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Abstract—Binary reverse engineers combine automated and
manual techniques to answer questions about software. However,
when evaluating automated analysis results, they rarely have
additional information to help them contextualize these results in
the binary. We expect that humans could more readily understand
the binary program and these analysis results if they had access
to information usually kept internal to the analysis, like value-set
analysis (VSA) information. However, these automated analyses
often give up precision for scalability, and imprecise information
might hinder human decision making.

To assess how precision of VSA information affects human
analysts, we designed a human study in which reverse engineers
answered short information flow problems, determining whether
code snippets would print sensitive information. We hypothesized
that precise VSA information would help our participants ana-
lyze code faster and more accurately, and that imprecise VSA
information would lead to slower, less accurate performance than
no VSA information. We presented hand-crafted code snippets
with precise, imprecise, or no VSA information in a blocked
design, recording participants’ eye movements, response times,
and accuracy while they analyzed the snippets. Our data showed
that precise VSA information changed participants’ problem-
solving strategies and supported faster, more accurate analyses.
However, surprisingly, imprecise VSA information also led to
increased accuracy relative to no VSA information, likely due
to the extra time participants spent working through the code.

I. INTRODUCTION

Many static analysis frameworks (e.g., Infer, angr, S2E,
BAP) support building automated binary analyses for tasks like
bugfinding, trigger detection, and malware analysis [7], [11],
[15]–[17], [36], [37]. However, humans must understand the
results from these analyses to use them, and that requires some
manual reverse engineering (RE) to put the results in their
proper context. Can we reuse the work done by the automated
analyses to effectively support that RE effort?

Many automated static analyses perform some form of
value-set analysis (VSA) [3], over-approximating what values
memory and register locations can take on at runtime at each
program point [26]. Binary analyses particularly lean on VSA
because it does not require distinguishing between addresses
and integers [4]. Instead of discarding this VSA information,
we would like to make it available to reverse engineers to help
them contextualize the analysis results.

However, these analyses trade off between precision and
scalability [18]. Some analysis techniques are very precise,
e.g., symbolic execution produces path-, context-, and flow-
sensitive VSA information [5]. Other techniques use ap-
proximation to gain scalability, often by omitting some of
these sensitivities. For example, data structure analysis (DSA)
accepts imprecision through unification-based tracking and
flow-insensitivity [25], and Parfait’s demand-driven framework
finds bug candidates using fast, imprecise analyses but filters
candidates using slower, precise analyses [12]. The effects of
these tradeoffs between approximation and scalability have
been well studied within automated workflows, particularly for
pointer analysis [21]. But before building a system to assist
human reverse engineers, we need to understand the effects
of these tradeoffs on the reverse engineers. We do not want to
build a system that ends up impairing human reasoning — and
approximate VSA information might do just that [26], [27].

To explore the effects of these tradeoffs on reverse engi-
neers, we designed a human studies experiment asking people
to solve a series of information flow problems. Information
flow problems are core to many types of security questions
(e.g., How could this binary leak a password? When does input
influence this critical decision?), and they require reverse en-
gineers to understand how data flows between specific sources
and sinks. In our experiment, we crafted 24 simple C snippets
that looked somewhat like code from a decompiler (e.g.,
Ghidra’s, Ida’s, or DREAM [1], [20], [50]). In each snippet,
we defined “PUBLIC” and “SENSITIVE” information, moved
this information through memory (sometimes conditionally),
and then printed the value of one memory location. We asked
participants to tell us whether each snippet would always,
sometimes, or never print SENSITIVE information.

Figure 1a shows one information flow problem used in the
experiment. In this example, SENSITIVE is written into the
allocation to note; that memory is pointed to by sams, the
memory pointed to by katies, and delivery. The printed
memory, referenced through delivery, always points to
SENSITIVE information, so the answer is always. Although
this example used whimsical variable names, half of our
examples used less meaningful names like eax.

We want to understand the effects of having different
types of VSA information on reverse engineers’ performance
in solving simple information flow problems. Will reverse
engineers use VSA information if they have it? Does the VSA
information help? Does the precision of the information affect
their performance? We know of no structured investigation into
how this kind of imprecision affects a person’s understanding
of a program during analysis-assisted RE.
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note = a l l o c ( ) ;
∗note = SENSITIVE ;
sams = note ;
note = a l l o c ( ) ;
∗note = PUBLIC;
ka t i e s = a l l o c ( ) ;
∗ ka t i e s = sams ;
d e l i v e r y = ∗ ka t i e s ;
p r in t (∗ de l i v e r y ) ;

(a) Code Snippet

note : −>Mem1,−>Mem2
sams : −>Mem1
ka t i e s : −>Mem3
de l i v e r y : −>Mem1

Mem1: SENSITIVE
Mem2: PUBLIC
Mem3: −>Mem1

(b) Precise VSA
Information

note : −>Mem1, −>Mem2
sams : −>Mem1, −>Mem2
ka t i e s : −>Mem3
de l i v e r y : −>Mem1,−>Mem2

Mem1: PUBLIC, SENSITIVE
Mem2: PUBLIC, SENSITIVE
Mem3: −>Mem1, −>Mem2

(c) Imprecise VSA
Information

Fig. 1. One code snippet (information flow problem) from our experiment
and its associated precise and imprecise VSA information. This code snippet
always prints sensitive information.

