
www.quarkslab.com

QSynth - A Program Synthesis approach
for Binary Code Deobfuscation

Binary Analysis Workshop - NDSS
Robin David <rdavid@quarkslab.com>

Luigi Coniglio <luigi.coniglio@studenti.unitn.it>

Mariano Ceccato <mariano.ceccato@univr.it>

February 23th, 2020 - San Diego, California

Talk Outline

Context:
I Need to address highly obfuscated binaries

I Few approaches address data obfuscation

Goal: deobfuscating expression (obfuscated with data transformations)

Takeway

We provide a synthesis approach
addressing various obfuscations

and that supersede the state-of-the-art in both

speed and accuracy

2 / 26

Talk Outline

Context:
I Need to address highly obfuscated binaries

I Few approaches address data obfuscation

Goal: deobfuscating expression (obfuscated with data transformations)

Takeway

We provide a synthesis approach
addressing various obfuscations

and that supersede the state-of-the-art in both

speed and accuracy

2 / 26

Table of Contents

Background

Software obfuscation

Deobfuscation techniques

Our Synthesis Approach

Goal & Contributions

Approach steps

Experimental Benchmarks

Experimental Setup

Benchmarks

Conclusion

3 / 26

Obfuscation types

Control-Flow Obfuscation

Hiding the logic and algorithm of the

program

Virtualization, Opaque predicates,

CFG-flattening, Split, Merge, Packing,

Implicit Flow, MBA, Loop-Unrolling...

Data-Flow Obfuscation

Hiding data, constants, strings, APIs,

keys etc.

Data encoding, MBA, Arithmetic

Encoding, Whitebox, Array Split, Fold and

Merge, Variable Splitting...

Example

⇒

4 / 26

Obfuscation types

Control-Flow Obfuscation

Hiding the logic and algorithm of the

program

Virtualization, Opaque predicates,

CFG-flattening, Split, Merge, Packing,

Implicit Flow, MBA, Loop-Unrolling...

Data-Flow Obfuscation

Hiding data, constants, strings, APIs,

keys etc.

Data encoding, MBA, Arithmetic

Encoding, Whitebox, Array Split, Fold and

Merge, Variable Splitting...

Example

a + b ⇒
((((((a∧¬b)+b) << 1)∧¬((a∨b)−
(a∧b))) << 1)− ((((a∧¬b)+b) <<
1) ⊕ ((a ∨ b) − (a ∧ b))))

Example

⇒

4 / 26

Obfuscation types

Control-Flow Obfuscation

Hiding the logic and algorithm of the

program

Virtualization, Opaque predicates,

CFG-flattening, Split, Merge, Packing,

Implicit Flow, MBA, Loop-Unrolling...

Data-Flow Obfuscation

Hiding data, constants, strings, APIs,

keys etc.

Data encoding, MBA, Arithmetic

Encoding, Whitebox, Array Split, Fold and

Merge, Variable Splitting...

Example

a + b ⇒
((((((a∧¬b)+b) << 1)∧¬((a∨b)−
(a∧b))) << 1)− ((((a∧¬b)+b) <<
1) ⊕ ((a ∨ b) − (a ∧ b))))

Problem: Reverting an obfuscating transformation is hard.

Example

⇒

4 / 26

Deobfuscation

Let’s focus on two deobfuscation techniques:

Dynamic Symbolic Execution

Program Synthesis

5 / 26

Symbolic Execution

Definition

Mean of executing a program using symbolic values (logical symbols) rather

than real values (bitvectors) in order to obtain an in-out relationship of a path

Dynamic Symbolic Execution (a.k.a. concolic)

I Properties: work on dynamic paths and use runtime values
I Advantages: path sure to be feasible and thwart various obfuscations

6 / 26

Symbolic Execution

Definition

Mean of executing a program using symbolic values (logical symbols) rather

than real values (bitvectors) in order to obtain an in-out relationship of a path

Dynamic Symbolic Execution (a.k.a. concolic)

I Properties: work on dynamic paths and use runtime values
I Advantages: path sure to be feasible and thwart various obfuscations

6 / 26

Symbolic Execution: Example

⇒ In this context used to extract symbolic expressions (e.g. b)

Symbolic State

φb = b

φb = b + (a | − 1) − 1

φb = b + (a | − 1) − 1 − ((∼ a)
& − 1)

φb = b + (a | − 1) − 1 − ((∼ a)
& − 1) − 1 + (((b + (a | − 1)
−1 − ((∼ a)& − 1)) × (b + . . .

