
Performance, Correctness, Exceptions: Pick Three
A Failproof Function Isolation Method for Improving Performance of Translated Binaries

Andrea Gussoni
Politecnico di Milano

andrea1.gussoni@polimi.it

Alessandro Di Federico
Politecnico di Milano

alessandro.difederico@polimi.it

Pietro Fezzardi
Politecnico di Milano

pietro.fezzardi@polimi.it

Giovanni Agosta
Politecnico di Milano

agosta@acm.com

Abstract—Binary translation is the process of taking a pro-
gram compiled for a given CPU architecture and translate it to
run on another platform without compromising its functionality.
This paper describes a technique for improving runtime perfor-
mance of statically translated programs.

First, the program to be translated is analyzed to detect
function boundaries. Then, each function is cloned, isolated and
disentangled from the rest of the executable code. This process is
called function isolation, and it divides the code in two separate
portions: the isolated realm and the non-isolated realm.

Isolated functions have a simpler control-flow, allowing much
more aggressive compiler optimizations to increase performance,
but possibly compromising functional correctness. To prevent
this risk, this work proposes a mechanism based on stack
unwinding to allow seamless transition between the two realms
while preserving the semantics, whenever an isolated function
unexpectedly jumps to an unforeseen target. In this way, the
program runs in the isolated realm with improved performance
for most of the time, falling back to the non-isolated realm only
when necessary to preserve semantics.

The here proposed stack unwinding mechanism is portable
across multiple CPU architectures. The binary translation and the
function isolation passes are based on state-of-the-art industry-
proven open source components – QEMU and LLVM – making
them very stable and flexible. The presented technique is very
robust, working independently from the quality of the functions
boundaries detection. We measure the performance improve-
ments on the SPECint 2006 benchmarks [12], showing an average
of 42% improvement, while still passing the functional correctness
tests.

I. INTRODUCTION

Binary translation is a widely used technique for program
analysis. It is most useful to understand the behavior of
programs at runtime, on platforms that make unpractical or
extremely time-consuming to extract the necessary information
during the execution. These situations include analysis of code
for a CPU architecture different from the analyst’s workstation,
or exotic embedded devices that might not be physically
available or might not provide the necessary visibility and
control over the execution environment. Binary translation is
also useful on more traditional architectures, to instrument

existing programs for which the source code is not available,
enabling the analyst to extract insights about its execution that
would be otherwise very though to obtain.

Binary translation presents two major challenges: func-
tional correctness, and performance. Ideally, both are very
important, but in practice any implementation of a binary
translator needs to make trade-offs between them.

On one hand, dynamic binary translators choose to trans-
late code on-the-fly during execution, favoring functional cor-
rectness. This choice allows to preserve functional correct-
ness even in presence of self-modifying code, runtime code
generation, and unpacking of compressed code. For example,
emulators based on dynamic binary translation, such as QEMU,
are known to be able to emulate even full operating systems.
However, this requires runtime support and it incurs in a
significant performance overhead, since, at run-time, the code
translation and the execution of its output are interleaved.

On the other hand static binary translators make the oppo-
site choice. They make stronger assumptions on their ability to
statically identify all the executable code, trading off functional
equivalence for speed. In this way, they avoid the overhead
of interleaving translation and execution, performing all the
translation ahead of time and then executing the translated
code at full speed. In addition, static binary translators are
usually able to perform more aggressive optimizations for two
key reasons: 1) they have global visibility on the code they are
translating (unlike dynamic translation), and 2) they pay the
cost of optimizations only once, while dynamic translators pay
it at each run. This has shown to be beneficial in automated bug
detection, especially in performance-critical scenarios such as
fuzzing [11].

The main drawback of this approach is that whenever the
static analysis is wrong, the translated code loses functional
correctness. Given that binary programs are huge blobs of
interleaved executable code and data, static binary translators
still need to err on the safe side, to avoid missing some pieces
of code, and be usable for most use cases.

In this work we focus on a technique for improving runtime
performance of statically translated programs. We adopt an
approach based on dividing the translated binary in two realms:
the realm of isolated functions and the realm of non-isolated
functions. The isolated realm is composed by a set of basic
blocks of the original program that have been marked as
belonging to the same function by a Function Boundaries
Detection Analysis (FBDA). All the detected functions are
then cloned and isolated from the rest of the code, so that

Workshop on Binary Analysis Research (BAR) 2019
24 February 2019, San Diego, CA, USA
ISBN 1-891562-58-4
https://dx.doi.org/10.14722/bar.2019.23093
www.ndss-symposium.org



each of them can be separately optimized during translation,
generating high-performance code. The non-isolated realm, on
the other hand, is a single large function that contains all the
code of the original executable.

