~g2) =

p∑
i=1

(
~g1[i] · ~g2[i]

)
√√√√ p∑

i=1

~g1[i] ·

√√√√ p∑
i=1

~g2[i]

(7)

where ~g[i] indicates the i-th component of the vector ~g.

To train the network we require in input a set of K CFGs
pairs, < ~g1, ~g2 >, with ground truth labels yi ∈ {+1,−1},
where yi = +1 indicates that the two input graphs are similar
and yi = −1 otherwise. The training of the siamese network
is done by minimizing the least squares objective function:

J =

K∑
i=1

(
similarity(~g1, ~g2)− yi

)2

(8)

Dataset, Test methodology, and, performance measure

Dataset — To align our experimental evaluation with state-of-
the-art studies we built the OpenSSL Dataset in the same
way as the one used in [39]. In particular, the dataset consists
of a set of 95535 graphs generated from all the binaries
included in two versions of Openssl (v1 0 1f - v1 0 1u) that
have been compiled for x86 and ARM using gcc-5.4 with 4
optimization levels (i.e., -O[0-3]). The resulting binaries have
been disassembled using angr8 [36] discarding all the functions
that angr was not able to disassemble.

8angr is a framework for static and symbolic analysis of binaries
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Index Vertex Feature Extractor Instruction Representation Val Auc Test Auc
1 MFE - 94.6% 95.0%
2

i2v attention
i2v 96.1% 95.6%

3 Random Embedding 88.7% 88.1%
4

i2v RNN
i2v 94.5% 93.3%

5 Random Embedding 93.7% 93.2%

TABLE I. Task 1 - Binary Similarity: TEST OVER OPENSSL DATASET. IN ITALIC WE REPORT THE RESULTS OBTAINED REPRODUCING [39]. IN BOLD
WE REPORT OUR BEST RESULTS.

Test methodology — We designed the methodology used in
our tests following the one in [39]. More precisely, we generate
our training and test pairs as reported in [39]. In order to train
and test our system, we create a certain number of pairs using
the OpenSSL Dataset. The pairs can be of two kinds: similar
pairs, obtained pairing together two CGFs originated by the
same source code, and dissimilar pairs, obtained by randomly
pairing CFGs that do not derive from the same source code. In
particular, for each CFG in our dataset we create two pairs, a
similar pair, associated with training label +1 and a dissimilar
pair, training label −1, obtaining a total number of pairs K
that is twice the total number of CFGs. We split these pairs
in three sets: train, validation, and test. As in [39] pairs are
partitioned preventing that two similar CFGs are in different
sets (this is done to avoid that the network sees during the
training phase graphs similar to the ones on which it will be
later validated or tested). The split is 80%-10%-10%. We train
our models for 50 epochs (an epoch represents a complete
pass over the whole training set) and we compute performance
metrics on the validation set for all the epochs. Then, we use
the model hyper-parameters that led to the best performance
on the validation set to compute a final performance score on
the test set. In each epoch we regenerate the training pairs, that
is we create new similar and dissimilar pairs using the graphs
contained in the training split. We pre-compute the pairs used
in each epoch, in such a way that each method is tested on
the same data. Note that, we do not regenerate the validation
and test pairs.

We used this static train/validation/test split in our first set
of experiments to understand which vertex feature extraction
model performs the best; then we performed an additional set
of experiments comparing the best performing solution with
the baseline approach using 5-folds cross validation. In the 5-
folds cross validation we partitions the dataset in 5 sets; for
all possible set union of 4 partitions we train the classifiers on
such union and then we test it on the remaining partition.

Performance Measure — We test our system using the
standard Receiver Operating Characteristic (ROC) curve [25].
Specifically, we use the area under the ROC curve, or AUC
(Area Under Curve), as evaluation metric.

Results

We present the results of two sets of experiments where we
compare the considered vertex features extraction solutions on
the OpenSSL Dataset.

Table I shows the results of our first set of experi-
ments, conducted on the fixed train/test/validation split of
the OpenSSL Dataset. The entries in the last two columns
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Fig. 4. ROC curves for the comparison between MFE and i2v attention
with static pre-trained i2v embeddings, using 5-fold cross validation. The lines
represent the ROC curves obtained by averaging the results of the five runs;
the dashed line is the average for MFE, the continuous line the average for
i2v attention. For both MFE and i2v attention we color the area between
the ROC curves with minimum AUC and the maximum AUC. The average
AUC of i2v attention is 96.4%, the one of MFE 94.8%.

shows the best AUC value obtained on the validation set
and the corresponding AUC value for the test set. First note
that the best performing vertex feature extraction solution is
i2v attention with pre-trained i2v embeddings (i.e., index 2
- 95.6% AUC on test set). This highlights the benefits of
adopting an unsupervised approach to feature learning with
respect to a manual feature selection approach. Moreover, all
solutions benefit from the pre-trained i2v models. In fact, pre-
trained i2v vectors led to a significant boost in performance
up to 7% with respect to randomly chosen instruction vectors.
This confirms that a distributed representation of assembly
instructions is indeed beneficial.

