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Abstract—Basic block similarity analysis is a fundamental
technique in many machine learning-based binary program
analysis methods. The key to basic block similarity analysis is
mapping the semantic information of the basic block to a fixed-
dimension vector, which is the so-called basic block embedding.
However, existing solutions to basic block embedding suffer from
two major limitations. 1) The basic block embedding contains
limited semantic information; 2) they are only applicable to a
single instruction set architecture (ISA).

To overcome these limitations, we propose a cross-ISA oriented
solution for basic block embedding which utilizes an NMT
(Neural Machine Translation) model to establish the connec-
tion between two ISAs. The proposed embedding model can
powerfully map rich semantics of basic blocks from arbitrary
ISAs into fixed-dimension vectors. Several measures have been
taken to further improve the embedding model. To guide the
embedding model to a better state, we creatively use the pre-
trained model to generate hard negative samples. To promote
the effectiveness of the proposed embedding model, we propose
a reasonable assembly instruction normalization method in the
data preprocessing phase, which is shown to outperform the
previous methods. A similarity metric method is then derived
and a million-scale dataset is presented to train and evaluate
this method. To the best of our knowledge, this is the first
million-scale dataset in this field. We implement a prototype
system MIRROR. The experimental results show that MIRROR
significantly outperforms the representative baseline in the re-
spect that the basic block embeddings, i.e., the vectors, are more
distinguishable to discriminate between similar basic blocks and
dissimilar ones, and as a result, MIRROR can obtain obviously
more accurate evaluation results. The significance of pre-training,
the effectiveness of the proposed negative sampling method, and
the instruction normalization method have also been justified in
experiments.

I. INTRODUCTION

The binary program similarity metric is an important task
which is widely used in many applications, like vulnerability
detection, malware classification, and authorship analysis. In
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many previous approaches, the similarity metric between basic
blocks is the basis of the binary program similarity metric
[1]–[4]. In this paper, we focus on this essential challenge and
further explore a similarity metric method for basic blocks of
different ISAs.

With the growing success of machine learning, more and
more recent researches on program analysis tend to borrow
from machine learning methods, especially from natural lan-
guage processing (NLP) methods. Generally, to solve basic
block similarity metric problem by machine learning methods,
there are two steps to be done as follows:

1) Mapping basic blocks to fixed-dimension vectors. These
vectors are often called basic block embeddings or basic
block vectors in previous works.

2) Measuring similarity between the basic block vectors
through commonly used vector similarity measurements
(Euclidean distance, cosine similarity, etc.), and using
these results to represent the similarity between basic
blocks.

As there are many mature methods for similarity measure-
ments of vectors (Step 2), the major challenge is therefore how
to get a good representation of basic blocks as fixed-dimension
vectors (Step 1). Obviously, the more semantic information is
involved in basic block embeddings, the more accurate of the
similarity metric is.

A natural idea is to utilize neural machine translation
(NMT) to automatically extract semantic information since the
intermediate result of the NMT model contains rich semantic
information of the source text. A typical NMT model is
built on a seq2seq (sequence-to-sequence) architecture which
contains two components: an encoder and a decoder. The
encoder encodes the source text to a representation called
context matrix, and then the decoder decodes this context
matrix to the target text. In the idealized case (the source text
can be accurately translated to the target text), the context
matrix contains complete semantic information of the source
text as well as the target text.

Motivated by this translation mechanism, in this paper, we
build an NMT model which translates basic blocks from x86 to
ARM. We convert the context matrices, i.e., the intermediate
results of the NMT model, to fixed-dimension vectors and
regard them as basic block embeddings. Then the similarity of
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basic blocks is expected to be measured through the similarity
of basic block embeddings. Note that the encoder of the trained
NMT model is an x86-encoder which can only encode the
basic blocks on x86. In order to measure the similarity between
basic blocks of different ISAs (x86 and ARM), we further train
an ARM-encoder which is expected to map the ARM basic
blocks to the same vector space as that of the x86 basic block
embeddings.

We implement a prototype called MIRROR. Extensive ex-
periments have been conducted on MIRROR based on a huge
dataset, which we collect from five representative open source
projects. The experimental results show the superiority of
MIRROR over the state-of-the-art method. All of the dataset
and codes are available on the Internet1.

The contributions of this paper are summarized as follows:

• A cross-ISA oriented binary basic block embedding
method is proposed. This model can map rich semantic
information of the basic block of arbitrary ISA to the
same embedding vector space.

• A negative sampling method is proposed to generate
negative samples for the embedding model training. The
effectiveness of the method to improve the performance
of the embedding model has been justified in our exper-
iments.

• A novel instruction normalization method is proposed,
which is superior to previous methods.

• A large scale dataset is presented which includes over
a million x86-ARM basic block pairs, so that the data-
driven approach can be well applied.

II. RELATED WORKS

A. Basic Block Embedding

To apply machine learning methods to program similarity
metric, the crucial step is to convert basic blocks to fixed-
dimension vectors, which is the so-called basic block embed-
ding.

To the best of our knowledge, Feng et al. first applied the
basic block embedding to the binary similarity metric in 2016,
and proposed a bug search engine called Genius [1]. In Genius,
each basic block is represented by an eight-dimensional vector,
where each dimension corresponds to a manually selected
static feature. The eight manually selected features are listed
in Table I. This kind of approach, also known as manually
feature engineering, has been successfully used and improved
in some later works [2], [5]. However, since integers are not
continuous, the information involved in integer-representations
of basic block embedding is limited. Besides, manually feature
engineering needs a lot of domain knowledge of assembly
code, which is not friendly for most researchers.