Due to its complexity, optimizations will be less effective
on the non-isolated realm. However, thanks to its simplicity
and fidelity to the original code, it is considerably safer in
terms of correctness. On the other hand, the isolated realm
can break functional correctness if the execution reaches an
unexpected jump inside an isolated function. In such situations,
we seamlessly fall back to the non-isolated realm, reusing
existing stack unwinding mechanisms. In practice, they are
used as a safety net in problematic cases to preserve functional
correctness, paying the overhead of the unwinding only in
exceptional situations, while running at full speed in the
isolated functions for most of the time. Our approach is
independent of the original CPU architecture of the translated
program and agnostic about the ABI. Therefore, functional
correctness is not affected by the quality of the algorithm used
to detect the function boundaries before isolating them, which
is an orthogonal problem [6] [14] [5] [10].

In summary, this paper makes the following contributions:

Design of an isolating static binary translator. We
designed a static binary translator that divides the
output program in two realms, one composed by high-
performance isolated functions, and one composed by a
single large and semantic-preserving function, from which
it is possible to migrate seamlessly.

Implementation of an isolating static binary translator.
We implemented the technique in the rev.ng binary
translation tool, based on well-known and tested open
source frameworks: QEMU [7] and LLVM [13]. rev.ng
can handle all the CPU architectures supported by QEMU
(22+) and translate programs towards all the LLVM targets
that support stack unwinding via libgcc [2].

Measurement of the performance improvement. We used
rev.ng’s algorithm [10] to detect function boundaries, and
we measured the performance improvement on the SPECint
2006 benchmarks [12], showing an average improvement in
performance of 42%, while passing the tests for functional
correctness.

II. BACKGROUND

This section briefly introduces the key concepts necessary
to understand the rest of the work. Section II-A introduces the
most important features the rev.ng binary translation tool.
Then, Section II-B describes the features of the generated
code that prevent optimizations. Finally, Section II-C provides
an overview of a Function Boundaries Detection Analysis
(FBDA), necessary to perform the function isolation, and the
reasons why we cannot assume 100% correct results from it.

A. rev.ng: a Quick Overview

rev.ng is an open-source [4] binary analysis frame-
work [10] that can also work as a static binary translator,
i.e., given a Linux program compiled for an architecture A
(e.g., ARM), rev.ng can produce an equivalent program for
architecture B (e.g., x86-64), or even for A itself.

To achieve this result, rev.ng employs two key com-
ponents: QEMU [7] and LLVM [13]. QEMU is employed as
a library to lift each basic block from the input program
into an architecture-independent representation, known as the
QEMU tiny code. This representation was designed to perform
lightweight analyses and transformations and, therefore, it is
not very suitable to perform sophisticated analyses. For this
reason, rev.ng translates the QEMU tiny code into LLVM IR.
LLVM is a robust and mature compilation framework, providing
a wide range of analyses and transformations, and a solid
infrastructure to easily develop new ones.

While discussing the full design of rev.ng [9], [10] is
outside the scope of this work, in the following we highlight
the key points of interest for this paper.

The CPU State Variables (CSV). In rev.ng, each part of
the CPU state, such as registers, are represented as global
variables, known as the CPU State Variables (CSV). For
instance, in x86-64, there is a 64-bit integer global variable
for each general purpose register. The translated code reads
and writes them with load and store operations.

The root function. The actual translated code. Each input
basic block can produce multiple LLVM basic blocks. All
these basic blocks are collected in a single LLVM function
known as root. Therefore, the whole control-flow of the
original program takes place inside this function. As an
example, if in the original program there is a direct jump
from address A to address B, the generated program will
simply jump from one of the basic blocks corresponding
to A to the first basic block corresponding to B.

The dispatcher. In case of an indirect jump for which it
is not possible to statically enumerate all the possible
destinations, the execution is diverted to the dispatcher.
The dispatcher is a piece of code in the root function that
decides, depending on the run-time value of the program
counter, the actual target of the unresolved indirect jump
in the translated program. It is implemented through a
switch statement on the program counter, where each case
represents the address of a basic block in the original
program and its body is a jump to the corresponding LLVM
basic block in the translated program.

