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Abstract—Good tests are important in software development,
but it can be hard to tell whether tests will reveal future faults
that are themselves unknown. Mutation analysis, which checks
whether tests reveal inserted changes in a program, is a strong
measure of test suite adequacy, but common source- or compiler-
level approaches to mutation testing are not applicable to software
available only in binary form. We explore mutation analysis as
an application of the reassembleable disassembly approach to
binary rewriting, building a tool for x86 binaries on top of
the previously-developed Uroboros system, and apply it to the
C benchmarks from SPEC CPU 2006 and to five examples of
embedded control software. The results demonstrate that our
approach works effectively across these software domains: as
expected, tests designed for performance benchmarking reveal
fewer mutants than tests generated to achieve high code coverage,
but mutation scores indicate differences in test origins and
features such as code size and fault-tolerance. Our binary-level
tool also achieves comparable results to source-level mutation
analysis despite supporting a more limited set of mutation
operators. More generally we also argue that our experience
shows how reassembleable disassembly is a valuable approach
for constructing novel binary rewriting tools.

I. INTRODUCTION

The realities of software development practice have made
it increasingly important to have tools that can deal with
software in binary (executable) format. One major driver
of this trend is security: besides analyzing commercial or
adversarial code, even with one’s own code, important security
properties like exploitability depend on details of compilation
and hardening and can only be accurately assessed on the
final binary. But also outside of security, and even in high-
assurance and embedded systems domains, modern developers
rely extensively on third-party binary-only libraries and other
components. This reliance makes it important for developers
to be able to carry out as many software engineering tasks as
possible even without source code. In this paper we consider
a class of tasks related to software testing, and demonstrate
that by harnessing recently-developed techniques for flexible
binary rewriting, we can perform them effectively given just a
binary.

Testing is one of the most commonly used approaches to
improve and maintain software quality, but one challenge is
that it can be difficult to measure the quality of software tests.
The main goal of testing is to find bugs, but in the common
steady state where our test suite passes on the current version
of software, how can we assess tests’ bug-finding abilities?
A test suite can be designed to be able to catch the bugs
that have arisen in software in the past, but more important
while also harder to tell is how it will perform in finding so-
far-unknown bugs. One approach is structural coverage, for
instance requiring that tests cause each instruction in a program
to be executed. Coverage is necessary for bug-finding but not
sufficient, as the requirements to trigger a bug may include a
combination of control-flow decisions as well as properties of
data. Automating a process closer to bugs themselves is the
intuition for a technique called mutation analysis.

A mutation operator defines a way of making a small
change to a piece of software, often inspired by the changes
that differentiate a small bug from the corresponding corrected
program. The result of applying mutation operators to various
locations in a program is a set of mutants, programs which may
have slightly different behavior from the original. Mutation
analysis of a test suite assesses how many of the mutants can
be differentiated from the original program by their behavior
on one or more test inputs; a test that distinguishes a mutant
is also said to kill it. The fraction of mutants killed is called a
mutation score, with a higher score indicating a more complete
test suite. Mutation analysis is a stronger, semantic criterion
compared to structural coverage, and it can be used to evaluate
a single test suite, a test generation approach, or a coverage
criterion.

Most mutation analysis systems are designed for source
code, or for intermediate-level representations like Java byte-
code or LLVM bitcode. Instead we build a binary mutation tool
that operates on ELF x86 binary programs, so that mutation
analysis can be performed without needing source code for
the tested software. Binary mutation is an instance of binary
rewriting, which can be challenging because finished binaries
are not designed to support further modification: they have
already had internal references resolved into numeric addresses
and offsets, so it is hard to move existing instructions, making
room for new ones, while preserving the program’s behavior.
We deal with this challenge by applying a recently-proposed
approach to binary rewriting called reassembleable disassem-
bly, in which the challenging aspects of binary rewriting are
addressed in a reusable tool that converts a binary back into
an assembly language format with symbolic references. This
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assembly format, similar to what was produced by the original
compiler, is still at the instruction level, but it is straightforward
to modify because a standard assembler can be used to re-
resolve the references and labels back to new but consistent
numeric addresses.

Reassembleable disassembly is appealing because it pro-
vides a clean separation of concerns: only the disassembler
needs to perform whole-program analysis such as recovering
control-flow graphs. The separate assembly-language rewriter
can be simple; it can be initially prototyped and tested on
compiler-generated assembly, and it can be written in any
language without interfacing with a specialized API. It is is
easy to examine and work with the effects of the rewriting in
the form of a textual diff. Specifically we have implemented
our binary mutation tool in conjunction with the open-source
reassembleable disassembler Uroboros; taking advantage of the
effort that has gone into Uroboros, we found that only modest
additional implementation was required to build a mutation
tool. Our current system implements mutation operators that
force conditional instructions (conditional jumps, moves, and
sets on x86) to be either taken or not taken unconditionally in
the mutant; the reassembleable disassembly architecture would
make adding other binary mutation operators straightforward
as well. We made an open-source release of our prototype tool
at https://github.com/navidem/binarymutation.

We evaluate our mutation analysis tool by applying it
to two sets of experiment binaries and corresponding test
suites. As examples of general-purpose software and to show
scalability, we apply our tool to the SPEC CPU 2006 C
benchmarks, evaluating the supplied benchmark inputs as a
test suite. These inputs were designed primarily to test perfor-
mance instead of correctness, but our results illustrate some
expected general trends, such as that larger programs are more
challenging to test completely. As a more specific application,
we also apply our mutation tool to examples of safety-critical
embedded control software with test suites generated from
data-flow models, which have previously been used in research
on binary-level test coverage criteria. With these examples, we
can also compare the mutation scores assessed by our system
with those measured by source-level mutation.