1https://github.com/zhangxiaochuan/MIRROR

Type Attribute name

Block-level attributes

String Constants

Numeric Constants

No. of Transfer Instructions

No. of Calls

No. of Instructions

No. of Arithmetic Instructions

Inter-block attributes
No. of offspring

Betweenness

TABLE I: The manually selected basic block features used in
Genius [1].

To address the above issues, static word representation
based methods are applied to program language processing in
recent works [4], [6]–[8]. In these works, tokens in the basic
block, like operators (opcodes) and operands, are represented
as fixed-dimension vectors. For basic block embedding, Ding
et al. [8] utilized doc2vec [9] and Li et al. [4] regarded the
summation of token vectors as the basic block embedding.
In these works, each element in the basic block embedding
is an automatically computed real number, which greatly
increases the information capacity in basic block embeddings.
Although, these works are successful cases of applying NLP
methods to programming language processing, their methods
are not suitable to cross-ISA basic block embedding. Static
word representation methods they utilized are based on the
distributional representation hypothesis that words with similar
contexts should be semantically similar as well. As tokens in
different ISAs are impossible to appear in the same context,
they cannot meet the distributional representation hypothesis.
Therefore, static word representation methods are not appli-
cable to map basic blocks of different ISAs to the same
embedding vector space.

In 2019, Zuo et.al proposed a Long Short-Term Mem-
ory (LSMT) based siamese network named INNEREYE-BB
for measuring similarity between basic blocks of different
ISAs [3]. Their testing data is a collection of x86-ARM basic
block pairs, which consists of two types of samples,

• similar sample: an x86 basic block and a semantically
equivalent ARM basic block. Both of them are obtained
from the same source code;

• dissimilar sample: an x86 basic block and a semantic
completely inequivalent ARM basic block, which is fil-
tered through text similarity between the x86 basic block
and the ARM-same-sourced x86 basic block.

The authors claimed to have achieved nearly 95% accuracy
to discriminate these two types. However, in our opinion, the
success mostly owes to the huge difference between similar
and dissimilar samples in their testing data, which is not
difficult for the neural network to discriminate.

In addition, we find it is not suitable to apply recurrent-
based neural networks to assembly codes directly, such as
Recurrent Neural Networks (RNN), LSTM [10] and Gated
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Recurrent Unit (GRU) [11]. Recurrent models compute hidden
states for every token along the source sequence, and the
hidden state ht of the input token at position t depends on the
previous hidden state ht−1. Let’s take LSTM as an example
to illustrate this process. Take a sequence S = (s1, . . . , sn) as
input. The operation on st performed by the LSTM layer can
be abstracted as:

ht, ct = FLSTM (st, ht−1, ct−1), (1)

where FLSTM denotes the operation performed by this LSTM
layer, ht and ct are the hidden state and the cell state,
repectively. In [3], the authors regard the last hidden state hn
as the embedding of the basic block, which depends on the
last input token sn and previous states hn−1 and cn−1.

For assembly codes, a basic block usually ends with a jump
instruction or function call. That is to say, the last token for
a basic block is mostly a basic block label or a function
name. According to our statistics shown in Table II, such
basic blocks make up nearly 80% of the total in both x86 or
ARM. To avoid the out-of-vocabulary (OOV) problem, basic
block labels and function names should be normalized into
uniform tokens respectively [3]. Thus, although basic blocks
are totally different, in most cases, for calculating the final
output, the input sn is fixed. What’s more, if the last token is
a basic block label or a function name, the penultimate token
should be a jump or a call operator. It means for calculating
the penultimate hidden state hn−1 and the penultimate cell
state cn−1, the input sn−1 is also fixed in most cases. Due to
this inherent characteristic of assembly language, we suspect
using LSTM or other recurrent based models will limit the
differentiation of basic block embeddings. This conjecture is
verified in Subsection V-G.

Token type x86 ARM

basic block label 77.68% 61.23%

function name 3.71% 12.58%

others 18.60% 26.19%

TABLE II: Statistics of the last token in basic block. The data
source is from the public test data in [3]

B. Neural Machine Translation

Machine translation has been a central challenge in the
NLP community for a long time. In recent years, the end-to-
end neural network based machine translations achieved great
improvements compared with the previous approaches. In this
subsection, we take a brief overview of NMT models.

Recurrent models have been successfully used for sequence
modeling and applied to NMT tasks for a long time. In 2014,
Cho et. al. proposed the seq2seq model for the first time
in which two GRUs serve as the encoder and the decoder
respectively [12]. The authors applied this model to machine
translation tasks and showed the superiority of this approach in
terms of the translation quality compared with the conventional
statistical machine translation systems. To enhance the ability

of long-range dependencies modeling for recurrent models,
in 2015, Bahdanau et. al. proposed attention mechanism.
Equipped with the attention mechanism, the GRU based NMT
model improves the translation quality especially for long
sentence translation [13].

Although achieved great successes in a board range of NMT
tasks, the fundamental constraint of sequential computation
limits the computation efficiency of recurrent models. Specifi-
cally, recurrent models compute hidden states for every token
along the source and the target sequences, and in order to
compute the hidden state ht of the input token at position t,
the previous hidden state ht−1 must be computed firstly. This
inherently sequential modeling property constitutes an obstacle
towards parallelization of the process.