To answer these questions, we asked our study participants
to answer 24 information flow problems in a blocked design
across three conditions (presented in a random order): eight
problems with only an image of code, eight with images
of code and precise VSA information (see Figure 1b), and
eight with images of code and imprecise VSA information
(see Figure 1c). Our precise and imprecise VSA information
reflected that produced by sound may-analyses for the print
statement, i.e., both included the correct values, but imprecise
VSA information was an over-approximation and also included
some incorrect values. Precise VSA information trivially re-
vealed each problem’s answer given the print statement. (The
print above dereferences delivery; in the precise VSA
information, delivery only points to Mem1, which contains
SENSITIVE, resulting in an always answer.) However, impre-
cise VSA information never revealed the answer.

We collected eye tracking data to answer our first question
(Will people use the information?) and to reveal strategies
used.1 We also collected behavioral data (timing and accuracy)
to answer the latter two questions (Does it help? Does precision
affect performance?). We hypothesized that participants would
have the highest accuracy and fastest response times when
they had precise VSA information to aid their analysis. We
also hypothesized that imprecise VSA information would
produce performance equal to or worse than that with no
VSA information. If participants ignored the imprecise VSA
information, their performance should be equivalent to the no
VSA information condition. Alternatively, if participants spent
time trying to understand the imprecise VSA information,
which provided very little detail, they should be slower and
perhaps less accurate than when they had no VSA information.

In this paper, we describe our experiment to determine
whether VSA information (precise or imprecise) can aid a
reverse engineer’s understanding of a program, present and
discuss our results, and briefly touch on implications for static
analysis tool builders. Our contributions include:

• presentation and analysis of behavioral and eye track-
ing data from a human subjects research study, show-
ing that fully precise VSA information does improve
speed and accuracy of reverse engineers in small
information flow problems, and that imprecise VSA
information (as compared to no VSA information)
improves accuracy but decreases speed;

• an analysis of this data comparing results between
less and more experienced participants, showing that

1To facilitate eye-tracking data collection, we presented both code and VSA
information as static images rather than using a RE platform like Ghidra. Some
participants noted that they missed Ghidra’s taint highlighting.

VSA information (both precise and imprecise) raised
the accuracy of less experienced participants to be
comparable to more experienced participants’, and
that precise VSA information led less experienced
participants to adopt strategies similar to those of
highly experienced participants; and

• the stimuli and experimental framework used to gather
this data, which we release to support reproducibility.

II. RELATED WORKS

A rich body of work over the past several decades looks to
characterize the workflows and cognitive processes in reverse
engineering (RE), program understanding, and defect discov-
ery. This work explores both possible and actual interactions
between human analysts and automated analyses. Many, but
not all, of these studies focus on source code. Here, we mention
a few publications specifically related to human studies.

Some of the studies that characterize RE directly are more
applied, using metrics related to achieving a realistic RE goal.
Example study goals in this category of study include charac-
terizing the processes and reasoning [8] (even without human
studies [46]), defining appropriate approaches to RE tasks [29],
and identifying effective functional allocation between humans
and automated analyses [38]. Our study falls into the other
category, using metrics focused on the cognitive processes.
Study goals in this category include determining what support
humans need for gaining program understanding [42], and, in
the programming domain, determining information needs when
addressing interruption-caused memory failures [30].

Human studies in this domain have used a range of
techniques to gain process insights, including post-hoc analysis
or surveys as in [9] (potentially missing automatic decisions),
think-aloud protocols or semi-structured interviews as in [45]
(potentially changing analysts’ approaches), or in situ data
collection (potentially losing information about the relevance
of actions). Other studies, like ours, take the general approach
used in cognitive science research: developing a task that
explores the cognitive processes of interest but is controlled
enough to support understanding the data. This latter approach
can provide interesting insights, even though the stimuli may
not be realistic, and it supports the collection of fine-grained
physical evidence using tools like fMRI [39] or eye tracking.