A. Motivating Example

An example illustrates how binary mutation provides an as-
sessment of the quality of the test suite for a binary. The GNU
Compiler Collection GCC [40] is a set of compilers commonly
used for C and C++ code. The gcc binary (technically cc1)
is also one of the benchmark programs from SPECint2006
used in our evaluation. GCC gives special treatment to several
common library functions, but older versions had a limitation
in which GCC’s partial internal information for three functions
(bcmp, bzero, and fputs) interfered with enforcing func-
tion prototypes for those functions present in the code. This
was fixed in GCC’s development branch in February 2002.1
The fix [41] for this bug was made by introducing a branch
with new functionality for the case when the new condition
was true. A regression test case was also introduced as part
of this fix to detect the presence of this bug. Figures 1 and 2

1The reason for this older example is that the version of GCC in SPEC
2006 corresponds to development though August 2002.

show the change made at source and binary levels. Figure 3
shows the test input which is a C program. When this C
program is compiled by the buggy GCC binary, no errors
will be reported for the incorrect number of arguments given
to bcmp, bzero, and fputs. The buggy version of GCC
can also be simulated by mutating a fixed version to disable
the branch that was added in the bug fix. Specifically binary
mutation can achieve this by converting the jne instruction
on line 5 of Figure 2 to an unconditional jump. If a test
input like the one shown in Figure 3 is not present in the
test suite, the mutant simulating this bug will not report a
compilation error for other C/C++ code that misuse bcmp,
bzero, or fputs. Such a GCC mutant will therefore not
be killed. Such a mutant, when not killed by the test suite,
is an indication of a limitation of a test suite. (In fact, both
GCC’s internal regression tests prior to the discovery of this
bug and the SPEC benchmark inputs show this limitation.) This
example shows how binary mutation can help users of binary
components assess the quality of their test suite by constructing
mutants that execute control-flow mutated from the original
binary. Our reassembleable disassembly-based binary mutation
tool produces such mutants by using a mutation operator that
produces two mutants for every conditional branch instruction:
one that converts the conditional jump into a unconditional
jump, and another that converts the conditional jump into a
no-op instruction.

1   static int 
2   duplicate_decls (
3     newdecl, olddecl, 
4     different_binding_level) 
5     tree newdecl, olddecl; 
6     int different_binding_level; 
7   {
8     ... 
9     /* begin patch */ 
10     else if (TYPE_ARG_TYPES (oldtype) == NULL 
11          && TYPE_ARG_TYPES (newtype) != NULL) {
12            ... 
13     } /* end patch */ 

Fig. 1: Fixing a bug in gcc’s duplicate_decls method
to use argument type information from declared prototypes of
bcmp, bzero, and fputs

1  805c9c5: mov  0x18(%esp),%eax
2  805c9c9: mov  0xc(%eax),%ecx
3  805c9cc: test %ecx,%ecx
4  ; TYPE_ARG_TYPES (oldtype) == NULL
5  805c9ce: jne  805bda4 <duplicate_decls+0x134>
6  805c9d4: mov  0xc(%edi),%eax
7  805c9d7: test %eax,%eax
8  ; TYPE_ARG_TYPES (newtype) != NULL
9  805c9d9: je   805bda4 <duplicate_decls+0x134>

Fig. 2: Binary changes introduced by the patch shown in
Figure 1
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/* Test whether argument checking is done for 
fputs, bzero and bcmp.  */ 
int fputs (const char *, FILE *); 
void bzero (void *, size_t); 
int bcmp (const void *, const void *, size_t); 
int main () {
  fputs ("foo"); /* too few arguments */
  fputs ("foo", "bar", "baz"); /* too many 
arguments */
  bzero (21); /* too few arguments */
  bcmp (buf, buf + 16); /* too few arguments */
  ... 
} 

Fig. 3: Input code for checking the patch in Figure 1

II. RELATED WORK

Program mutation is used to generate variations of a
program. Techniques like LAVA [18] or EvilCoder [38] tend
to insert either synthetic or actual bugs in the program source
code in order to generate vast corpora of vulnerable programs.
Such corpora serve as data set to evaluate and compare the
quality of vulnerability dectection techniques. The inserted
bugs must be exploitable meaning that there should be an
input that triggers it. To this end, vulnerability insertion tools
employ different program analysis techniques to find a path
from the input to the location of the inserted bug. T-Fuzz [37]
incorporates program mutation to negate sanity checks that
prevent a fuzzer from exploring deep paths. This way the
fuzzer can find hidden bugs in the program.

Since binary mutation using reassembleable disassembly
is related to binary rewriting as well as mutation testing, we
describe work related in these two different areas of research
in the below two subsections.

A. Mutation Testing

Mutation Testing [10], [23] is a fault-based testing tech-
nique with the primary objective of finding a “mutation score”,
given a set of mutation operators. The technique relies on
generating a set of mutants that mirror mistakes commonly
made by programmers, an assumption that has been found to
be empirically reliable [5]. Mutation testing has been applied
to many programming languages such as Fortran [50], C [22],
Java [29], C# [17], SQL [45], and AspectJ [14], as well as the
LLVM IR [16]. The mutation operators used in this paper are
similar to the “Remove Conditionals” mutation operator used
by PIT [13], a popular mutation testing tool for Java programs.
Mutation testing relies on two fundamental hypotheses [23].
First, the Competent Programmer Hypothesis [4] states that
progammers tend to be competent, in the sense that they
tend to write programs that are close to being correct. This
hypothesis allows simulating faults in the original program
by means of creating simple mutations which can be close
to actual faults that would be introduced by programmers.
Second the Coupling Effect hypothesis [15] states that if a
test suite is capable of distinguishing programs with simple
faults, it is also capable of distinguishing programs with more
complex faults. This hypothesis has been offered by Offut et
al. [34] who found that complex faults are coupled to simple
faults. A test set that detects all simple faults will also detect

a high percentage of complex faults, where complex faults are
ones corresponding to making more than one change to the
original program. Our binary mutation tool introduces a class
of simple faults by replacing conditional instructions with both
unconditional variants. While we base our binary mutation
testing tool on these two hypotheses, we plan in the future
to investigate which binary mutation operators can represent
simple mistakes made by competent programmers.