Question: How to simplify the φb expression?

(Knowing that the quality of the result depends on the syntactic complexity of the

obfuscated expression)

7 / 26

Symbolic Execution: Example

⇒ In this context used to extract symbolic expressions (e.g. b)

Symbolic State
φb = b

φb = b + (a | − 1) − 1

φb = b + (a | − 1) − 1 − ((∼ a)
& − 1)

φb = b + (a | − 1) − 1 − ((∼ a)
& − 1) − 1 + (((b + (a | − 1)
−1 − ((∼ a)& − 1)) × (b + . . .

Question: How to simplify the φb expression?

(Knowing that the quality of the result depends on the syntactic complexity of the

obfuscated expression)

7 / 26

Symbolic Execution: Example

⇒ In this context used to extract symbolic expressions (e.g. b)

Symbolic State
φb = b

φb = b + (a | − 1) − 1

φb = b + (a | − 1) − 1 − ((∼ a)
& − 1)

φb = b + (a | − 1) − 1 − ((∼ a)
& − 1) − 1 + (((b + (a | − 1)
−1 − ((∼ a)& − 1)) × (b + . . .

Question: How to simplify the φb expression?

(Knowing that the quality of the result depends on the syntactic complexity of the

obfuscated expression)

7 / 26

Symbolic Execution: Example

⇒ In this context used to extract symbolic expressions (e.g. b)

Symbolic State
φb = b

φb = b + (a | − 1) − 1

φb = b + (a | − 1) − 1 − ((∼ a)
& − 1)

φb = b + (a | − 1) − 1 − ((∼ a)
& − 1) − 1 + (((b + (a | − 1)
−1 − ((∼ a)& − 1)) × (b + . . .

Question: How to simplify the φb expression?

(Knowing that the quality of the result depends on the syntactic complexity of the

obfuscated expression)

7 / 26

Symbolic Execution: Example

⇒ In this context used to extract symbolic expressions (e.g. b)

Symbolic State
φb = b

φb = b + (a | − 1) − 1

φb = b + (a | − 1) − 1 − ((∼ a)
& − 1)

φb = b + (a | − 1) − 1 − ((∼ a)
& − 1) − 1 + (((b + (a | − 1)
−1 − ((∼ a)& − 1)) × (b + . . .

Question: How to simplify the φb expression?

(Knowing that the quality of the result depends on the syntactic complexity of the

obfuscated expression)

7 / 26

Program Synthesis

Definition

Program synthesis consists in automatically deriving a program from:

I a high-level specification (typically its I/O behaviour)

I additional constraints:

I Compilation: a faster program

I Deobfuscation: a smaller or more readable program

Example

Obfuscated

Program

Input Output
1, 2 3

2, 2 4

2, 3 5

⇒ a + b

Problem

Synthesizing programs (expressions) with complex behaviors is hard.

8 / 26

Program Synthesis

Definition

Program synthesis consists in automatically deriving a program from:

I a high-level specification (typically its I/O behaviour)

I additional constraints:

I Compilation: a faster program

I Deobfuscation: a smaller or more readable program

Example

Obfuscated

Program

Input Output

1, 2 3

2, 2 4

2, 3 5

⇒ a + b

Problem

Synthesizing programs (expressions) with complex behaviors is hard.