In order to solve the above problem, in 2017, Vaswani
et. al. proposed a new NMT model named Transformer,
which is entirely based on self-attention mechanism [14]. Self-
attention, a special case of attention mechanism, can model
dependencies among tokens in different positions of a single
sequence. Due to the highly paralleled computation of self-
attention, Transformer has achieved significant improvements
in computational efficiency, while also improving translation
quality. Following Transformer, recent efforts have continued
to push the boundaries of this architecture [15]–[20], making
Transformer become the most popular architecture in NMT.

It is obvious that with the improvement of translation
quality, the context matrix contains more semantics of the
source text. Thus, in order to generate basic block embeddings
with rich semantic information, in this work, we choose the
current mainstream Transformer architecture to serve as the
NMT model.

III. EMBEDDING SOLUTION FOR CROSS ISA BASIC
BLOCKS

The premise to measure the similarity between two basic
block embeddings is that the two basic block embeddings are
in the same vector space. However, it is very difficult to map
basic blocks of different ISAs to the same embedding vector
space and this problem has not been well solved in previous
works. In this section, we propose a novel solution to this
challenge, which is able to map basic block on arbitrary ISA
into the same embedding vector space.
Remark. 1. Note that in our proposed basic block embedding
model, the two embedding modules can be used for basic
blocks on any other architectures. We specify x86 and ARM
just for the sake of description. 2. The NMT model used in
our approach is not limited to Transformer only, but actually,
any NMT models of seq2seq architecture can be used. We use
Transformer just because it is one of the best NMT models
currently available.

To clarify the necessity of negative sampling (Subsec-
tion III-C), in the following, we introduce an idealized solution
and further put forward a practical solution based on this
idealized one.
Idealized Solution
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Fig. 1: The idealized solution of the embedding neural net-
work.

To map x86 and ARM basic blocks into the same embed-
ding vector space, we first propose an idealized solution based
on the assumption that NMT models are able to perfectly
translate x86 basic blocks to ARM basic blocks, which means
the context matrix contains complete semantic of both x86
and ARM basic blocks. This property is perfect for the context
matrix to be served as basic block embedding.

We first train an NMT model which translates x86 basic
blocks into the corresponding ARM basic blocks. The encoder
of the trained NMT model is served as x86-encoder. The
context matrix, i.e., the output of x86-encoder, is denoted by
C = {ci} ∈ Rd×n, where n is a dynamic variable denoting
the length of x86 basic block. This implies that although d
is a fixed number, the size of context matrix d × n is not
invariant. Thus it is not suitable to regard the context matrices
as basic block embeddings directly. Therefore, we convert the
context matrix C = {ci} to a fixed-dimension vector E by
sum aggregation:

E =

n∑
i=1

ci, (2)

which is regarded as the basic block embedding in this
work. Then, we fix the x86-encoder and train an ARM-
encoder to map ARM basic blocks close to the same vector
space of x86 basic block embeddings. To train these neural
networks, x86-ARM basic block pairs that share the same
semantics are needed. Thus as illustrated in Fig. 1, three phases
should be done to implement the proposed idealized solution,

1) the basic block pair generation phase;
2) the translation phase;
3) the ARM-encoder training phase.
The above idealized model is based on the perfect trans-

lation assumption which means not only the translation is
100% accurate, but also there is not any loss in the translation
process. This strict assumption, however, is almost impossible
in practice. That is to say, the x86-encoder trained in the
translation phase is definitely biased.

Practical Solution
To address this issue, we further fine-tune the x86-encoder

during the ARM-encoder training of the idealized solution, and
get a practical solution with a slightly different model training
process. In specific, the practical model training process can
be divided into two phases as illustrated in Fig. 2:

1) the x86-encoder pre-training phase, as the dotted line
shown in Fig. 2;

2) the ARM-encoder training & x86-encoder fine-tuning
phase, as the solid lines shown in Fig. 2.

x86 ARM

x86-encoder
pre-training

ARM-encoder
training

x86-encoder
fine-tuning

Fig. 2: Illustration of the two training phases of the practical
solution.

It is worth noting that this practical solution brings an
additional problem. With only positive samples (basic block
pairs with equivalent semantic), the training objective is to
make the distance of x86-embedding and ARM-embedding
as close as possible. Since the x86-encoder and the ARM-
encoder are being trained together, both x86 embeddings and
ARM embeddings are dynamic. This makes the embedding
networks for x86 and ARM tend to map arbitrary inputs to
the same vector. As a result, x86 basic block embeddings are
always close to ARM basic block embeddings even if these
basic blocks are in totally different semantics.

Therefore, we introduce negative samples (semantically
inequivalent basic blocks) as a necessary supplement to model
training. After introducing negative samples, with the super-
vision of both positive and negative samples, we are able to
train the embedding networks to make the x86-embedding and
ARM-embedding close if they are semantically equivalent and
apart if not.

In the following, we detail this practical solution.

A. Basic Block Pair Generation

To train our proposed basic block embedding neural net-
works, a huge amount of x86-ARM basic block pairs with the
same semantics are needed. Thus we propose a basic block
pair generation method for x86-ARM in this subsection.

As assembly codes compiled from the same source code
can be regarded as semantically equivalent, our idea is to
label basic blocks at the high-level language and compile
them to x86 and ARM basic blocks respectively. Then the
basic blocks on different ISAs are semantically equivalent
if they share the same label. In order to implement this
functionality, we integrates a pass into LLVM which labels
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basic block with a unique ID on LLVM IR. Since LLVM
supports multiple backends, we can generate semantically
equivalent basic blocks of different ISAs.