There are three fundamental properties that a test suite
should have to kill a binary mutant, as set out by Offutt et
al [36]. (1) A mutated instruction should be reachable by at
least one test case in the test suite. (2) A mutated instruction
that is reached should cause the mutant binary to have an
incorrect state. This is called the necessity property. (3) The
incorrect state introduced by the mutated instruction should
propagate to the set of outputs observed by the mutation
testing tool for the mutant binary. This is called the sufficiency
property. In our evaluation, we found that a number of live
mutants were not reachable. Future work could automate
investigation of the necessity and sufficiency properties of the
test suite for binary mutation.

It is possible to have a large number of mutants for each
subject program, but not every mutant contributes equally to
test effectiveness. This observation makes it desirable to reduce
the number of mutants to be tested by either removing mutants
that are equivalent to one another or the subject program, or
by removing mutants that otherwise don’t contribute to test
effectiveness. The exclusion of mutation operators that create
a large number of mutants without reducing the mutation score,
as by Offutt et al. [35] and Namin et al. [31], [32], [33] is a
direction along which we plan to extend binary mutation in the
future. It is also desirable to not generate or exclude mutants
that are either equivalent to one another or equivalent to the
original subject program. However, this semantic criterion is
known to be an undecidable problem in general [9]. Several
practical approaches to solve this problem of duplicate and
equivalent mutants include reducing it to the feasible path
problem [36], using program slicing to detect equivalent mu-
tants [21], and using trivial compiler equivalence [24]. We plan
to use these techniques to extend our binary mutation tool to
detect duplicate and equivalent mutants.

B. Binary Rewriting

Binary mutation is an example of binary rewriting, which
can be performed either statically (i.e., producing a modi-
fied executable file) or dynamically (producing new code as
the program executes). Tools like Pin [27] for x86 binaries
and DynamoRIO [8] for x86 and ARM allow the control
flow [42], [39] to be changed at runtime. Dynamic binary trans-
lation tools that use an intermediate representation (IR), such
as QEMU and Valgrind, can also be modified to implement
mutations, though the flexibility of an IR is less important
for simple mutations, and uses of an IR tends to make the
translated code less efficient. It is also possible to change
the binary statically using static binary rewriting tools such
as DynInst [43].

Binary mutation based on dynamic binary translation has
been demonstrated by Becker et al. [7], who used QEMU.
Dynamic binary translation avoids some of the analysis chal-
lenges of static rewriting because it translates a block of code
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only when that code is about to be executed, and it can still
index instructions by their addresses in the original binary;
however it imposes a runtime overhead on all code execution.
By comparison static rewriting like what we preform imposes a
one-time translation cost, but has little to no runtime overhead,
which is advantageous if the mutated binary will be used for
a long test suite. Our mutation operators are a subset of the
mutation operators implemented by Becker et al. Becker et
al. also added improvements to reduce mutant execution by
killing mutants on the first observed deviation from the original
program or with an adaptive timeout. We could reuse these
ideas in the future to optimize our mutant executions.

In the reassembleable disassembly approach, a reusable
tool extracts relocatable assembly from the binary without the
use of debugging or relocation information. Uroboros [47],
[48] was the first end-to-end system to provide such func-
tionality. To make a disassembly reassembleable (relocatable),
the main challenge is determining whether an immediate is
used as an integer or as a label referencing another location.
The process of identifying references in the disassembly is
called symbolization. Uroboros performs its symbolization by
identifying four types of symbol references: code to code,
code to data, data to code, and data to data. Assuming that
the original binary would not make invalid memory accesses,
Uroboros filters out any immediate which falls out of address
space allocated for the binary. In addition, to be a valid
reference into the code section, an immediate must be the start
of an instruction which is recovered by raw disassembly. Using
these two conditions, Uroboros is able to symbolize correctly
any immediate in the code section.

Similar but typically more challenging is data section
symbolization, where Uroboros makes 3 assumptions: 1) Any
reference stored in the data section depending on the machine
architecture must be 4-byte or 8-byte aligned. 2) Binary rewrit-
ing does not need to change the layout of the data section,
therefore no need to symbolize data to data references. 3) Any
data to code reference is either a function pointer or jump table
entry. Assumption 1 is always applied while assumptions 2 and
3 are configurable in the Uroboros implementation.

Uroboros also recovers parts of control flow structure via
direct transfers. The authors of Uroboros demonstrated the
usability of Uroboros in binary instrumentation by providing
a trace profiling and diversification use cases.