As an example, see Fig. 1, where a simple x86-64 assembly
program is presented (Fig. 1c) along with the (simplified)
LLVM module produced by rev.ng (Fig. 1a).

The last thing that is vital to understand for this work is
the fact that in the translated program there are two distinct
stacks being used. The first is the regular stack employed
by the code generated by LLVM to, e.g., spill registers and
record return addresses. The second is the emulated one, i.e.,
a portion of memory that is employed as a stack and that
evolves exactly how it would have evolved in the original
program. This distinction is very important, because it implies
that the former stack does not contain vital information and
that, therefore, unwinding through it and discarding its content
does not corrupt the semantic of the original program.

B. Limitations of the current approach

The approach described above is very effective in pre-
serving the behavior of the program, but it also has a major

2



@pc = global i64 0
@rax = global i64 0
@rbx = global i64 0

define void @root() {
dispatcher:

%1 = load i64 , i64* @pc
switch i64 %1 [

i64 0x1000 , label %bb.start
i64 0x1010 , label %bb.start_return_1
i64 0x1020 , label %bb.start_return_2
i64 0x2000 , label %bb.func1
i64 0x2010 , label %bb.do_call
i64 0x2020 , label %bb.do_call_return
i64 0x3000 , label %bb.func2

]

bb.start:
store i64 %bb.do_call , i64 *@rbx
; Push 0x1010 on the stack
br label %bb.func1

bb.start_return_1:
; Push 0x1020 on the stack
br label %bb.func2

bb.start_return_2:
%top_of_stack = ...
store i64 %top_of_stack , i64 *@pc
br label %dispatcher

bb.func1:
store i64 @system , i64* @rax
br label %bb.do_call

bb.do_call:
%target = load i64 , i64* @rax
store i64 %target , i64 *@pc
; Push 0x2020 on the stack
br label %dispatcher

bb.do_call_return:
%top_of_stack = ...
store i64 %top_of_stack , i64 *@pc
br label %dispatcher

bb.func2:
store i64 @exit , i64* @rax
%target = load i64 , i64* @rbx
store i64 @target , i64* @pc
br label %dispatcher

}

(a) The root function before isolation.

dispatcher

start func1

do call

func2

(b) The control-flow graph of the root function before isolation.

start:
mov rbx , do_call
call func1
call func2
ret

func1:
mov rax , system

do_call:
call rax
ret

func2:
mov rax , exit
jmp rbx

(c) The assembly of the example program.

define void @bb.start () {
store i64 %bb.do_call , i64 *@rbx
; Push 0x1010 on the stack
call void bb.func1 ()
; Push 0x1020 on the stack
call void bb.func2 ()
ret void

}

define void @bb.func1 () {
store i64 @system , i64* @rax
%target = load i64 , i64* @rax
store i64 %target , i64 *@pc
; Push 0x2020 on the stack
call void @function_dispatcher ()
ret void

}

define void @bb.func2 () {
store i64 @exit , i64* @rax
%target = load i64 , i64* @rbx
store i64 @target , i64* @pc
call void @function_dispatcher ()
ret

}

define void @function_dispatcher () {
%1 = load i64 , i64* @pc
switch i64 %1, label %missing [

i64 0x1000 , label %bb.start
i64 0x2000 , label %bb.func1
i64 0x3000 , label %bb.func2

]
bb.start:

call void @bb.start ()
ret

missing:
call void _Unwind_RaiseException ()
unreachable

; ...
}

define void @root() {
; dispatcher , bb.start_return_1 , bb.start_return_2
; bb.do_call and bb.do_call_return are unchanged
bb.start:

invoke void @bb.start () to %return unwind %catch
bb.func1:

invoke void @bb.func1 () to %return unwind %catch
bb.func2:

invoke void @bb.func2 () to %return unwind %catch
return:

br label %dispatcher
catch:

br label %dispatcher
}

(d) The translated module after function isolation, containing both the non-
isolated realm (the root function) and the isolated realm (the bb.start,
bb.func1 and bb.func2 functions).

Fig. 1: An example of a program and the different stages of its translation.