However, it is not a good idea to feed neural networks
these raw assembly codes directly. This is mainly due to the
following two reasons:
• Constants have little effect on program semantics, and the

unnormalized constants may lead to OOV problem [3].
• In assembly instructions, registers can be replaced by

other registers from the same category without semantics
changed in most cases. This property may confuse neural
networks especially the NMT model since the NMT
model does not know which register should be chosen
in a specific register category, and so lead to translation
errors.

To avoid these drawbacks, we propose a normalization
method for assembly instructions. In this method, constants
in assembly codes are divided into five categories, namely,
immediately numbers, addresses, variable names, function
names, and basic block labels. And each category of constants
is normalized by a specific symbolic representation. Similarly,
registers are normalized by several categories of symbolic
representations according to their usage. For x86 instruction
set, registers are divided into 14 categories which contain
pointer registers, float registers, four types of general registers,
four types of data registers, and four types of address registers.
The data registers, address registers and general registers, are
divided into four types respectively according to the data
length they store, which is 8-bit, 16-bit, 32-bit and 64-bit. For
registers in ARM, they are normalized into two categories:
general registers and pointer registers.

B. x86-encoder Pre-training

As we mentioned before, the x86-encoder pre-training is
integrated in an NMT model training process which translates
x86 basic blocks into their corresponding ARM basic blocks.
In this subsection, we elaborate this process in detail.

In our solution, a basic block is represented as a sequence, in
which each token represents either an operator or an operand
of the instructions in the basic block. In this subsection, we
denote the x86 basic block (source sequence) and the ARM
basic block (target sequence) as S = (s1, . . . , sn) and T =
(t1, . . . , tm), where si and ti are indices of the tokens in the
x86 tokens vocabulary Vx86 and the ARM tokens vocabulary
VARM , respectively.

The training task for this NMT model is similar to the
training task for natural language NMT models, which can
be described as giving an x86 basic block S = (s1, . . . , sn),
and the front part of its corresponding ARM basic block
T = (t1, . . . , tk−1), the target for the NMT model is to predict
the next token tk of the ARM basic block. The final output
of the NMT model is the probability distribution of the next
token yk ∈ R|VARM |, where

∑
i yki = 1.

The training objective is based on categorical cross-entropy.
In our design, for each basic block pair, the NMT model
predicts each token of the ARM basic block from the first

one to the last. Thus, the loss function for an x86-ARM basic
block pair is expressed as follows:

L = −
m∑

k=1

|VARM |∑
j=1

ŷkj log (ykj) , (3)

where ŷk ∈ R|VARM | is the one-hot encoding of tk. We
minimize the total loss in the whole training set using the
Adam [21] gradient descent algorithm, which computes adap-
tive learning rates for each parameter.

C. Negative Sampling

As we elaborated in the beginning of the section, negative
samples are necessary for training the two embedding net-
works together.

In our design, the dataset for training the two embedding
networks is a collection of triplets. A triplet is composed of an
anchor, a positive sample, and a negative sample. The positive
sample and the negative sample are basic blocks of the same
ISA, while the anchor is the basic block of another ISA.
The training task is to discriminate that the positive sample,
than the negative one, is semantically closer to the anchor.
The anchors and the positive samples are directly sourced
from the semantically equivalent basic block pairs generated
by the method in Subsection III-A. To generate negative
samples, we propose a novel negative sampling method, which
is introduced in the following.

The quality of negative samples is related to the quality
of the trained model. Inserting hard negative samples into
random negative samples is shown to be effective in many
computer vision tasks, like person re-identification [22]–[24]
and object detection [25]. Inspired by these recent successes, in
our solution, we generate hard negative samples as an effective
supplement to random samples. We expect this method is
better for training the embedding networks than solely random
negative sampling which is used in previous program language
processing works [2], [6], [8].

Hard negative sampling is to select samples that are hard
for the neural network to discriminate from the positive. For
example, in person re-identification tasks, a hard negative
sample can be a similar but different person to the target
person, such as a person with the same T-shirt or the same
hairstyle as the target person. Similarly, in our task, a hard
negative sample should be a basic block that is similar but not
equivalent to the anchor.

Due to the huge amount of dataset and the obscurity of
assembly codes, it is almost impossible to manually select
these hard negative samples. But how to automate this work?
We turn our attention to the pre-trained NMT model. Although
the encoder of the pre-trained NMT model is just a semi-
finished product for x86 basic block encoding, it is enough
to give us a rough conclusion about whether two x86 basic
blocks are similar.

Given two x86 basic blocks S1 and S2, we first obtain their
embeddings E1, E2 ∈ Rd by utilizing the pre-trained x86-
encoder and aggregating the output as shown in Equation 2,
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where d is the embedding dimension. Then, we can judge the
similarity of them by measuring the Euclidean distance of their
embeddings:

D(E1, E2) = ||E1 − E2||2

=

√√√√ d∑
i=1

(e1i − e2i)2,
(4)

where e1i ∈ E1 and e2i ∈ E2. It is obvious that the smaller
of the Euclidean distance is, the more similar of the two basic
blocks are.

Note that we have already figured out how to calculate the
distance between different x86 basic blocks. Now we clarify
how to apply hard negative sampling to generate negative
samples.