Using the aforementioned assumption, Uroboros is able to
symbolize a binary with a very low false positive and false
negative. But still, there can be cases in which Uroboros fails to
produce a correct binary and manual adjustments were needed.
Motivated by examples of corner cases where Uroboros fails,
Ramblr [46] (built on top of angr [44]) implements additional
analyses to improve symbolization performance, aiming to
avoid false positives and false negatives and to cover a more
diverse set of binaries. Ramblr tries to decrease the number
of candidate immediates for symbolization via local data flow
and value set analysis. It tries to identify data in the code
and perform type recognition on immediates. For example,
if Ramblr can identify a 4-byte data block as a float, it
should not be symbolized as a pointer. It also uses an array
size recovery to identify more complex data structures and
avoid symbolizing such locations. This way Ramblr is able to

cover more corner cases for example introduced by compiler
optimization or value collisions.

Another approach to making disassembly reliable is the
superset disassembly approach of Multiverse [6]. In this tech-
nique, avoiding any assumption about the usage of memory
addresses or immediates, disassembly is performed at every
byte offset of the text section. The linear disassembly from
each byte offset ends whenever it reaches an already visited
byte offset or an invalid instruction. This way a superset of
the actual disassembly is obtained. To make this superset
reassembleable, a mapping from an address in original binary
into the new binary is maintained. This mapping is dynamically
looked-up at runtime to resolve any indirect control transfers
in the new binary. A cost for the reliability provided by
Multiverse is a larger code size expansion compared to other
static rewriting approaches.

III. APPROACH

Original 
Binary 

Disassembly 
of Binary 

Assembly 
Mutant 1 

Assembly 
Mutant N 

Assembly 
Mutant 2 

Test Inputs 

Binary 
Mutant 1 Binary 

Mutant 2 
Binary 

Mutant N x
x

✔ 

Expected 
Test Outputs 

Mutation 
score 

reassembled 
to 

reassembled 
to reassembled 

to 

output 

output 
output 

Fig. 4: An overview of our reassembleable disassembly-based
binary mutation tool

We present an overview of our reassembleable
disassembly-based binary mutation approach in Figure 4.
Given a binary-only representation of a subject program, a
binary mutation tool can choose to either rewrite the binary or
lift the binary semantics to an intermediate but higher level,
mutate it, and recreate the binary from intermediate level
representation. We chose the latter approach but only lift the
binary to assembly code since it is still semantically close to
the original binary code, suitable for mutation that changes a
few instructions and might insert some, but leaves a majority
of instructions unchanged. Our approach takes two inputs: (1)
a subject program in binary form, (2) a test suite that has a set
of test inputs and its corresponding set of expected outputs.
Our binary mutation tool first disassembles the input binary.
It then performs mutation on the input binary using a fixed
set of mutation operators. Next, it reassembles each mutated
assembly program to get a mutated binary. Finally, for every
set of test inputs in the test suite, it runs every mutated binary
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with the test input and checks if the mutated binary’s output
matches the output expected for that test input. If at least one
test input causes the mutated binary’s output to not match the
expected output, then that mutant is considered killed. Once
this process is complete for all combinations of test inputs
and mutants, a mutation score is computed by dividing the
number of mutants killed at the end of this process by the
total number of mutants.

TABLE I: Mutation operators to exclude a source-level branch

Instruction(s) Mutation rules used to substitute the original instruction

Jcc unconditional jump to Jcc target address
no-op to let execution continue to fallthrough

SETcc move one-byte 1 to the destination
move one-byte 0 to the destination

CMOVcc unconditionally move the source to the destination
no-op to skip the move

adc perform only the addition operation in the original instruction
perform the original addition and increment the result

sbb perform only the subtraction in the original instruction
perform the original subtraction and decrement the result

Our binary mutation tool performs mutation for three
categories of x86 instructions and two other instructions, adc
and sbb. Table I shows the mutation operators performed by
our binary mutation tool. These mutation operators are applied
to flag-use instructions as defined by Byun et al. [11]. We
use the intuition that a binary mutation should simulate a
source-level bug when possible. One category of source-level
mistakes commonly made by programmers can be represented
by reverting branches introduced as part of a patch. By creating
mutant binary code that does not execute bug-fixes inside
such branches, the mutant binary simulates the bug. This
intuition was illustrated by the branch introduced in the bug-
fix presented in Figure 1. We do not attempt to guess which
direction of a conditional instruction is more likely to represent
a bug fix: instead our tool generates two mutants for each
conditional instruction, one as if the condition were always
true, the other as if it were always false.

IV. IMPLEMENTATION

Many source-level mutation operators have been proposed,
and eventually a general-purpose binary mutation tool should
support analogues of as many of them as feasible. Though
mutations are generally always local changes to a binary,
they might often require replacing instructions with longer
ones, especially because on x86 architectures the length of
an instruction can depend on minor details such as the size of
an immediate value or the distance to a branch target. (For
instance, consider replacing x <= 255 with x <= 256.)
Among the mutation operators of Table I, adc and sbb
cause such artifact. For the case of adc, the second mutation
rule requires replacing the instruction with a add followed
by a inc instruction. The second mutation rule for sbb
requires replacing the instruction with a sub followed by a
dec instruction. When an instruction gets longer, it becomes
challenging to modify the binary in place; replacing old code
with a jump to new code can be complicated if the jump
itself is longer than the old code, or if a location within the
old code might have been a branch target. Dynamic binary

instrumentation may be used as in [7], but it has some of its
own disadvantages including runtime overhead. With the recent
efforts to generate reassembleable disassembly, changes in a
binary can be made elegantly and efficiently. We first lift the
binary code into its assembly representation and then apply a
mutation operation, and at the final step, the mutated assembly
is reassembled into a binary.