8 / 26

Program Synthesis

Definition

Program synthesis consists in automatically deriving a program from:

I a high-level specification (typically its I/O behaviour)

I additional constraints:

I Compilation: a faster program

I Deobfuscation: a smaller or more readable program

Example

Obfuscated

Program

Input Output
1, 2 3

2, 2 4

2, 3 5

⇒ a + b

Problem

Synthesizing programs (expressions) with complex behaviors is hard.

8 / 26

Program Synthesis

Definition

Program synthesis consists in automatically deriving a program from:

I a high-level specification (typically its I/O behaviour)

I additional constraints:

I Compilation: a faster program

I Deobfuscation: a smaller or more readable program

Example

Obfuscated

Program

Input Output
1, 2 3

2, 2 4

2, 3 5

⇒ a + b

Problem

Synthesizing programs (expressions) with complex behaviors is hard.

8 / 26

Program Synthesis

Definition

Program synthesis consists in automatically deriving a program from:

I a high-level specification (typically its I/O behaviour)

I additional constraints:

I Compilation: a faster program

I Deobfuscation: a smaller or more readable program

Example

Obfuscated

Program

Input Output
1, 2 3

2, 2 4

2, 3 5

⇒ a + b

Problem

Synthesizing programs (expressions) with complex behaviors is hard.

8 / 26

Program Synthesis

Definition

Program synthesis consists in automatically deriving a program from:

I a high-level specification (typically its I/O behaviour)

I additional constraints:

I Compilation: a faster program

I Deobfuscation: a smaller or more readable program

Example

Obfuscated

Program

Input Output
1, 2 3

2, 2 4

2, 3 5

⇒ a + b

Problem

Synthesizing programs (expressions) with complex behaviors is hard.

8 / 26

Program Synthesis

Definition

Program synthesis consists in automatically deriving a program from:

I a high-level specification (typically its I/O behaviour)

I additional constraints:

I Compilation: a faster program

I Deobfuscation: a smaller or more readable program

Example

Obfuscated

Program

Input Output
1, 2 3

2, 2 4

2, 3 5

⇒ a + b

Problem

Synthesizing programs (expressions) with complex behaviors is hard.

8 / 26

Table of Contents

Background

Software obfuscation

Deobfuscation techniques

Our Synthesis Approach

Goal & Contributions

Approach steps

Experimental Benchmarks

Experimental Setup

Benchmarks

Conclusion

9 / 26

Key Intuition

Symbolic Execution

+ Capture full semantic

- Influenced by syntactic

complexity

Program Synthesis

+ Only influenced by semantic

complexity

- Black-box⇒ big search space

Idea: Using symbolic execution to reduce the synthesis search
space

10 / 26

Key Intuition

Symbolic Execution

+ Capture full semantic

- Influenced by syntactic

complexity

Program Synthesis

+ Only influenced by semantic

complexity

- Black-box⇒ big search space

Idea: Using symbolic execution to reduce the synthesis search
space

10 / 26

Key Intuition

Symbolic Execution

+ Capture full semantic

- Influenced by syntactic

complexity

Program Synthesis

+ Only influenced by semantic

complexity

- Black-box⇒ big search space

Idea: Using symbolic execution to reduce the synthesis search
space

10 / 26

Contributions

A synthesis approach using an

Offline Enumerative Search
based on pre-computed lookup tables

combined with an Abstract Syntax Tree

simplification algorithm

which outperform similar approach of

the state-of-the-art (e.g. Syntia)

11 / 26

QSynth: Overview

Execution tracing
(DBI)

Obfuscated
program Dynamic Symbolic

Execution

Execution
trace

Enumerative
Synthesis Oracle

(generated once for all)

Simplification
Strategy

(for each sub-expression)

inputs equivalent
expressionoutputs

Obfuscated
expressions synthesized

expressions

12 / 26

QSynth: Overview

Execution tracing
(DBI)

Obfuscated
program Dynamic Symbolic

Execution

Execution
trace

Enumerative
Synthesis Oracle

(generated once for all)

Simplification
Strategy

(for each sub-expression)

inputs equivalent
expressionoutputs

Obfuscated
expressions synthesized

expressions

QBDI
Tool:

12 / 26

Execution Tracing

Dynamic Binary Instrumentation

Using QBDI: QuarkslaB Dynamic binary

Instrumentation (similar to Pin, DynamoRIO)

+ multi-architecture & platform

- no (direct) thread support

Qtracer (a qbditool like Pin ‘‘pintools’’)

I gather instruction executed with their

concrete state (registers and memory)

I Data are consolidated in database

(SQLite, PostgresSQL etc.)

mov qword [0x000232c0], 8

mov r13, rax

test rax, rax

je 0x42a7

xor r8d, r8d

xor edx, edx

xor esi, esi

mov qword [0x000232c0], 8

; Some code ...

mov r13, rax

; Some code ...

test rax, rax

; Some code ...

je <patched address>

; Some code ...

xor r8d, r8d

; Some code ...

xor edx, edx

; Some code ...

xor esi, esi

; Some code ...

Original

Instrumented

Instrumentation

https://qbdi.quarkslab.com/

13 / 26

https://qbdi.quarkslab.com/

QSynth: Overview

Execution tracing
(DBI)

Obfuscated
program Dynamic Symbolic

Execution

Execution
trace

Enumerative
Synthesis Oracle

(generated once for all)

Simplification
Strategy

(for each sub-expression)

inputs equivalent
expressionoutputs

Obfuscated
expressions synthesized

expressions

QBDI
Tool:

14 / 26

QSynth: Overview

Execution tracing
(DBI)

Obfuscated
program Dynamic Symbolic

Execution

Execution
trace

Enumerative
Synthesis Oracle

(generated once for all)

Simplification
Strategy

(for each sub-expression)

inputs equivalent
expressionoutputs

Obfuscated
expressions synthesized

expressions

Tool:

14 / 26

DSE: Symbolic expression computation

⇒ Triton allows computing any symbolic expression along the

trace by backtracking on data dependencies

ϕ , (b + (a − 1)) − 1

Oϕ the associated I/O oracle can be evaluated on different inputs

15 / 26

DSE: Symbolic expression computation

⇒ Triton allows computing any symbolic expression along the

trace by backtracking on data dependencies

ϕ , (b + (a − 1)) − 1

Oϕ the associated I/O oracle can be evaluated on different inputs

15 / 26

DSE: Symbolic expression computation

⇒ Triton allows computing any symbolic expression along the

trace by backtracking on data dependencies

ϕ , (b + (a − 1)) − 1

Oϕ the associated I/O oracle can be evaluated on different inputs

15 / 26

DSE: Symbolic expression computation

⇒ Triton allows computing any symbolic expression along the

trace by backtracking on data dependencies

ϕ , (b + (a − 1)) − 1

Oϕ the associated I/O oracle can be evaluated on different inputs

15 / 26

QSynth: Overview

Execution tracing
(DBI)

Obfuscated
program Dynamic Symbolic

Execution

Execution
trace

Enumerative
Synthesis Oracle

(generated once for all)

Simplification
Strategy

(for each sub-expression)

inputs equivalent
expressionoutputs

Obfuscated
expressions synthesized

expressions

Tool:

16 / 26

QSynth: Overview

Execution tracing
(DBI)

Obfuscated
program Dynamic Symbolic

Execution

Execution
trace

Enumerative
Synthesis Oracle

(generated once for all)

Simplification
Strategy

(for each sub-expression)

inputs equivalent
expressionoutputs

Obfuscated
expressions synthesized

expressions

16 / 26

Synthesis Primitive

Definition

We call Synthesis Primitive any program SP taking as input parameters a

black-box oracle Oϕ and a set of input parameters to the oracle I, and

returning, in case of success, a program p, such that for any i ∈ I then

p(i) = Oϕ(i).