3



downside: it heavily inhibits the optimizer. Consider the x86-
64 assembly snippet in Fig. 1c, and func1 in particular. A
superficial analysis of the code might lead to conclude that
the value read from rax in the do call basic block is always
system, and, therefore, an obvious optimization would be to
replace call rax with call system. However, the LLVM
optimizer is not allowed to this. In fact the func2 function
contains an indirect jump that might (and actually does) target
the do call basic block. As shown in Fig. 1b, in the code
generated by rev.ng this is reflected by the fact that on the
control-flow graph the node representing do call has two
predecessors: the obvious one (func1) and the dispatcher.

C. Function Boundaries Detection Analysis

The above mentioned problem could be solved by produc-
ing a version of the code above where each function of the
original program is isolated in its own LLVM function. This
function would include only the strictly necessary set of basic
blocks, e.g., for the function func1 the func1 and do call
blocks only. Without the dispatcher, the LLVM optimizer
would deal with a clean control-flow graph which would
enable, among others, the above mentioned optimization.

However, while rev.ng provides a quite accurate Function
Boundaries Detection Analysis (FBDA) [10], it is not perfect.
More in general, an analysis aiming at detecting the function
boundaries is only as good as the underlying analysis to
recover the control-flow graph. Therefore if, for instance, the
target of an indirect jump has not been statically identified,
without the dispatcher the execution will fail at run-time.
Given that statically enumerating a complete and correct set
of jump targets is, in general, impossible (think about extreme
situations where programs jump to user-provided values), it is
also impossible to design a perfect FBDA.

Moreover, even in presence of an (hypothetical) perfect
analysis for the detection of function boundaries, in certain
situations the program execution might leave the body of
the function in unexpected ways. Two typical examples are
longjmp functions or C++ exceptions. As a consequence, a
backup solution needs to be put in place to preserve the
semantic of the program in the isolated function

III. PROPOSED SOLUTION

This section presents the core contributions of this work.
Specifically, Section III-A introduces the two realms in which
we divide the translated program, Section III-B proceeds
by describing how the functions of the isolated realm are
obtained, and Section III-C concludes explaining the transition
mechanism between the two realms.

A. The Two Realms

To circumvent the problem described in the previous
section, we design a fail-safe approach to execute isolated
functions, even in presence of errors in the FBDA.

The key idea behind our solution is to divide the generated
program into two realms: the isolated and non-isolated realm.

Isolated realm. This realm is composed by the functions
reconstructed on the basis of the information provided by

the FBDA. Functions in this realm, have a clean, although
possibly incomplete, control-flow graph. Optimizations are
more effective on the smaller scopes, compared to the same
code executed in the root function. As a consequence, it
is desirable that most of the runtime is spent in this realm.

Non-isolated realm. This realm is composed by a modified
root function. The core idea is to employ this realm as
a safer, but slower, backup solution in case execution in
an isolated function performs a jump to an unexpected
location, i.e., a basic block not classified as part of that
function.

Consider the example in Fig. 1c and assume that the FBDA
detected three functions, start (the start basic block), func1
(func1 and do call) and func2 (func2 only). The resulting
three isolated functions are shown at the beginning of Fig. 1d.

B. The Function Isolation Process

The Function Boundaries Detection Analysis annotates
each basic block in the root function (using LLVM metadata)
with the list of functions it belongs to. We exploit this
information to perform the isolation process as follows.

First of all, we scan all the basic blocks in the root
function, and if we encounter a basic block that has been
marked as a function entry (i.e., the entry point of a function),
a new, empty, LLVM function is created.

Subsequently, we scan the root function again, cloning
each basic block inside every function it belongs to. Notice
that a single basic block can be classified as part of multiple
functions by the FBDA. In such case the basic block is simply
cloned multiple times, one for each function that requires
it. The content of each basic block is mostly unchanged,
with two main exceptions: 1) return instructions, which in
the root function appeared as jumps to the dispatcher,
are replaced with actual LLVM ret instructions; 2) function
calls, which in the root function appeared as simple branch
instructions, are replaced with actual LLVM call instructions
to the corresponding isolated function. Again, for an example
see the first three functions of Fig. 1d and compare them with
corresponding basic blocks in Fig. 1a.

After this transformation, the only instruction that can
compromise the semantics in the isolated realm are in-
direct jumps, since they can target to any location in
the program, even to addresses that are not part of
the current isolated function or that are not even func-
tion entries. To handle this scenario, it is necessary to
build a dedicated mechanism: the function dispatcher.
The function dispatcher (Fig. 1d) is similar to the
dispatcher of the root function, with some restrictions.
The function dispatcher does not directly handle all the
addresses of basic blocks of the program, but only those
representing the entry point of a function.