We implemented our mutation analysis tool on top of
Uroboros2. (We discuss a few other tools that we considered
in Section VI.) We found Uroboros to perform acceptably on
small and mid-sized binaries. After extracting reassembleable
disassembly, we applied the mutation operators described in
Section III to generate mutants. For each mutant, the only
functional difference from the original binary is in the mutated
instruction. Once we got the mutants, we apply them to the test
suites and measure the interactions between tests and mutants.

In order to measure the test suite quality, we collect two
main metrics. The first metric is the mutation score or the rate
of killed mutants. One detail of our mutation score definition
should be mentioned. A mutation operator may introduce some
fundamental flaw in a way that the mutant fails no matter what
input is provided. Such mutants are called trivial and have no
value in measuring the quality of the test suite. We separate
such trivial mutants before applying the test suite, and only
non-trivial mutants are used in the mutation score.

The second metric we consider is mutant reachability,
meaning whether the test input reaches the mutated instruction
or not. It is evident that for killed mutants this reachability is
satisfied; otherwise, the mutant’s behavior would be the same
as the original binary. But for live mutants (those that are
not killed) we want to know how many of them are actually
reached by the test input.

To measure the mutation score we may compare the mu-
tant’s output versus the expected output of the original binary.
In order to measure the live mutants reachability, we need
to record the dynamically executed instructions for a specific
input to check if the mutated instruction is among them. Such
tracing can be implemented in a dynamic binary analysis tool
like Pin or Valgrind. We tried both but we were not satisfied
with the introduced running time overhead. Instead we chose
to use debugger breakpoints to measure instruction coverage.
Specifically we use GDB in its batch mode. For each live
mutant, we first find the corresponding basic block in the
original binary which we applied the instruction mutation in,
and set a breakpoint at each of these addresses. Once the
breakpoint is hit, it is safe to disable it in order to avoid
any further overhead. After execution has finished, our tool
parses GDB’s output to determine the set of breakpoints, and
therefore corresponding mutants, which have been hit.

V. EVALUATION

To evaluate our mutation analysis tool, we applied it to two
sets of binaries. As an example of general-purpose binaries,
we applied our tool to SPEC CPU 2006 benchmarks. As an
example of a class of programs with more specific testing
needs, we applied our tool to a collection of safety-critical
embedded control binaries. For the purpose of the experiments

2https://github.com/s3team/uroboros
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in this section we applied mutation operators to Jcc, SETcc,
and CMOVcc instructions. adc and sbb are rarely used in
SPEC binaries (they represent less than 5% of mutants), and
none of the embedded control binaries had those instructions.

A. SPEC CPU 2006

The SPEC CPU benchmark is a collection of CPU-
intensive programs along with three different sets of inputs to
stress compiler, system processor and memory. We took all 12
benchmarks written in C3 and applied our mutation analysis
and ran them with the provided input sets. The benchmark
input sets are not designed to maximize fault-finding, but
the benchmark does carefully check the program outputs, for
instance in case a program has been mis-compiled. When
treated as functionality tests, these inputs can reveal a number
of faults, so it is interesting to measure just how well they do.

For each benchmark, there are three sets of inputs which
serve different purposes: test inputs are simple data to
confirm the benchmark binary is functional, train inputs
are used for feedback-directed optimization while building the
binaries, and ref inputs are the actual data used for the
performance test. All of these inputs are intended to work
on valid benchmark binaries, meaning that if the generated
output is different from what SPEC expects, a mismatch error
is reported. We used each of these three input sets as the test
suite for mutants and collected respective metrics.

We generated as many as possible mutants for each bench-
mark and then selected 1000 of them randomly, except for
two benchmarks, mcf and lbm, where the maximum number
of generated mutants were respectively 480 and 166 (due to
smaller code size).

The results of running mutation analysis on the test
input set is presented in Figure 5. Similarly Figure 6 shows
the results for mutation analysis of the train input set, and
Figure 7 presents the results on the ref input set. In all of
these results, the benchmark ordering reflects decreasing size
of code section from left to right. Live mutants are those that
generated same output as the original benchmark binary. Killed
mutants are those that failed to generate the expected output.
A subset of the mutants are identified as trivial. Those are the
mutants that fail to even start the execution due to some serious
runtime error like a segmentation fault. For each benchmark we
devised a trivial input which is described in Table II. Before
passing the actual SPEC inputs, first the mutant is executed
using these simple inputs; if it failed then it is a trivial mutant
and is skipped for any further analysis.

Our mutation operator changes conditional control trans-
fers, so a possible effect is to introduce an infinite loop in a
mutant. In order to cover such cases, we took twice of the
original binary runtime as the timeout. For our experiments,
10 minutes was the maximum required timeout. If a mutant’s
execution runs out of time we consider it as a killed mutant.

The percentage of killed mutants (mutation score) with
respect to each benchmark and input set is depicted in Figure
8. Again the benchmarks are ordered by code size. One evident
result is that in general, the bigger input sets are able to

3We were limited to C benchmarks because Uroboros does not support C++
reassembly; we also omitted FORTRAN benchmarks.

Fig. 5: Mutation results for the test input set

Fig. 6: Mutation results for the train input set

kill more mutants. An interesting exception to this general
observation is the perlbench case, where the test input
set was able to kill more mutants. As described in the SPEC
documentation, the test input for perlbench is derived
from actual regression tests included with Perl (version 5.8.7).
Smaller benchmarks also tended to have a higher mutation
score. This may be because the larger programs have more
complex and hard-to-test functionality.