SP(Oϕ,I) ⇒ p | ∀i ∈ I, p(i) ≡ Oϕ(i)

SP(Oϕ,I) ⇒ ∅

17 / 26

Offline Enumerative Search (synthesis primitive SP)

Generate a set of programs based on a

given grammar: (operators & variables)

a + b, a − b, a + a, b + b, a + a − b, . . .

and with a set of inputs: (pseudo-random)

vector I = {(1, 1), (1, 0), (2, 1)}

Evaluate all programs on I and create

the synthesis oracle SP : outputs→ p

Example:
Outputs p
2, 1, 3 a + b

0, 1, 1 a − b

2, 2, 4 a + a

.

18 / 26

Offline Enumerative Search (synthesis primitive SP)

Generate a set of programs based on a

given grammar: (operators & variables)

a + b, a − b, a + a, b + b, a + a − b, . . .

and with a set of inputs: (pseudo-random)

vector I = {(1, 1), (1, 0), (2, 1)}

Evaluate all programs on I and create

the synthesis oracle SP : outputs→ p

Example:
Outputs p
2, 1, 3 a + b

0, 1, 1 a − b

2, 2, 4 a + a

.

18 / 26

Offline Enumerative Search (synthesis primitive SP)

Generate a set of programs based on a

given grammar: (operators & variables)

a + b, a − b, a + a, b + b, a + a − b, . . .

and with a set of inputs: (pseudo-random)

vector I = {(1, 1), (1, 0), (2, 1)}

Evaluate all programs on I and create

the synthesis oracle SP : outputs→ p

Example:
Outputs p
2, 1, 3 a + b

0, 1, 1 a − b

2, 2, 4 a + a

.

18 / 26

Offline Enumerative Search (synthesis primitive SP)

Generate a set of programs based on a

given grammar: (operators & variables)

a + b, a − b, a + a, b + b, a + a − b, . . .

and with a set of inputs: (pseudo-random)

vector I = {(1, 1), (1, 0), (2, 1)}

Evaluate all programs on I and create

the synthesis oracle SP : outputs→ p

Example:
Outputs p
2, 1, 3 a + b

0, 1, 1 a − b

2, 2, 4 a + a

.

18 / 26

Offline Enumerative Search (synthesis primitive SP)

Generate a set of programs based on a

given grammar: (operators & variables)

a + b, a − b, a + a, b + b, a + a − b, . . .

and with a set of inputs: (pseudo-random)

vector I = {(1, 1), (1, 0), (2, 1)}

Evaluate all programs on I and create

the synthesis oracle SP : outputs→ p

Example:
Outputs p
2, 1, 3 a + b

0, 1, 1 a − b

2, 2, 4 a + a

.

18 / 26

Offline Enumerative Search (synthesis primitive SP)

Generate a set of programs based on a

given grammar: (operators & variables)

a + b, a − b, a + a, b + b, a + a − b, . . .

and with a set of inputs: (pseudo-random)

vector I = {(1, 1), (1, 0), (2, 1)}

Evaluate all programs on I and create

the synthesis oracle SP : outputs→ p

Example:
Outputs p
2, 1, 3 a + b

0, 1, 1 a − b

2, 2, 4 a + a

.

18 / 26

Offline Enumerative Search (synthesis primitive SP)

Generate a set of programs based on a

given grammar: (operators & variables)

a + b, a − b, a + a, b + b, a + a − b, . . .

and with a set of inputs: (pseudo-random)

vector I = {(1, 1), (1, 0), (2, 1)}

Evaluate all programs on I and create

the synthesis oracle SP : outputs→ p

Example:
Outputs p
2, 1, 3 a + b

0, 1, 1 a − b

2, 2, 4 a + a

.

18 / 26

Offline Enumerative Search (synthesis primitive SP)

Generate a set of programs based on a

given grammar: (operators & variables)

a + b, a − b, a + a, b + b, a + a − b, . . .

and with a set of inputs: (pseudo-random)

vector I = {(1, 1), (1, 0), (2, 1)}

Evaluate all programs on I and create

the synthesis oracle SP : outputs→ p

Example:
Outputs p
2, 1, 3 a + b

0, 1, 1 a − b

2, 2, 4 a + a

.