The last step to complete the isolated realm is to analyze
all the isolated functions, and to substitute all the unresolved
indirect jumps with direct calls to the function dispatcher.
The function dispatcher takes a single argument, the
value of target address of the indirect jump, that is only
known at runtime. Then, if this address is also a valid entry
point for an isolated function, it directly calls it. Otherwise,

4



whenever the target address cannot be resolved to an isolated
function, it is necessary to migrate the execution of the
program back to the non-isolated realm. In order to do that,
the function dispatcher adopts a strategy based on stack
unwinding, that we illustrate in the next section.

C. From root to the Isolated Realm and Back

Now that we have seen how the isolated realm is built,
we can describe the mechanism to migrate execution from the
non-isolated realm to the isolated realm and back.

The key idea is to reuse the ELF exception handling
mechanism, the same employed to implement the backtrace
function of the GNU C Standard Library and the so-called C++

zero-cost exceptions. The advantage of this approach consists
in the fact the we can reuse as is features of LLVM and the
stack unwinding mechanism embedded in libgcc to achieve
a multi-architecture migration mechanism with a very minor
effort.

Non-Isolated → Isolated. In the root function, each basic
block representing a function entry is transformed in a
trampoline performing a call to the corresponding iso-
lated function. The trampoline is composed by an invoke
instruction, that behaves like a regular call instruction,
except for the fact that it informs the compiler of the fact
that the called function might throw an exception (in a C++

sense). Therefore, it features two possible successors: a
normal fallthrough basic block to use in case the function
returns in a regular way, and a catch block in case an
exception is raised. Due to the presence of an invoke
instruction, LLVM will emit all the necessary data structures
to perform the stack unwinding process at run-time. These
data structures end up in the .eh frame section [1], and
are very similar to the DWARF debug information [8] that
describe the usage of the stack in a function.

Isolated → Non-Isolated. To migrate back to the non-
isolated realm, an exception is thrown using the
Unwind RaiseException function provided by libgcc.

The exception causes the stack to be unwound up to
the last invoke performed in the root function. Then,
the execution proceeds from the catch successor of the
invoke instruction, that will handle the abnormal situation
by invoking the dispatcher of the root function from
where the execution can resume as normal, within the non-
isolated realm. Subsequently, as soon as the execution hits
a basic block that has been identified as a function entry,
the execution will go back to the isolated realm.

An example of the invoke instruction is available in Fig. 1d in
the root function, while the default case of the switch in the
function dispatcher shows how an exception is thrown.

In the following, we summarize the different ways in which
execution can leave a function of the isolated realm:

Return. When a function that has been marked as a return
instruction by the FBDA pass, a regular ret is emitted,
and the control passes back to the caller.

Direct function call. When an instruction that has been iden-
tified as a regular call targeting an address identified as a
function, a call instruction to the corresponding isolated
function is emitted.

Indirect function call. As above, but the target of the call is
not statically known and, therefore, it is not possible to
know if the target address will match an isolated function.
As a consequence, a jump to the function dispatcher
is emitted, which might throw an exception.

Bad return address. After a call instruction, rev.ng emits
a check to ensure that the target of the indirect branch
(that has been identified as a return) actually matched the
fallthrough address of the function call. This is basically
a safety check to detect the situation in which an indirect
jump has been mistakenly identified as a return instruction.
If the check does not pass, an exception is thrown and the
execution is passed back to the non-isolated realm.

Jump. In case of a jump (not a function call) to an address
that has not been identified as part of the current function
we have three options: 1) it is a direct jump to the address
of a function, 2) it is a direct jump to an address that is
not a function, 3) it is an indirect jump. The first situation
represents a tail call, therefore we emit a plain function
call to the corresponding function. The second situation
might be a longjmp or the internals of the stack unwinding
process of, e.g., a program throwing a C++ exception,
therefore, we throw an exception and move back to the non-
isolated realm. The third situation might be one of the two
previous situations: a call to the function dispatcher is
emitted.

An interesting fact to note is that, except for errors in the
function boundaries detection analysis, we migrate from the
isolated realm to the non-isolated realm only in case of
exception-related code in the original program. In practice, we
handle exception using exception handling mechanisms.

D. An Example Execution Trace

In this section we briefly illustrate how the execution of
the example program evolves in the translated program after
the function isolation process has been performed.