To measure mutants reachability we post-processed the set
of live mutants for each benchmark and input set. (We only
need to check reachability of live mutants because a mutant
must be reached to be killed.) A reachable live mutant is a case
where the input data was not able to change the program state
in a way that it affects the output. An example of such case
is a conditional branch checking for a shortcut result. Such a
branch has no visible effect on the output but just skipping
some unnecessary steps. Figure 9 shows the percentage of live
mutants that are reached for each benchmark and input set.
As the results show, the live reachability is lower for larger
binaries. This accounts in part for the related trend in mutation
score, as even obtaining high coverage is more challenging in
such binaries.

As a concrete example, we investigated a reachable live
mutant for gcc on test input set. The mutation operator is
applied to the condition at line 5 of Figure 10. As a result,
the mutant binary has the instruction at line 4 of Figure 11
replaced by a jmp instruction. For the original binary, the
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TABLE II: Trivial Inputs for SPEC 2006 Binaries

Benchmark Description Trivial Input

gcc C Compiler An empty .i file

gobmk Go game playing An empty game (.sgf file)

perlbench PERL Programming Language An empty .pl file

h264ref Video Compression No input file

hmmer Search Gene Sequence -h

sphinx Speech recognition -h

sjeng Artificial Intelligence: chess Analyze a potision to depth 0

milc Physics: Quantum Chromodynamics A grid of size 0

bzip2 Compression An empty file, with compression level 0

libquantum Physics: Quantum Computing -h

lbm Fluid Dynamics Time step 0

mcf Vehicle scheduling 0 trips

Fig. 7: Mutation results for the ref input set

Fig. 8: Mutation score for each benchmark and input set

instruction at 0x804c2f1 is reached 26 times during the
program execution where the branch is taken for 23 times:
equivalent to the mutant’s behavior. For the other 3 times
of fall-through, the next branch instruction at 0x804c2fc
is always taken. This means the execution never reaches
the instruction at 0x804c344 which is overwriting variable
reversep with 0. This is an example where the reachability
condition is met, but the necessity is not. Meaning that the

Fig. 9: Percentage of reachable live mutants for each bench-
mark and input set

mutation did not lead the execution to an incorrect state that
can be detected by the test suite. This live mutant shows a lack
of test adequacy in the test suite.

1   static int 
2     noce_try_store_flag (if_info)
3     struct noce_if_info *if_info; {
4       int reversep;
5       if (GET_CODE (if_info->b) == CONST_INT
6       && INTVAL (if_info->b) == STORE_FLAG_VALUE
7       && if_info->a == const0_rtx)
8       reversep = 0; 	

Fig. 10: An example of a reachable live mutant for gcc on
test input, by applying mutation operator at line 5

Table III provides the mutation analysis results in more
details. For each benchmark, the code section size is presented.
For the number of trivial mutants, we counted the mutants that
failed on inputs form table II. In addition, for each input set
of test, train , and ref the results of mutation analysis
are presented.
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TABLE III: Mutation analysis results for SPEC 2006 binaries

Benchmark Code Size
(in bytes)

Trivial
Mutants

test train ref

live killed live
reached

Mutation
score live killed live

reached
Mutation
score live killed live

reached
Mutation
score

gcc 3316940 0 932 68 115 6.8% 963 37 99 3.7% 862 138 257 13.8%
gobmk 1492269 14 959 27 1 2.7% 862 124 1 12.6% 846 140 1 14.2%
perlbench 953192 16 793 191 155 19.4% 891 93 200 9.5% 883 101 190 10.3%
h264ref 498612 1 856 143 135 14.3% 854 145 133 14.5% 727 272 163 27.2%
hmmer 251245 2 966 32 62 3.2% 966 32 62 3.2% 925 73 116 7.3%
sphinx 183040 0 699 301 222 30.1% 697 303 222 30.3% 695 305 222 30.5%
sjeng 132224 19 843 138 53 14.0% 838 143 48 14.6% 828 153 46 15.6%
milc 117296 0 715 285 116 28.5% 713 287 118 28.7% 607 393 100 39.3%
bzip2 56699 16 534 450 271 45.7% 527 457 266 46.4% 248 736 132 74.8%
libquantum 39206 115 787 98 103 11.1% 785 100 150 11.3% 767 118 95 13.3%
lbm 12322 9 104 53 19 33.8% 101 56 18 35.7% 89 68 17 43.3%
mcf 12027 39 200 241 86 54.6% 177 264 86 59.7% 187 254 77 57.6%

1   ; if (GET_CODE (if_info->b) == CONST_INT                                       	
2    804c2ea: mov    0x14(%eax),%eax	
3    804c2ed: cmpw   $0x36,(%eax)	
4    804c2f1: jne    804c309 <noce_try_store_flag+0x24>	
5   ; && INTVAL (if_info->b) == STORE_FLAG_VALUE                                   	
6    804c2f3: mov    0x4(%eax),%edx	
7    804c2f6: xor    $0x1,%edx	
8    804c2f9: or     0x8(%eax),%edx	
9    804c2fc: jne    804c309 <noce_try_store_flag+0x24>	
10   ; && if_info->a == const0_rtx)                                                 	
11    804c2fe: mov    0x843ca00,%ecx	
12    804c304: cmp    %ecx,0x10(%ebx)	
13    804c307: je     804c344 <noce_try_store_flag+0x5f>	
14   ; ...                                                                          	
15   ; if (GET_CODE (if_info->b) == CONST_INT                                       	
16   ; && INTVAL (if_info->b) == STORE_FLAG_VALUE                                   	
17   ; && if_info->a == const0_rtx)                                                 	
18   ;   reversep = 0;                                                              	
19    804c344: xor    %esi,%esi	

Fig. 11: Disassembly of code in Figure 10: the mutation is
replacing instruction at line 4 with a jmp. But the execution
state is not changed because either branch at line 4, or at line
9 is taken and the instruction at line 19 is never reached