18 / 26

Bad ,

I Expressions derived grows exponentially (but can still easily achieve

10 nodes AST expressions)

I This primitive is unsound (it is only sound wrt. I)

Offline Enumerative Search (synthesis primitive SP)

Generate a set of programs based on a

given grammar: (operators & variables)

a + b, a − b, a + a, b + b, a + a − b, . . .

and with a set of inputs: (pseudo-random)

vector I = {(1, 1), (1, 0), (2, 1)}

Evaluate all programs on I and create

the synthesis oracle SP : outputs→ p

Example:
Outputs p
2, 1, 3 a + b

0, 1, 1 a − b

2, 2, 4 a + a

.

18 / 26

Bad ,

I Expressions derived grows exponentially (but can still easily achieve

10 nodes AST expressions)

I This primitive is unsound (it is only sound wrt. I)

Good -

Generated only once and usable on different obfuscations and

across programs

QSynth: Overview

Execution tracing
(DBI)

Obfuscated
program Dynamic Symbolic

Execution

Execution
trace

Enumerative
Synthesis Oracle

(generated once for all)

Simplification
Strategy

(for each sub-expression)

inputs equivalent
expressionoutputs

Obfuscated
expressions synthesized

expressions

19 / 26

QSynth: Overview

Execution tracing
(DBI)

Obfuscated
program Dynamic Symbolic

Execution

Execution
trace

Enumerative
Synthesis Oracle

(generated once for all)

Simplification
Strategy

(for each sub-expression)

inputs equivalent
expressionoutputs

Obfuscated
expressions synthesized

expressions

19 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}

SP[outputs]:

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}
Oϕoutputs = {3, 0, 1}
SP[outputs]: not found

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}
Oϕoutputs = {3, 1, 3}
SP[outputs]: not found

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}
Oϕoutputs = {0, 1, 2}
SP[outputs]: not found

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}
Oϕoutputs = {2, 1, 3}
SP[outputs]: found⇒ A + B

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}
Oϕoutputs = {2, 1, 3}
SP[outputs]: found⇒ A + B

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}
Oϕoutputs = {2, 1, 3}
SP[outputs]: found⇒ A + B

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}
Oϕoutputs = {2, 1, 3}
SP[outputs]: found⇒ A + B

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}
Oϕoutputs = {2, 1, 3}
SP[outputs]: found⇒ A + B

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}
Oϕoutputs = {0, 1, 3}
SP[outputs]: found ⇒ V1 ⊕ A

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}

SP[outputs]:

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}

SP[outputs]:

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}

SP[outputs]:

20 / 26

AST simplification - Example

ϕ , (((A∨ B) + (A∧ B))∧A)− (((A∨ B) + (A∧ B))∨A)

I = {(1, 1), (1, 0), (2, 1)}

SP[outputs]:

20 / 26

Result

Obfuscated:
(((A ∨ B) + (A ∧ B)) ∧ A) − (((A ∨ B) + (A ∧ B)) ∨ A)

⇓

Deobfuscated:
(A + B) ⊕ A

Table of Contents

Background

Software obfuscation

Deobfuscation techniques

Our Synthesis Approach

Goal & Contributions

Approach steps

Experimental Benchmarks

Experimental Setup

Benchmarks

Conclusion

21 / 26

Dataset

⇒ Datasets are built with Tigress 2.2 and the EncodeArithmetic (EA),

EncodeData (ED) and Virtualization (VR).

⇒ In each dataset: 500 obfuscated functions (except 239 for EA-ED)

Mean size ϕ (in node)

Original Obfuscated

#1: Syntia † 3.97 203.19

#2: EA 13.5 131.56

#3: VR-EA 13.5 443.64

#4: EA-ED 13.5 9223.46

†use EA-ED (with 5 derivations max, other are 21 max)

lookup table (SP): 3,358,709 expressions (14 sets of 3 vars & 5 operators each)

input vector size I (for SP): 15

22 / 26

Dataset

⇒ Datasets are built with Tigress 2.2 and the EncodeArithmetic (EA),

EncodeData (ED) and Virtualization (VR).