The i2v RNN solution, despite its greater theoretical rep-
resentation power, performs worse than i2v attention. This
is probably due to the large number of parameters that the
network has to train; the considered dataset might contain not
enough training points to accurately train all of the parameters
or simply the network is over-complex for this specific task.

As discussed in Section V-C, we performed a 5-fold cross
validation between the two best performing models, MFE and
i2v attention.

Figure 4 shows the average ROC curves of the five runs.
The MFE results are reported with an orange dashed line
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Index Vertex Feature Extractor Instruction Representation Val Accuracy Test Accuracy
1 MFE - 80.3% 81.2%
2 i2v attention i2v 93.1% 93.9%
3 i2v RNN i2v 95.7% 95.9%

TABLE II. Task 2 - Compiler Provenance: TEST OVER RESTRICTED COMPILER DATASET. IN BOLD WE REPORT THE BEST RESULTS.

Family Precision Recall F1-Score Support
clang 98% 97% 98% 63382
gcc 98% 99% 99% 119595
icc 98% 98% 98% 45015

Weighted Total 98% 98% 98% 227992

TABLE III. Task 2 - Compiler Provenance: RESULTS OF I2V RNN OVERCOMPILERS DATASET. WE REPORT PRECISION, RECALL AND F1 SCORE FOR
EACH COMPILER FAMILY IN THE DATASET. THE OVERALL ACCURACY IS 98.2%

while we used a continuous blue line for the i2v attention
results. For both solutions we additional highlighted the area
between the ROC curves with minimum AUC and maximum
AUC in the five runs. The better prediction performance of the
i2v attention solution are clearly visible; the average AUC
obtained by MFE is 94.8% with a standard deviation of 0, 6
over the five runs, while the average AUC of i2v attention is
96.4% with a standard deviation of 0, 2. Overall we observed
an improvement of almost 2% of i2v attention with respect
to MFE. This clearly confirms the benefit of learning vertex
features with respect to manually engineering them. Note also
that the standard deviation of the AUC values over the five runs
is smaller for i2v attention than for MFE. As a final remark
on the comparison, [39] states that removing the betweenness
centrality from the features used by MFE slightly improves the
performance of MFE. We tried to confirm this but we found
no improvement.

C. Task 2: Compiler Provenance

In the compiler provenance task our purpose is to recon-
struct the compiler family that has generated a certain binary
function. In our tests we use 3 widely known compiler families:
clang, gcc and icc.

Classifying graph embedding vectors

For this task we train the architecture of Section IV
end-to-end with a feed-forward two layer neural networks.
Specifically, starting from the graph embedding vector ~g we
obtain a vector of classification probabilities as follows:

p = softmax(Wout · ReLU(Whidden · ~g))

The classifier is trained by minimizing the standard cross-
entropy loss. Note that in this case there is no need for a
siamese architecture.

Dataset, Test methodology, and, performance measure

Dataset — We built two datasets for this task: a Restricted
Compiler Dataset that is used as screening dataset to select
the best performing model, and a Compilers Dataset that is

used to evaluate the best performing model.The details of the
datasets are:

• Restricted Compiler Dataset. We built the dataset
compiling different open-source projects: binutils-
2.30, ccv-0.7, coreutils-8.29, curl-7.61.0. gsl-2.5,
libhttpd-2.0, openmpi-3.1.1, openssl-1.1.1, valgrind-
3.13.0. Each project has been compiled for AMD64
with three compilers: gcc-3.4 and gcc-5.0 and clang-
3.9 and all 4 optimizations flags. After this step we
disassembled the binaries using radare2. The number
of binary functions inside this dataset is 452598.

• Compilers Dataset. We built the dataset using
AMD64 binaries. Specifically, we compiled the fol-
lowing projects: binutils-2.30, ccv7.0, coreutils-8.29,
curl-7.61.0, ffmpeg-4.0.2, gdb-8.2, gsl-2.5, libhttpd-
2.0, openssl-1.1.1-pre8, postgresql-10.4, valgrind-
3.13.0, using the following compilers: gcc-3.4, gcc-
4.7, gcc-4.8, gcc-4.9, gcc-5.0, clang-3.8, clang-3.9,
clang-4.0, clang-5.0, icc-17 and icc-19 with all 4
optimization flags. We disassembled the binaries using
radare2 and we removed duplicated or really similar
functions by considering two functions identical if
they have the same instructions without considering
the specific values of immediate operands and memory
location accesses. The number of binary functions in
the dataset is 1587648.