The execution begins at the start function, which initial-
izes rbx to the address of the do call basic block and then
calls func1 and func2. func1 sets rax to the address of the
system library function and then (in the do call basic block)
calls it. func2, in turn, sets the value of rax to the address of
the exit library function and jumps to rbx, which contained
the address of the do call basic block. As a consequence,
the exit function is invoked and the program terminates.

The execution trace in Fig. 2 corresponds to the translated
program in Fig. 1d. Assuming that the dispatcher basic block

@root:%dispatcher
@root:%bb.start
@bb.start
@bb.func1
@function dispatcher
@system
@bb.func1
@bb.start
@bb.func2

@function dispatcher
@function dispatcher:%missing
* Exception *
@root:%bb.start
@root:%catch
@root:%dispatcher
@root:%bb.do call
@root:%dispatcher
@exit

Fig. 2: Execution trace corresponding to the translated program
in Fig. 1d. Reading order from top to bottom, columnwise.

5



li
bq
ua
nt
um

om
ne
tp
p

h2
64
re
f

bz
ip
2

mc
f

pe
rl
be
nc
h

as
ta
r

sj
en
g

gc
c

hm
me
r

xa
la
nc
bm
k

go
bm
k

ge
om
ea
n

2×

4×

8×

16×

2.
2×

6.
9×10

.6
×

6.
2×

1.
8×

17
.1
×

3.
1×

11
.1
×

5.
8×

4.
6×

10
.2
×

9.
8×

6.
1×

1.
6×

4.
1×

3.
7×

3.
1×

1.
8×

5.
1×

1.
8×

3.
9×

3.
1×

2.
8×

5.
5×

5.
2×

3.
2×

1.
1×

2.
8×

2.
7×

2.
2×

1.
5×

3.
7×

1.
5×

2.
6×

2.
1× 2.
2× 2.

8×3.
3×

2.
3×

S
lo

w
do

w
n

QEMU

rev.ng

isolated

Fig. 3: Slowdown of the different translation techniques compared to native code. Logarithmic scale. Lower is better.

in root and the function dispatcher can handle calls to
library (non-translated) functions, the execution evolves pretty
linearly. A notable fact is how execution starts from the non-
isolated realm (from the dispatcher) but we immediately
switch to the isolated realm by jumping to the @bb.start
function. The other relevant event is the execution of the
unexpected jump (i.e., jmp rbx): an exception is thrown, the
stack is unwound and execution resumes from the last invoke
performed in the root function and, from there, execution is
resumed in the non-isolated realm.

IV. EXPERIMENTAL RESULTS

To evaluate the performance improvements, we imple-
mented both the function isolation and the unwind-based fail-
safe mechanism for functional correctness in the latest version
of rev.ng, which is based on QEMU 2.5.0 and LLVM 7.0. For
stack unwinding, it relies on the unwinding library included in
libgcc [2], but nothing in the implementation strictly relies
on it, given that the library is Application Binary Interface is
mandated by the Itanium C++ ABI specification on Exception
Handling [3] and it is followed by all major compilers. We
also used ELF information about sections to distinguish data
from code, which is an orthogonal problem, in order to avoid
erroneously translating data as code.

For the evaluation, we used the SPECint 2006 benchmark
suite [12]. We built all the benchmarks for Linux on x86-64
with gcc 4.9.3. Then we ran the benchmarks and measured
performance in the following configurations:

Native. Native execution without translation.
QEMU. Emulation with dynamic binary translation.
rev.ng. Static binary translation with rev.ng.
rev.ng + isolation. As before, with function isolation.

All the results reported in the following come from repro-
ducible runs (three runs of the benchmark suite) of the SPECint
benchmarks for each of the experimental setups mentioned
above, measured on a GNU/Linux machine with an Intel Xeon
L5420 CPU running at 2.50 GHz, with 6MB of L2 cache and
24GB of RAM.