Recall that to derive a triplet for dataset, we first generate a
specific basic block pair consisting of an anchor and a positive
sample, where one of two is x86 basic block and the other one
is ARM basic block. Then we randomly sample 100 x86 basic
blocks and choose the one which is the most similar to the
x86 basic block in the basic block pair in terms of Euclidean
distance defined in Equation 4. Finally the negative sample is
derived according to the following two situations:

• If the anchor is ARM basic block, the negative sample is
simply taken as the chosen x86 basic block.

• If the anchor is x86 basic block, the negative sample
is taken as the ARM basic block which is semantically
equivalent to the chosen x86 basic block.

Although hard negative sampling is proved to be benefi-
cial for model training, only selecting hard negative samples
makes the training unstable [22]. Thus, we also apply random
negative sampling to building the dataset. The ratio of random
negative samples to hard negative samples is empirically set
at 2 to 1.

D. Embedding Networks Training

With the negative samples generated in the previous sub-
section, now we can train the ARM embedding network and
fine-tune the pre-trained x86 embedding network together.

For a basic block triplet, in the target embedding vector
space, the embedding of the anchor should be closer to that
of the positive sample than that of the negative sample. In
this concern, we use a margin-based triplet loss function for
a basic block triplet which is expressed as follows:

L = max{D(E1, E2)−D(E1, E3) + γ, 0}, (5)

where E1, E2 and E3 are embeddings of the anchor, the
positive sample and the negative sample respectively, γ > 0
is a margin parameter, and the operation D is the Euclidean
distance which is shown in Equation 4. Note that E1, E2

and E3 are generated through their corresponding embedding
networks. This loss encourages D(E1, E2) to be smaller than
D(E1, E3) by at least a margin γ, which is illustrated in Fig. 3.

anchor

negative

positive

anchor

positive

negative

training

> margin 

Fig. 3: Illustration of the role of the loss function plays in
embedding networks training. In the training process, the loss
function encourages the anchor to get close to the positive
sample and away from the negative one.

IV. SIMILARITY METRIC

The similarity score between two basic blocks should be
a real number range from 0 to 1. However, the Euclidean
distance of their embeddings is range from 0 to +∞. Thus,
we need to map the Euclidean distance to [0, 1].

In this work, the similarity between two basic blocks B1

and B2 is defined as:

Sim(B1, B2) = exp(−D(E1, E2)

d
), (6)

where d denotes the embedding dimension, and E1, E2 are
embeddings for B1 and B2, respectively.

V. EVALUATION

In this section, we perform an extensive evaluation on
MIRROR, which is detailed in the following seven subsections.

In Subsection V-A, we elaborate on the implementation and
setup, including the dataset, the evaluation metric, and other
details. In Subsection V-B, we utilize a series of experiments to
find out a suitable hyperparameter, i.e., the margin γ in Equa-
tion 5. In Subsection V-C, we compare the experimental results
of MIRROR and the baseline method. In Subsection V-D,
we compare our proposed assembly instruction normalization
method with the other three in terms of the performance
in basic block similarity measuring task. In Subsection V-E,
we show the superiority of our proposed negative sampling
method by comparing with other three methods. In Subsec-
tion V-F, we demonstrate the importance of the pre-training
phase in MIRROR. In Subsection V-G, we further demonstrate
the superiority of MIRROR through several cases.

A. Implementation and Setup
To evaluate MIRROR, we present a large scale dataset named

MISA (Multi-ISAs basic block dataset), which is sourced from
five well known C/C++ based open source projects in different
fields. These projects are listed in Table III.

Project Version Description

Binutils 2.30 collection of binary tools

Coreutils 8.29 GNU core utilities

FFmpeg n3.2.13 collection of multimedia process tools

OpenSSL 1.1.1b security protocols and cryptographic library

Redis 5.0.5 key-value database

TABLE III: The data source for MISA.
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MISA is constructed with seven parts:
• MISAPair All: consists of 1,122,171 semantically equiv-

alent x86-ARM basic block pairs which are generated
from the source code in projects listed in Table III by the
method we proposed in Subsection III-A. For each source
file, we compile it through four different optimization
methods: O0, O1, O2 and O3.

• MISAPair Large: consists of 500,000 randomly selected
basic block pairs from MISAPair.

• MISAPair Base: consists of 50,000 randomly selected ba-
sic block pairs from MISAPair.

• MISATriplet Large : consists of 3,000,000 basic block
triplets which are randomly divided into a training set
and a test set by a ratio of 80% to 20%. These triplets
are sourced from MISAPair Large, and generated by the
negative sampling method shown in Subsection III-C. For
each basic block pair, we generate four triplets by random
negative sampling, and two triplets by hard negative
sampling.

• MISATriplet Base: is the same as MISATriplet Large except
for size which is sourced from MISAPair Base.

• MISAEval Large : consists of 100,000 semantically equiv-
alent basic block pairs, which is corresponding to the
testing set in MISATriplet Large. In other words, the test
set of MISATriplet Large is obtained by negative sampling
over MISAEval Large. We use this dataset for evaluating
the model trained on MISATriplet Large.

• MISAEval Base : is the evaluation set for MISATriplet Base.
Our experiments are conducted on a workstation equipped

with an Intel Core i9-9980XE CPU, four GeForce RTX 2080Ti
GPU cards, 112 GB memory, and 2TB SSD.

