Similarity Metric Method for Binary Basic Blocks of Cross-Instruction Set Architecture

Xiaochuan Zhang

zhangxiaochuan@outlook.com

Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, Beijing, China

Experiment & Result

Binary program similarity metric can be used in:

malware classification

vulnerability detection

authorship analysis

The similarity between basic blocks is the basis

Two step of basic block similarity metric

Similarity Calculation

Background

Type of methods

[1] Qian Feng, et al. Scalable Graph-based Bug Search for Firmware Images. CCS 2016

[2] Xiaojun Xu, et al. Neural Network-based Graph Embedding for Cross-Platform Binary Code Similarity Detection. CCS 2017

[3] Gang Zhao, Jeff Huang. DeepSim: deep learning code functional similarity. ESEC/SIGSOFT FSE 2018

[4] Yujia Li, et al. Graph Matching Networks for Learning the Similarity of Graph Structured Objects. ICML 2019

[5] Luca Massarelli, et al. SAFE: Self-Attentive Function Embeddings for Binary Similarity. DIMVA 2019

[6] Uri Alon, et al. code2vec: learning distributed representations of code. PACMPL 3(POPL) 2019

[7] Steven H. H. Ding, et al. Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization. S&P 2019

[8] Fei Zuo, et al. Neural Machine Translation Inspired Binary Code Similarity Comparison beyond Function Pairs. NDSS 2019

Background

INNEREYE-BB [1]

 $h_t = F(s_t, h_{t-1})$

Token type	x86	ARM	
basic block label	77.68%	61.23%	
function name	3.71%	12.58%	
others	18.60%	26.19%	

[1] Fei Zuo, et al. Neural Machine Translation Inspired Binary Code Similarity Comparison beyond Function Pairs. NDSS 2019

Idealized Solution (based on PERFECT TRANSLATION assumption)

Practical Solution

x86-encoder pre-training

- data: x86-ARM basic block pairs
- NMT model: Transformer [1], other NMT models also work
- > Optimization goal: minimize the translation loss

$$L = -\sum_{k=1}^{m} \sum_{j=1}^{|V_{ARM}|} \hat{y}_{kj} \log(y_{kj})$$

ARM-encoder training & x86-encoder fine-tuning

data: basic block triplets, {anchor, positive, negative}
Optimization goal: minimize the margin-based triplet loss

Mixed negative sampling

Hard Negatives: Similar but not equivalent to anchor

Hard negative sampling: if anchor is a x86 basic block

Similarity Metric

embedding dimension

Setup

➢ prototype: MIRROR

https://github.com/zhangxiaochuan/MIRROR

Dataset: MISA, 1,122,171 semantically equivalent x86-ARM basic block pairs <u>https://drive.google.com/file/d/1krJbsfu6EsLhF86QAUVxVRQjbkfWx7ZF/view</u>

Project	Version	Description			
Binutils	2.30	collection of binary tools			
Coreutils	8.29	GNU core utilities			
FFmpeg	n3.2.13	collection of multimedia process tools			
OpenSSL	1.1.1b	security protocols and cryptographic library			
Redis	5.0.5	key-value database			

Comparison with Baseline

Model	x86-ARM			ARM-x86		
	P@1	P@3	P@10	P@1	P@3	P@10
INNEREYE-BB	51.0%	66.6%	77.2%	32.8%	54.8%	79.5%
$\textbf{MIRROR} (MISA_{Triplet_Base})$	64.0%	77.2%	85.7%	58.7%	73.8%	83.1%
$\textbf{MIRROR} (MISA_{Triplet_Large})$	77.4%	88.7%	94.9%	74.2%	87.2%	94.1%

Evaluation of negative sampling methods

Negative Samples	x86-ARM			ARM-x86			
Regative Samples	P@1	P@3	P@10	P@1	P@3	P@10	
None	49.6%	56.2%	66.4%	52.5%	62.6%	71.5%	
Random only	62.2%	79.2%	89.5%	56.6%	76.1%	87.6%	
Hard only	60.0%	74.6%	84.8%	52.7%	70.1%	80.0%	
Mixed (ours)	69.0%	83.8%	92.9%	67.0%	83.0%	91.5%	

Effectiveness of pre-training

The pre-training phase seems redundant?

Effectiveness of pre-training

	Sett	ing	3	x86-ARM	[ARM-x86			
]	Pre-train	Negative	P@1	P@3	P@10	P@1	P@3	P@10	
	False	Random	58.2%	76.3%	88.4%	53.9%	73.8%	85.7%	
	True	Random	62.2%	79.2%	89.5%	56.6%	76.1%	87.6%	
	False	Mixed	64.4%	79.4%	89.1%	61.0%	78.7%	87.7%	
	True	Mixed	69.0%	83.8%	92.9%	67.0%	83.0%	91.5%	

* Higher is better

Visualization

Thanks!

zhangxiaochuan@outlook.com