Results in Fig. 3 show that function isolation introduces
a sensible speedup for code translated by rev.ng, which
now presents an average slowdown of 2.25× with respect
to native code, while the code translated without function
isolation presents an average slowdown of 3.20×. In other

words, function isolation provides an average speedup of
1.42× for the translated code. This enables code translated
with rev.ng to improve the performance with respect to
emulation with QEMU, which presents an average slowdown of
6.11× with respect to native code. This speedup is provided by
the optimizations that LLVM can apply thanks to the simpler
and clearer control-flow in isolated functions. These results
are due to the quality of our FBDA, since the number of
exceptions generated during the execution impacts the overall
performance of the translated code. However, even in case of
a FBDA of poor quality our design preserves the correctness
of execution semantics. In our case, the FBDA implemented
in rev.ng has proved to be quite accurate. In fact, out of 12
benchmarks, the only ones that caused exceptions during the
execution were perlbench (8444 exceptions), gcc (329261
exceptions), omnetpp (2 exceptions) and xalancbmk (26905
exceptions). In several cases these exceptions were caused
by the complementary functions setjmp and longjmp. Each
exception provides also useful information to understand mis-
takes performed during FBDA. This information can be used
to improve, when possible, the FBDA accuracy.

The complete research artifacts, accompanied by instruc-
tions to reproduce them (including the steps necessary to build
rev.ng from scratch), are available at the following URL:
https://rev.ng/gitlab/revng-bar-2019/artifacts.

V. CONCLUSION

In this work we presented a novel approach for applying
function isolation to a binary translated with rev.ng, while
at the same time preserving the correctness of the execution
semantics regardless of the quality of the FBDA used. We
measured the performance of the code translated with this new
technique, measuring significant improvements. In the future,
we plan to further improve the performance by improving the
quality of the FBDA, thus reducing the number of exception
thrown, and by promoting the global variables representing
the CSV to local variables, an operation that will allow for
more optimizations and therefore, fewer memory accesses, to
be performed.

6

https://rev.ng/gitlab/revng-bar-2019/artifacts


REFERENCES

[1] Exception Frames. https://refspecs.linuxfoundation.org/LSB
3.0.0/LSB-PDA/LSB-PDA/ehframechpt.html.

[2] Interface definitions for libgcc s. https://refspecs.
linuxfoundation.org/LSB 4.0.0/LSB-Core-S390/
LSB-Core-S390/libgcc-sman.html.

[3] Itanium C++ ABI: Exception Handling. https://itanium-cxx-abi.
github.io/cxx-abi/abi-eh.html#base-abi.

[4] rev.ng. https://rev.ng/.
[5] Dennis Andriesse, Asia Slowinska, and Herbert Bos. Compiler-agnostic

function detection in binaries. In 2017 IEEE European Symposium on
Security and Privacy (EuroS P), pages 177–189, April 2017.

[6] Tiffany Bao, Johnathon Burket, Maverick Woo, Rafael Turner, and
David Brumley. Byteweight: Learning to recognize functions in binary
code. USENIX, 2014.

[7] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In
Proceedings of the FREENIX Track: 2005 USENIX Annual Technical
Conference, April 10-15, 2005, Anaheim, CA, USA, pages 41–46.
USENIX, 2005.

[8] DWARF Standards Committee. The DWARF Debugging Standard.
http://dwarfstd.org/.

[9] Alessandro Di Federico and Giovanni Agosta. A jump-target iden-
tification method for multi-architecture static binary translation. In
Compliers, Architectures, and Sythesis of Embedded Systems (CASES),
2016 International Conference on, pages 1–10, 2016.

[10] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. rev.
ng: a unified binary analysis framework to recover cfgs and function
boundaries. In Proceedings of the 26th International Conference on
Compiler Construction, pages 131–141, 2017.

[11] Alessandro Di Federico, Pietro Fezzardi, and Giovanni Agosta. rev.ng:
A multi-architecture framework for reverse engineering and vulnera-
bility discovery. In International Carnahan Conference on Security
Technology, ICCST 2018, Montréal, Canada, October 22-25, 2018.
IEEE, 2018.

[12] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH
Comput. Archit. News, 34(4):1–17, September 2006.

[13] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In CGO 2004.

[14] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing
functions in binaries with neural networks. In USENIX Security

Symposium, pages 611–626, 2015.

7

https://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-PDA/LSB-PDA/ehframechpt.html
https://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-PDA/LSB-PDA/ehframechpt.html
https://refspecs.linuxfoundation.org/LSB_4.0.0/LSB-Core-S390/LSB-Core-S390/libgcc-sman.html
https://refspecs.linuxfoundation.org/LSB_4.0.0/LSB-Core-S390/LSB-Core-S390/libgcc-sman.html
https://refspecs.linuxfoundation.org/LSB_4.0.0/LSB-Core-S390/LSB-Core-S390/libgcc-sman.html
https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html#base-abi
https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html#base-abi
https://rev.ng/
http://dwarfstd.org/