⇒ In each dataset: 500 obfuscated functions (except 239 for EA-ED)

Mean size ϕ (in node)

Original Obfuscated

#1: Syntia † 3.97 203.19

#2: EA 13.5 131.56

#3: VR-EA 13.5 443.64

#4: EA-ED 13.5 9223.46

†use EA-ED (with 5 derivations max, other are 21 max)

lookup table (SP): 3,358,709 expressions (14 sets of 3 vars & 5 operators each)

input vector size I (for SP): 15

22 / 26

Dataset

⇒ Datasets are built with Tigress 2.2 and the EncodeArithmetic (EA),

EncodeData (ED) and Virtualization (VR).

⇒ In each dataset: 500 obfuscated functions (except 239 for EA-ED)

Mean size ϕ (in node)

Original Obfuscated

#1: Syntia † 3.97 203.19

#2: EA 13.5 131.56

#3: VR-EA 13.5 443.64

#4: EA-ED 13.5 9223.46

†use EA-ED (with 5 derivations max, other are 21 max)

lookup table (SP): 3,358,709 expressions (14 sets of 3 vars & 5 operators each)

input vector size I (for SP): 15

22 / 26

Syntia benchmark

Simplification

Mean expr. size Simplification Mean scale factor

Orig ObfB Synt ∅ Partial Full ObfS/Orig Synt/Orig

Syntia / / / 52 0 448 / /

QSynth 3.97 203.19 3.71 0 500 500 x35.03 x0.94

Orig, ObfS, ObfB, Synt are rsp. original, obfuscated (source, binary level) and synthesized exprs

Accuracy & Speed

Semantic Time

Sym.Ex Synthesis Total per fun.

Syntia / / / 34 min 4.08s

QSynth 500 1m20s 15s 1m35s 0.19s

23 / 26

Syntia benchmark

Simplification

Mean expr. size Simplification Mean scale factor

Orig ObfB Synt ∅ Partial Full ObfS/Orig Synt/Orig

Syntia / / / 52 0 448 / /

QSynth 3.97 203.19 3.71 0 500 500 x35.03 x0.94

Orig, ObfS, ObfB, Synt are rsp. original, obfuscated (source, binary level) and synthesized exprs

Accuracy & Speed

Semantic Time

Sym.Ex Synthesis Total per fun.

Syntia / / / 34 min 4.08s

QSynth 500 1m20s 15s 1m35s 0.19s

23 / 26

Tigress benchmark

Simplification

Mean expr. size Simplification Mean Scale factor

Orig ObfB Synt ∅ Partial Full ObfS/Orig Synt/Orig

Dataset 2
13.5 245.81 21.92 0 500

354
x18.34 x1.64

EA (70.80%)

Dataset 3
13.5 443.64 25.42 0 500

375
- x1.90

VR-EA (75.00%)

Dataset 4
13.5 9223.46 3812.84 5 234

133
x405.25 x234.44

EA-ED (55.65%)

Orig, ObfS, ObfB, Synt are respectively original, obfuscated (source, binary level) and synthesized expressions

Accuracy & Speed

Semantic Time
Sym.Ex Synthesis Total per fun.

Dataset 2 OK: 413
1m7s 1m42s 2m49s 0.34s

EA KO: 4

Dataset 3 OK: 401
17m10s 2m46s 19m56s 2.39s

VR-EA KO: 43

Dataset 4
- 13m18s 2h7m 2h21m 35.47s

EA-ED

24 / 26

Tigress benchmark

Simplification

Mean expr. size Simplification Mean Scale factor

Orig ObfB Synt ∅ Partial Full ObfS/Orig Synt/Orig

Dataset 2
13.5 245.81 21.92 0 500

354
x18.34 x1.64

EA (70.80%)

Dataset 3
13.5 443.64 25.42 0 500

375
- x1.90

VR-EA (75.00%)

Dataset 4
13.5 9223.46 3812.84 5 234

133
x405.25 x234.44

EA-ED (55.65%)

Orig, ObfS, ObfB, Synt are respectively original, obfuscated (source, binary level) and synthesized expressions

Accuracy & Speed

Semantic Time
Sym.Ex Synthesis Total per fun.