B. Embedded Control Binaries

Another set of binaries are control-intensive reactive pro-
grams for safety-critical embedded systems published by
Byun et al. [11]. Cruise Controller is an automated throttle
control software and Microwave is a control logic for a oven
microwave, both developed by Collins Aerospace. Infusion
Pump is a software for generic patient-controlled analgesia
device developed by University of Minnesota. Docking Ap-
proach is an aerospace application developed by NASA. All the
programs were initially modeled using Simulink/StateFlow [1],
[2], translated to the Lustre programming language [20] to
harness existing test automation tools, and finally translated
to C using the Verimag Lustre V6 Tool Chain [3]. Microwave
(C) is an exception; it had been manually coded in C using the
StateFlow model as its specification. The binaries are compiled
using GCC and with the -O2 optimization option. Since the
size of the programs were smaller for control binaries, it was
feasible to work with all possible mutants, between 98 and
3008 mutants per binary.

For these binaries, we used test suites automatically gen-
erated by Byun et al. using a coverage-guided test generation

technique. The generated test suite is guaranteed by the back-
end model checker to achieve the highest achievable branch
coverage, condition coverage, and modified condition and
decision coverage (MC/DC), and observable MC/DC [49] over
the Lustre [20] source code. The high coverage does not
guarantee the completeness of the test suite, but the test suite is
at least good enough to exercise all the conditional constructs
of the program and lead the program to produce an observably
different output.

To apply our binary mutation tool, we executed all the
generated mutants with all the tests, compared their outputs
against the expected output of the original binary, and report
the percentage of the mutants killed by the whole test suite.
Acknowledging the ongoing debate on how to obtain an ob-
jective mutation score [30], [19], [25], we report the mutation
score excluding trivial mutants. As we are generating test suites
automatically, we consider a mutant to be trivial if it fails on
all of the provided test inputs. That is because such mutants do
not yield any information on the quality of the test suite. We
also categorize the killed mutants into unique and duplicate
mutants. Ideally, it is desirable for each mutant to uniquely
represent a realistic fault that potentially exist in a program so
that the mutation score can best capture the thoroughness of a
given test suite.

Formally, we mark a mutant p′ as killed when there
exists one or more test cases t in our test suite T that
makes the mutant p′ produce an output different from the
one of the original binary p: ∃t ∈ T.p′(t) 6= p(t). Since
it is computationally intractable or undecidable to precisely
determine the equivalence and uniqueness among mutants, we
rely on empirical evidence for categorization. A mutant p′ is
trivial if p′(t) 6= p(t) for ∀t ∈ T . A set of mutants P ′

dup ⊂ P ′

are deemed duplicate by subsets of the test Tkill ⊂ T and
TC
kill = T − Tkill if ∀t ∈ Tkill.∀p′ ∈ P ′

dup.p
′(t) 6= p(t) and

∀t′ ∈ TC
kill.p

′(t′) = p(t′). In other words, a set of mutants that
are killed by the exact same set of test cases and not killed
by any other test case is deemed a duplicate set. (This is an
appropriate approach for these binaries because we had fine-
grained suites with many small tests; we did not attempt a
similar analysis for the SPEC mutants because their tests are
more coarse-grained: they sometimes consist of as little as one
test input per program.) For live (not killed) mutants, we did a
reachability analysis through dynamic instrumentation with a
Pin tool [27] to identify any mutant that was not killed because
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the mutation point was never reached.

Finally, we compare the binary mutation score with the
source-level mutation score as an indication that the two
techniques are comparable. The utility of mutation analysis is
mostly for assessing the adequacy of a given test suite. Since
mutation analysis is mostly introduced as an artificial proxy
for real faults to assess the utility of a test suite, a good set
of mutants shall provide a good representation of real faults,
which are typically assumed to be made by human developer in
the source-code level [12]. This correlation, however, is hard to
be established because of the difficulty of obtaining real faults
in sufficient quantity. We instead performed a preliminary
comparison of the binary-level mutation score to the source-
level mutation score. We argue that if the binary-level mutation
score is correlated to source-level mutation score, binary-
level mutation can potentially be used in place of source-
level mutation. We created a thousand source-level mutants by
applying typical source-level mutation operators to the source
code, proportionally to the relative percentage of the type
of mutation opportunities available in the source code. For
instance, we created more mutants for Boolean operators if a
program has more Boolean operators.

Table IV presents the mutation score along with the number
of mutants that fall into different categories. The mutation
scores turned out to be relatively low for Infusion Pump and
Docking Approach, which might make one suspect the quality
of the binary mutants. However the source-level mutation
scores were also relatively low, so our interpretation is that
this difference instead is caused by features of these programs
and inputs. Specifically we believe the low mutation scores for
those systems are due to the extensive input validation logic
inside the programs. For instance, a mutation can lead some
inputs to corrupt the program state but the input validation
logic can catch the flaw and produce an error code. Regardless
of how the internal state is corrupted by different kind of
mutation, the validation logic can mask the infection and
produce the same output, leading to a low mutation score. We
validated this observation by performing equivalence analysis
with the source mutants using bounded model-checking in the
Lustre source-level, where most of the unkilled mutants were
equivalent to the source program for up to ten steps.

A direct comparison between the binary-level mutation
score and the source-level mutation score is not possible
because the types of mutation operators used for mutant
creation were different between source-level and binary-level,
and the number of mutants were not the same. However,
we can still observe that the mutation scores are roughly
correlated—the source-level mutation score is high when the
binary-level mutation score is high. Although we cannot draw
a statistically-grounded conclusion, this observation suggests
that binary-level mutation analysis can be used in the place of
source-level mutation when applicable, such as when source
code is not available or doing source-level mutation analysis
is expensive.