Test methodology and classifier parameters — For each func-
tion we used as ground-truth the compiler family that generated
the function. We split each dataset in train set, validation set
and test set (the split is 70%-15%-15%). We trained our models
for 50 epochs (an epoch represents a complete pass over the
whole training set; for each epoch we shuffle the training
samples) and we computed the performance metric on the
validation set for all the epochs.

Then we took the model that has the best accuracy on the
validation split, and we computed the final performance score
on the test split. The hidden layer of the feed forward classifier
has size 3000. For i2v RNN we use cells of depth 1.

Performance Measure — We tested our multi-class classifier
using the standard measures: precision, recall, and f1-score.
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For the selection of the best model we considered the overall
accuracy, defined as the fraction of predictions our model got
right.

Results

The result of our screening test are in Table II. It is possible
to see that all the unsupervised extraction techniques (i.e.,
i2v attention and i2v RNN) outperform MFE by a large mar-
gin, achieving a more than 10% boost in performance. Between
the two, the i2v RNN performs better than i2v attention,
achieving an accuracy of 95, 9% vs 93, 9%.

We believe that this big difference in performance could be
attributed to the inability of the vertex feature vector defined in
[39] to capture compiler specific signals. Such vertex features
are, in fact, hand crafted for the binary similarity problem
(e.g., number of strings and constants in the block) and fail to
generalize to other use cases. Our method, instead, is able to
learn directly from the data what are the latent features that
help the most in the specific task considered, and therefore it
can automatically adapts to the specifics of the problem.

In Table III we additionally report the performances on
Compilers Dataset, where the i2v RNN reaches a test ac-
curacy of 98, 2%. Note that this result is not far from the
one reported in the literature for the state-of-the-art [33],
where an accuracy of 98% is achieved for the task of family
identification for binary functions. Unfortunately, we were not
able to perform a direct comparison with [33]: their source
code is not available; additionally, the reconstruction of their
specific dataset is not possible (versions of software included
in the dataset are not specified, and they used compilers that
are not anymore commercially available; e.g., Visual Studio
2003).

Finally, we performed a test on Compilers Dataset using
random instructions embeddings instead of pre-trained ones
(i.e., i2v). In this case i2v RNN reaches a test accuracy of
95, 2% this confirms the benefits of pre-training the represen-
tations for assembly instructions, that in this case leads to a
3% improvement.

VI. DISCUSSION

Our unsupervised approach to vertices feature extraction
in the CFG achieves better performance than the original
approach based on manual feature engineering proposed in
[39] on both considered tasks.

We performed a further comparison with the SAFE archi-
tecture proposed by us in a previous paper [29]. SAFE does
not use the CFG but a self-attentive recurrent neural network
that parses all instructions according to their addresses. Inter-
estingly, despite SAFE not using any control flow information,
it shows comparable or better performance than our methods,
(AUC of 99% on the OpenSSL Dataset in task 1, and,
accuracy of 97.5% on the Compilers Dataset in task 2). This
raises interesting questions on the usefulness of using graph
embedding networks on CFGs.

We believe that a binary function has some peculiar charac-
teristics that cannot be captured by representing it as a simple
graph. One such characteristic is, for instance, the fact that the
CFG is nothing but a representation of all possible execution

paths obtained by varying the input of the binary function.
Just one of this path will be followed during the execution
of the function when its inputs and its context are defined.
We believe that by exploiting this consideration better binary
function representation can be obtained. In this regards is worth
mentioning the attempt done by the authors of [21], where
they explicitly consider traces generated by random walks on
a CFG in order to compute the final embedding vector, but
focusing just on the AMD64 architecture. We believe that an
investigation of other graph embedding techniques is needed to
confirm, or confute, our hypothesis on the negligible usefulness
of applying a graph embedding network to CFGs.

VII. CONCLUSIONS AND OPEN CHALLENGES

In this work we show that associating features to the
vertices of the control flow graph (CFG) in an unsupervised
fashion, taking inspiration from natural language embedding
techniques, is beneficial for the binary similarity task, as well
as for the task of compiler provenance. Our experimental
results show that for the first task our model reaches an
AUC of 96.4% vs 94.8% achieved annotating the CFG with
manually engineered features. For the second task we show
an even bigger boost in performance, from an accuracy of
81.2% (manual feature engineering) to 95.9% (unsupervised
approach). These results clearly highlight the benefit of a
vertex representation for the CFG that is automatically learn
from the data.