In the x86-encoder pre-training phase, the embedding length
and the mini-batch size are set to 256 and 30, respectively.
We randomly select 300,000 samples from MISAPair. As
illustrated in Fig. 4, after 20 epochs training, the x86-ARM
translation model is close to convergence. This pre-trained
Transformer is used for hard negative sampling and initializing
the x86-encoder of MIRROR in the embedding networks
training phase.
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Fig. 4: Learning curves of Transformer in the pre-training
phase.

To evaluate MIRROR, following previous works for natural

language understanding [26], [27], we use precision at N (short
for P@N) as an evaluation metric. In specific, given a basic
block of A ISA, we select the true response (semantically
equivalent basic block) and 99 random selected responses,
from B ISA. We measure the similarity between the given
basic block and each of the 100 selected responses through the
metric method shown in Equation 6 and rank them from the
most similar to the most dissimilar. The P@N score evaluates
the proportion of the data whose true response ranks in
the top N responses in the whole evaluation data. That is,
the larger the P@N score is, the better the similarity metric
method is.

In all of the following experiments, we utilize two P@N
tasks to evaluate models: 1) given x86 basic blocks, we find
responses in ARM basic blocks; 2) given ARM basic blocks,
we find responses in x86 basic blocks. The two tasks are
denoted by “x86-ARM” and “ARM-x86” respectively in the
following experimental results. For each task, we measure
three indicators, i.e., P@1, P@3, and P@10.

B. Hyperparameter
The margin γ shown in Equation 5 is the most important

hyperparameter in this work. A suitable margin can guide
the neural network to train in the right direction. However,
a too small margin will simplify training tasks for the model,
leading to poor performance in actual evaluation (P@N), while
a too large margin will make the training task very difficult,
making the model prone to extreme situations and resulting in
overfitting.

To find out the best margin for our task, in this sub-
section, we evaluate different margin values ranging from
60 to 200 with an interval of 20. The models are trained
on MISATriplet Base with 20 epochs and evaluated on
MISAEval Base. We list the evaluation results in Table IV. It
shows that with margin γ = 140, MIRROR can be trained
to the best state. Thus, we set the margin to 140 in all the
following experiments.

Margin
x86-ARM ARM-x86

P@1 P@3 P@10 P@1 P@3 P@10

60 68.1% 79.6% 87.4% 67.1% 81.8% 90.0%

80 68.5% 80.2% 88.3% 67.2% 81.9% 89.6%

100 68.3% 79.9% 87.8% 67.9% 81.7% 89.5%

120 68.6% 80.1% 88.2% 67.3% 81.9% 89.4%

140 69.0% 83.8% 92.9% 67.0% 83.0% 91.5%

160 69.3% 83.7% 92.2% 67.2% 82.1% 91.5%

180 65.8% 79.2% 87.8% 66.6% 81.8% 89.4%

200 65.3% 78.3% 87.5% 66.9% 81.8% 89.2%

TABLE IV: The experimental results on a series of margin
ranging from 60 to 200.

C. Comparison with Baseline
In this subsection, we evaluate the P@N scores of our model

and compare with a representative baseline INNEREYE-
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BB [3]. We train MIRROR on MISATriplet Large and evaluate
on MISAEval Large. Since the design of INNEREYE-BB is
training on basic block pairs which are labeled as positive
(similar) or negative (dissimilar), MISATriplet Large can not be
applied to train INNEREYE-BB directly. Thus, to be fair, we
utilize the same positive samples as MISATriplet Large, e.g.,
MISAPair Large, and apply their proposed negative sampling
method to construct the training dataset for INNEREYE-
BB. Besides, the evaluation set for INNEREYE-BB is also
MISAEval Large. To illustrate the superiority of MIRROR over
the baseline, we further train MIRROR on a much smaller
dataset MISATriplet Base and still evaluate on MISAEval Large.
All these models are trained for 20 epochs.

We list the experimental results in Table V. A comparison
between INNEREYE-BB and MIRROR clearly shows that:

1) For dataset MISATriplet Large, MIRROR is at least 14%
higher than INNEREYE-BB on each indicator, and even
over 40% on P@1 of ARM-x86.

2) For dataset MISATriplet Base, even only 10% training data
is available, the performance of MIRROR is surprisingly
much better than that of INNEREYE-BB which is trained
on a much larger dataset generated from MISAPair Large.

Model
x86-ARM ARM-x86

P@1 P@3 P@10 P@1 P@3 P@10

INNEREYE-BB 51.0% 66.6% 77.2% 32.8% 54.8% 79.5%

MIRROR (MISATriplet Base) 64.0% 77.2% 85.7% 58.7% 73.8% 83.1%

MIRROR (MISATriplet Large) 77.4% 88.7% 94.9% 74.2% 87.2% 94.1%

TABLE V: The experimental results for our model and
INNEREYE-BB. Note that all these results are obtained by
evaluating the trained models on MISAEval Large.

D. Instruction Normalization Methods
In this task, we compare our proposed assembly instruction

normalization method with the other three methods. These four
methods are detailed in Table VI. In Table VI, Method #1 is
proposed by us. Method #2 further abstracts the register at the
basis of Method #1. Method #3 removes all operands including
registers and keeps only operators. This methods is often used
in software theft identifying methods [28], [29]. Method #4
only normalizes constants, and this method is widely used in
recent works [3], [4], [8].