Dataset 2 OK: 413
1m7s 1m42s 2m49s 0.34s

EA KO: 4

Dataset 3 OK: 401
17m10s 2m46s 19m56s 2.39s

VR-EA KO: 43

Dataset 4
- 13m18s 2h7m 2h21m 35.47s

EA-ED

24 / 26

Conclusion

Challenge
⇒ Deobfuscating some data-flow based (composite) obfuscations

Results
⇒ A scalable synthesis algorithm improving the state-of-the-art in

both speed and accuracy

Limitation:

I synthesizing expressions using constants

I addressing encoded-data (which scale)

Future work:
I experimenting other synthesis primitives & simplification strategies (D&C..)

I combining with other approach (not necessarily synthesis-based)

I testing against other obfuscators

25 / 26

Conclusion

Challenge
⇒ Deobfuscating some data-flow based (composite) obfuscations

Results
⇒ A scalable synthesis algorithm improving the state-of-the-art in

both speed and accuracy

Limitation:

I synthesizing expressions using constants

I addressing encoded-data (which scale)

Future work:
I experimenting other synthesis primitives & simplification strategies (D&C..)

I combining with other approach (not necessarily synthesis-based)

I testing against other obfuscators

25 / 26

Conclusion

Challenge
⇒ Deobfuscating some data-flow based (composite) obfuscations

Results
⇒ A scalable synthesis algorithm improving the state-of-the-art in

both speed and accuracy

Limitation:

I synthesizing expressions using constants

I addressing encoded-data (which scale)

Future work:
I experimenting other synthesis primitives & simplification strategies (D&C..)

I combining with other approach (not necessarily synthesis-based)

I testing against other obfuscators

25 / 26

Conclusion

Challenge
⇒ Deobfuscating some data-flow based (composite) obfuscations

Results
⇒ A scalable synthesis algorithm improving the state-of-the-art in

both speed and accuracy

Limitation:

I synthesizing expressions using constants

I addressing encoded-data (which scale)

Future work:
I experimenting other synthesis primitives & simplification strategies (D&C..)

I combining with other approach (not necessarily synthesis-based)

I testing against other obfuscators

25 / 26

Thank you!

26 / 26

References

Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari.

Oracle-guided component-based program synthesis.

Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 1, pages 215-224. ACM, 2010.

Synthesis time: 31 seconds in average

Fabrizio Biondi, Sébastien Josse, Axel Legay, and Thomas Sirvent.

Effectiveness of synthesis in concolic deobfuscation.

Computers & Security, 70:500-515, 2017.

Synthesis time: 96 bits in 20 seconds ca.

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz.

Syntia: Synthesizing the semantics of obfuscated code.

26th USENIX Security Symposium (USENIX Security 17), pages 643-659,

2017.

Synthesis time: 4 seconds in average

27 / 26

Presetting pre-computed synthesis lookup

tables

Goal: Finding the smallest discriminative input vector size
How: Checking equivalence by SMT with synthesized expr. (on EA)

x axis: input vector size, y axis: Function number

28 / 26

Presetting pre-computed synthesis lookup

tables

Goal: Finding the smallest discriminative input vector size
How: Checking equivalence by SMT with synthesized expr. (on EA)

x axis: input vector size, y axis: Function number

28 / 26

Conclusion

We chose 15 as a good trade-of between

semantic accuracy and evaluation speed.

Synthesis time distribution (on EA)

29 / 26

Synthesis simplification (on EA)

30 / 26

	Background
	Software obfuscation
	Deobfuscation techniques

	Our Synthesis Approach
	Goal & Contributions
	Approach steps

	Experimental Benchmarks
	Experimental Setup
	Benchmarks

	Conclusion