Is interesting to notice that our experimental evaluation ad-
ditionally show that a recent approach that does not make use
of the concept of control flow graph, but consider the binary as
a flat sequence of assembly instructions, achieve performances
that are comparable (in some cases even slightly better) to
those achieved by graph embedding networks techniques. In
the light of these results we believe that it would be interesting
to study ad-hoc techniques for embedding instructions flows.

Open Challenges — During the writing of this manuscript we
found the following worthwhile challenges:

• Analogy Dataset. A common approach to evaluate
the performance of distributed representation models
for words is to use a dataset of analogies [30]. When
we consider embeddings of assembly instructions (i.e.,
our i2v encoding) such standardized dataset does not
exist. Creating a dataset of analogies would permit
to compare different distributed representation models
and to pick the one that is able to better capture the
semantic relationship between instructions.

• Function Embedding Benchmark. At the best of our
knowledge, the current literature in binary analysis
is developing and testing embedding techniques to
solve a specific task at hand [21], [39], [40]. However,
proper comparison of functions embedding techniques
needs a general, and standardized, evaluation bench-
mark. This would test the intrinsic quality of the
embeddings and their usefulness for new, possibly
unknown, downstream tasks.
Such benchmarks are already a standard in the NLP
community, as example see the GLUE benchmark
[38].
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VIII. APPENDIX

A. An Additional Vertex Features Extractor Technique, Sam-
pling

Apart from the vertex features extractions discussed in
Section IV-A we also tested a Sampling strategy that leverages
the symbolic execution of codes9.

• Sampling: We represent each block as a set of
multivariable functions, and then compute features as
sampling of these functions over random inputs. This
mechanism is not trainable. Rationale: this method is
based on the assumption, common to [31], that sam-
pling a sequence of instructions captures a semantic
that cannot be captured by static analysis.

In our test Sampling performed really badly. We include its
details in the appendix. We believe that is a worth mentioning
negative result.

1) Sampling details: Given a vertex of the CFG, we
partition it in sequences of instructions that update independent
memory locations, these are the strands defined in [18]. We
construct an extended version of the CFG that we call SCFG.
The SCFG contains all strands of the CFG as vertices and its
topology is built as follows: for each vertex vi of the CFG
we define a total order on the vertex’s strands. We take all
predecessors of vertex vi in the CFG and in the SCFG we add
an edge from each predecessor’s last strand to the first strand
in vi. Finally, we create an oriented path connecting all strands
in vi according to their order.

To transform a strand in a set of functions we execute it
symbolically, using the angr framework. Obtaining multivari-
able functions expressed as formulas for the Z3 solver [20]:
Each function defines the value of a memory location that is
wrote without being read after (output), as combination of a
set of inputs (an input is a memory location that is read before
any write on it and that concurs to the value of the output).

Finally, we compute a feature vector from each strand by
sampling and averaging the outputs of the strand’s functions
over 100 randoms inputs.

Note that functions are in general non symmetric; This can
create a problem since two semantically equivalent strands may
have different ordering of their inputs. We address this problem
by symmetrising the function:

Given a function z : Rn → R we define its symmetrisation
as:

z′(~b) =
1

|Π(~b)|

∑
~b′∈Π(~b)

z(~b′) (9)

9We implement this approach using angr as symbolic execution engine

where Π(~b) is the set of all the possible vectors obtained by
permuting the components of vector ~b. The above implies that
we have to compute z on each permutation of its inputs. This
is a costly operation, the subdivision in strands it is beneficial:
subdividing a vertex in smaller units reduces the number
of variables in each of the segments that are symbolically
executed. Unfortunately, it is not enough. Therefore, we cap
the number of inputs to 5 (this threshold includes almost all
functions in our test dataset). More precisely, we order the
inputs in an arbitrary way and we forces all inputs from
position 6 on to value zero. Combining symmetrisation and
the average of all functions outputs we obtain a feature array
of size 100 for each vertex of the SCFG.

2) Sampling performances on binary similarity: The
Sampling solution performs particularly poorly, achieving an
AUC score on the test set of 0.710. The reason behind this
poor performance is probably due to increased complexity of
the SCFG graph (recall that SCFG represents the program
flow among strands, and this leads to a graph that has more
edges and a more intricate structure that the CF), and/or to the
poor quality of the features obtained by sampling. However, a
further investigation is needed to confirm that such sampling
strategy is indeed a failure.

We did not test Sampling for the compiler provenance
case, the rationale is that the execution output, in correct
binaries, should be compiler invariant. Thus Sampling is an
intrinsically bad feature to detect binary artefacts that do not
change the execution semantic.
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