Normalized Element
Method

#1 (ours) #2 #3 #4

Constants X X © X

Registers

Normalized by categories X × × ×
Normalized to the same token × X × ×
Remove all registers × × X ×

TABLE VI: Four instruction normalization methods.

For each normalization method, we run the entire training
process. We first utilize Transformer to pre-train x86-encoders

on the same 300,000 randomly selected basic block pairs from
MISAPair with different normalization methods. Then, we use
the pre-trained x86-encoders to generate negative samples on
MISAPair Base, through the same method as MISATriplet Base.
Finally, we train embedding networks with the same set of
hyperparameters for each normalization method and evaluate
these models on MISAEval Base. That is, all the settings are
the same except for normalization methods and the resulting
different negative samples.

The experimental results are listed in Table VII. It shows
that on all the six indicators, our proposed method (Method #1)
is superior to the other three methods. A comparison between
Method #2 and Method #4 shows that the more semantic infor-
mation is involved (Method #4) the better performance of the
trained model is. Since Method #2 contains only a little more
semantic information than Method #3, the evaluation results
of Method #2 are not much better than that of Method #3.

Normalization
x86-ARM ARM-x86

P@1 P@3 P@10 P@1 P@3 P@10

Method #1 (ours) 69.0% 83.8% 92.9% 67.0% 83.0% 91.5%

Method #2 62.9% 77.1% 86.9% 61.2% 78.8% 88.7%

Method #3 59.6% 77.5% 89.5% 59.7% 77.7% 89.3%

Method #4 65.8% 80.0% 88.7% 66.5% 82.1% 89.6%

TABLE VII: The experimental results for different basic block
normalization methods.

To further explain the differences among these four nor-
malization methods, we draw the learning curves of their pre-
training phases in Fig. 5. Combined Fig. 5 with Table VII, it
can be clearly seen that: 1) the higher the degree of normaliza-
tion is, the lower training and testing losses of the Transformer
are; 2) but a lower loss in the pre-training phase does not mean
the normalization method is better (a higher P@N scores of the
model); 3) although Method #4 does not preserve much more
semantic information than Method #1 (ours), neural networks
especially Transformer can be easily confused by registers of
the same category, leading poor performance of the model; 4)
the learning curves in the pre-training phases of Method #1
and Method #3 are almost overlapped while the final trained
embedding model of Method #1 is much better than that of
Method #3. It indicates that register categories carry a lot of
semantic information and this information can be captured by
the networks easily without any confusion.

E. Negative Sampling Methods
In this task, we are going to demonstrate the superiority

of our proposed negative sampling method. We utilize four
different negative sampling methods to generate datasets from
MISAPair Base. These four negative sampling methods are:
• None: without any negative samples, which is the ideal-

ized solution shown in Fig. 1.
• Random only: we randomly select six negative samples

for each positive basic block pair without any hard
negative samples.
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Fig. 5: Learning curves of Transformer on dataset normalized
through four different methods. (a) and (b) demonstrate train-
ing and testing losses, respectively.

• Hard only: we select six hard negative samples for each
positive basic block pair without any randomly selected
negative samples.

• Mixed (ours): for each positive sample, two negative
samples are selected through hard negative sampling and
four negative samples are selected randomly. Actually,
this dataset is MISATriplet Base.

For each generated dataset, we train MIRROR for 20 epochs,
and evaluate trained models on MISAEval Base. The evaluation
results are shown in Table VIII. It is obviously seen that our
proposed negative sampling method is the best of the four.
Note that hard only is not better than random only or mixed.

Negative Samples
x86-ARM ARM-x86

P@1 P@3 P@10 P@1 P@3 P@10

None 49.6% 56.2% 66.4% 52.5% 62.6% 71.5%

Random only 62.2% 79.2% 89.5% 56.6% 76.1% 87.6%

Hard only 60.0% 74.6% 84.8% 52.7% 70.1% 80.0%

Mixed (ours) 69.0% 83.8% 92.9% 67.0% 83.0% 91.5%

TABLE VIII: The experimental results for different negative
sampling methods.

F. Pre-training and Non-pre-training

It seems that with the supervision of positive and negative
samples, MIRROR can be trained directly without x86-encoder
pre-training. In this subsection, we are going to demonstrate
the importance of the pre-training phase besides being used
for hard negative sampling.

A pre-trained model is compared with a non-pre-trained
model in this subsection. In order to eliminate the influence
of different negative sampling methods, in the subsection, we
compare the two models in two cases:
• the pre-trained model and non-pre-trained model are all

trained on the same dataset generated by random negative
sampling from MISAPair Base.

• the two models are trained on MISATriplet Base.
We utilize MISAEval Base to evaluate these two models. The

experimental results are listed in Table IX.
The P@N scores of our model without pre-training show

that MIRROR can be trained without the pre-training phase.
However, the non-pre-trained model lags behind the pre-
trained model on all the six indicators with both random and
mixed negative samples.

Setting x86-ARM ARM-x86

Pre-train Negative P@1 P@3 P@10 P@1 P@3 P@10

False Random 58.2% 76.3% 88.4% 53.9% 73.8% 85.7%

True Random 62.2% 79.2% 89.5% 56.6% 76.1% 87.6%

False Mixed 64.4% 79.4% 89.1% 61.0% 78.7% 87.7%

True Mixed 69.0% 83.8% 92.9% 67.0% 83.0% 91.5%

TABLE IX: The experimental results for the pre-trained model
and non-pre-trained model.