VI. DISCUSSION

While implementing our mutation analysis tool we en-
countered some compatibility and scalability limitations of
the current Uroboros prototype, which seem consistent with

ones described in more detail by the Ramblr authors [46].
We observed Uroboros’s performance to be sensitive to the
compilation flags passed to build SPEC binaries, as for larger
programs like gcc we were not able to use our own compiled
benchmark under Uroboros to get a working disassembly;
instead we used binaries provided with the Uroboros dis-
tribution for gcc and gobmk. (The Uroboros authors also
provided us with the SPEC build configuration they used,
though we have not yet reproduced their exact binaries.) In
some cases where we got working disassembly, even a small
change in the disassembly led to a nonworking binary, which
we suspect indicates a symbolization failure, though due to
time constraints we have not yet determined the detailed cause.

We also looked into using Ramblr, as embodied in the
open-source angr and Patcherex tools, to take advantage of
its improved symbolization, but though we had some success
with binaries from the Cyber Grand Challenge, our initial
attempts with small non-CGC binaries have not yet been
successful4. Potentially superset disassembly could be used
for binary mutation (applying our mutation operator to every
disassembly), but we have not explored this yet.

Another possible approach for creating binary mutants is
to use a binary rewriting tool like Dyninst [43] to statically
rewrite a binary to create mutations. Dyninst implements
both CFG reconstruction and out-of-place instrumentation to
address the challenges of binary rewriting. However our ex-
perience has been that a tool in which rewriting is controlled
by a sophisticated API has a steeper learning curve: inserted
instructions have to be expressed in terms of the API, and
it may be that not all ways of using an API that initially
sound applicable to one’s task are actually supported. Under
the reassembleable disassembly approach, the “interface” to
describe inserted instructions is more familiar, since one can
just use standard assembly syntax. Generally speaking, there
is an inherent challenge in static binary rewriting that one
would always like to be solved in a reusable way; though
reassembleable disassembly tools are not yet fully mature, our
experience suggests that they provide a natural interface though
which binary rewriting tools can be supported.

In this paper, we applied our mutation analysis on x86-
32 binaries, but we believe our approach would apply without
substantial changes for x86-64 as well: Uroboros (and Ramblr)
already support 64-bit binaries, and the assembly-level repre-
sentation of our mutated instructions would be very similar.

VII. FUTURE WORK

We plan to improve our binary mutation tool along a num-
ber of dimensions in the future. Perhaps the most important
question yet to be answered is: how well can binary mutation
represent real-world source-level bugs? We plan to explore
the space of binary mutation operators and compare binary
mutation with source-level mutation to find an answer to this
question.

A reassembleable disassembly-based binary mutation ap-
proach is useful for replacing an instruction with one or more

4One symptom on the failure, a “Decoding Error” in the call to cfg_fast,
is the same as one mentioned in an issue at https://github.com/angr/patcherex/
issues/20. Unfortunately, the solution mentioned there was not helpful in our
case.
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TABLE IV: Mutation analysis for embedded control binaries

Case Example Code Size
(in bytes) Mutation Score Source-level

Mutation Score
Trivial
Mutants

Killed Mutants Live Mutants

Unique Duplicate Reachable Unreached

Docking Approach 51652 1154 / 3008 (38.4%) 269 / 1000 0 121 1033 1854 0
Infusion Pump 25828 525 / 1248 (42.1%) 250 / 1000 0 200 325 723 0
Cruise Controller 17560 594 / 871 (68.1%) 736 / 1000 25 126 468 277 0
Microwave (auto) 14768 390 / 540 (72.2%) 678 / 1000 22 135 255 150 0
Microwave (manual) 6480 86 / 97 (88.6%) 678 / 1000 1 63 23 11 0

instructions of arbitrary size. But, we estimate that a substantial
number of mutations can still be performed without increasing
the size of a single mutated instruction. This class of mutations
can be implemented with a simpler in-place rewriting that
does not change the binary layout at all (if an instruction
becomes shorter, the extra space can be filled with no-op
instructions). We are interested to explore this approach as
a comparison to the one used in this paper, to assess the trade-
off between the benefits of simple rewriting and the set of
mutations that are possible. Another important dimension to
consider in binary mutation operators is whether they require
replacing a sequence of multiple instructions, since safely
replacing multiple instructions may depend on determining
whether an intermediate instruction in the sequence could also
be a jump target.

Exploring a large space of binary mutation operators on
large binaries has the potential to create a large number of
binary mutants. However, many of such mutants would be
duplicates of each other or equivalent to the original program.
We plan to explore techniques for identifying and preventing
the creation of such mutants [26] in the future.

VIII. CONCLUSION

In this paper, we employed static binary rewriting via
reassembling for analyzing software test suites. We described
a class of mutation operators to generate mutants and depicted
how building on reassembleable disassembly can make possi-
ble mutation analysis when source code is not available. We
applied our mutation analysis tool on two sets of binaries:
SPEC 2006 C benchmarks and embedded control binaries.

Our results from mutation analysis on embedded control
binaries confirms that the applicability of binary mutation as
the mutation scores is in alignment with source-level mutation
scores. For the SPEC benchmarks our analysis revealed how
the test inputs are not testing significant aspects of the code,
and specifically for larger binaries, it is more challenging to
have a comprehensive test suite. Thus our results show that
binary mutation can be applied for the purpose of measuring
test adequacy in the absence of source code.
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