G. Case Study

1) Embedding Vector Space Visualization: To accurately
measure the similarity of cross-ISA basic blocks, “good”
vector spaces of basic block embeddings should satisfy the
following two conditions:
• The embedding spaces of different ISAs are close enough,

that is the semantically equivalent basic blocks of differ-
ent ISAs should be mapped to the positions which are as
close as possible, so that the cross-ISA measurement can
be well applied.

• The positions of different basic blocks in the embedding
space should be discrete enough, so that we can discrim-
inate them from semantically equivalent basic blocks.

To explain why MIRROR is better than the baseline,
INNEREYE-BB [3], we visualize the embedding spaces of
these two methods in Fig. 6 and compare them in terms of
the above two conditions. We use t-SNE [30] to convert the
high dimensional basic block embeddings into 2-dimensional
vectors and then visualize them.

Fig. 6(a) and Fig. 6(b) visualize the distance of 100 ran-
domly selected semantically equivalent basic block pairs in
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Fig. 6: Embedding vector space visualization. (a) and (b) il-
lustrate the distance of semantically equivalent basic blocks in
the embedding space generated by MIRROR and INNEREYE-
BB, respectively. In (a) and (b), green lines connect two
semantically equivalent basic blocks on x86 and ARM.

the embedding vector space of MIRROR and INNEREYE-
BB, respectively. In these two figures, green lines connect
two semantically equivalent basic blocks on x86 and ARM.
Obviously, the shorter the green lines are, the closer the vector
spaces of x86 and ARM basic block embeddings are. Fig. 6(a)
shows a strong ability of MIRROR to map semantically equiv-
alent basic blocks of x86 and ARM into approximately the
same embedding vector space, and semantically inequivalent
basic blocks are discrete enough in the embedding vector
space. For INNEREYE-BB shown in Fig. 6(b), it not only
gathers different basic blocks into several small spaces, but
there is also a large gap between x86 embeddings and ARM
embeddings.

To sum up, in terms of the two conditions we mentioned
at the beginning of this subsection, MIRROR is far better than
INNEREYE-BB.

2) Similarity Visualization: Fig. 7 visualizes similarities
generated by MIRROR among 10 randomly selected semanti-
cally equivalent basic block pairs. The figure shows that if the
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Fig. 7: Similarity Visualization.

two basic blocks are semantically equivalent, they are probably
to obtain a higher similarity score than that of either of them
with another basic block. Although the similarity scores of
some basic block pairs (such as #1 and #5) are not very high,
it is enough to find out the most similar one in all candidates.
This ability is of importance for the program similarity metric
methods [2], [4].

One can also find that for semantically inequivalent basic
blocks, the similarity scores of some are relatively higher than
the others. This is because these basic blocks do have some
similar assembly codes like #9 and #10 basic blocks.

3) Translation Case: We utilize a translation case to show
what the pre-trained Transformer learned in the pre-training
phase. Table X lists the source basic block (x86), the target
basic block (ARM) and the translation result. It shows that:
• The pre-trained Transformer has learned the correct syn-

tax of ARM assembly (each instruction consists of an
operator and several operands).

• The pre-trained Transformer “knows” the specific usage
of different instructions, i.e., it can predict a suitable
operand for operators, such as select “BB” as the operand
for “bgt” and “b”.

• Most of the semantics are preserved in the translation
result, although it can not achieve 100% accuracy. This
indicates that the pre-trained x86-encoder, i.e., the en-
coder of the pre-trained Transformer, needs to be fine-
tuned, but is enough to be applied to hard negative
sampling.

VI. LIMITATIONS

As shown in Fig.7, the similarity scores of some semanti-
cally equivalent basic blocks are a little low, although in most
cases, this does not affect finding out the most similar one
in candidate basic blocks. In our opinion, this issue may be
addressed by adding a corresponding penalty term to the loss
function shown in Equation 5. Actually, we have tried some
penalty terms, but the testing results didn’t become better.
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x86 (source) ARM (target) Translation Result

cmpl IMM ADDR

jns BB

ldr REG GEN ADDR

cmp REG GEN IMM

bge BB

ldr REG GEN ADDR

cmp REG GEN IMM

bgt BB

b BB

TABLE X: Translation example of the pre-trained Trans-
former. Here, “IMM”, “BB”, “ADDR” and “REG GEN”
denote the normalized immediate number, basic block label,
address, and general register, respectively.

Although MIRROR solves a fundamental problem in pro-
gram similarity analysis and achieves quite good results in
evaluation, this method has not been tested on program sim-
ilarity analysis tasks. This is mainly because some previous
works on program similarity analysis, such as [3], [4], are not
open source yet.

In future work, we plan to focus on these limitations.

VII. CONCLUSION

Basic block similarity metric is key to program similarity
analysis. In this paper, we propose a novel cross-ISA basic
block similarity metric method. This is a comprehensive
solution including data collection, data pre-processing, model
designing and training. The innovations of this solution include
an effective basic block embedding model with a novel training
mode, a reasonable instruction normalization method, and a
creative negative sampling method. Our extensive evaluation
shows that the prototype MIRROR outperforms the state-of-
the-art approach by large margins with respect to the accuracy
of basic block similarity metric and quality of basic block
embeddings. Furthermore, the experiments justify the effec-
tiveness of pre-training, the instruction normalization method,
and the negative sampling method. As a by-product of this
paper, the dataset MISA provides a comparable benchmark
for relevant researches in this field, including basic block
similarity metric methods and negative sampling methods.
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