Eye tracking data has been used to identify differences
between experts and novices during program comprehension
tasks, e.g., learning to mitigate software vulnerabilities [14].
[34] provides a review of studies using eye-tracking to study
source code understanding. In code comprehension tasks, the
relationship between expertise and number or location of
fixations is task dependent. When asked to make trustworthi-
ness judgments, experts make more fixations within a piece
of code than novices, although their comprehension of the
code does not differ [22]. In bug detection, though, experts
make more vertical eye movements than novices up-front [31]
and achieve faster bug detection later [35], [44]. In code
or print statement characterization, experts spend more time
viewing task-relevant lines of code, and they tend to focus on
beacons in the code [13], but novices spend more time reading
comments [6]. We are using eye tracking data to evaluate how
reverse engineers will use automated analysis results to help
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them understand code, and whether experts and novices use
those results differently.

Many user studies evaluate existing tooling to explore how
automation might support RE. The goals of these studies
include comparing specific tools [49], understanding why
available tools are not used [23], [40], evaluating the utility of a
single tool [2], [28], and discovering information requirements
of would-be users [41]. Although our study is similar in that
we are evaluating the utility of a single type of information,
our evaluation focuses on potential information prior to tool
development rather than information from an existing tool.

Detailed studies like these have taken us a long way, but
we still have much to learn about the cognitive processes
supporting RE tasks, and what information and automation
would best support RE [10], [43]. Thus, we take another small
step in this basic research to understand how binary analyses
can help humans better understand programs; specifically,
we use eye-tracking to understand in detail how cognitive
processing and strategies change in decompiled binary RE
given different VSA information approximations.

III. METHODS

Prior to data collection, this study was reviewed and
approved by the Human Subjects Board at Sandia National
Laboratories, in accordance with the Federal Policy for the
Protection of Human Subjects.

A. Materials

In this experiment, we asked participants to evaluate a set
of 24 information flow problems (reasoning about source to
sink relationships). Each problem required analyzing a code
snippet that moved PUBLIC and SENSITIVE information
through memory (sometimes conditionally) and then printed
the value of one memory location. We asked participants to tell
us whether each snippet would always, sometimes, or never
print SENSITIVE information. The stimuli consisted of these
24 code snippets, each of which could be paired with precise
VSA information, imprecise VSA information, or no VSA
information. All images of code problems, VSA information,
and problem descriptions are available in our supplemental
materials.2 An example of one of the problems, and its layout,
is shown in Figure 3.

Each hand-crafted snippet was written in basic C to reflect
decompiler code; half of the problems used semantically
relevant names like those a reverse engineer might apply
(Figure I), and half used less semantically meaningful names
more like those a decompiler might apply by default (Fig-
ure 3).3 Our snippets used two C types, pointers and integers;

2Supplemental materials: https://github.com/maleger/vsa4infoflowstudy
3Because novices are less accurate when using semantically meaningless

variable names [31], and because we had some imbalance in which problem
types had which variable name types, our use of both meaningful and
meaningless variable names could have been problematic. However, these
differing name types did not appear to be problematic in this case. Labeling
variable name types as “letter” or “word,” participants averaged 81.4% correct
for “letter” variables and 81.2% for “word” variables. Given this, and given
that we provided no type information, we further believe that presenting
disassembled code rather than source would not impact the shape of our results
(although it might slow the process). However, our problems did not give us
any insight into the effects of reused variable names.

integers could be either an enumeration value of PUBLIC or
SENSITIVE, or 0 through 3. Each snippet allocated memory,
explicitly initialized memory to PUBLIC or SENSITIVE or to
point to other memory, moved values through memory (using
dereferences, assignments, and conditional statements testing
for equality), and ultimately dereferenced a variable to print
the value from one memory location. Because the snippets did
not use arithmetic, VSA information in this study devolved to
points-to information.

The hand-crafted precise and imprecise VSA information
showed at least all possible values of variables and mem-
ory at the print statement, reflecting results from an over-
approximate, may-points-to value-set analysis. Precise VSA
information was always sufficient to answer the information
flow problem (given the print), and imprecise VSA information
was never sufficient to answer the problem. Thus, the memory
printed always pointed to both PUBLIC and SENSITIVE in
imprecise VSA information, but it only pointed to both in
precise VSA information when the answer was sometimes.

All problems reflect this structure, but we further clas-
sify the problems into four different types, “flow,” “path,”
“field,” and “callsite,” so named to reflect our inspiration for
the problems.4 We created six problems of each type: three
were intended to be easy, and three were intended to be
more difficult. More difficult problems used more statements,
indirection, or oddly ordered conditionals than easier problems.
In each difficulty level, we created one problem that always
printed SENSITIVE information, one that never did, and one
that sometimes did. Thus, overall, half of the problems were
easy, and half were more difficult; and each of the three
possible answers was correct for 1/3 of the problems.

Flow problems, like that seen in Figure I, used multiple
assignments to the same location (memory or variables) to
cause imprecise approximations. Sometimes flow problems
additionally used a conditional statement.

Path problems additionally used conditional assignments.
We define these conditional code regions to be either Con-
ditional Sources, where each branch assigns from a different
source location to the same destination, or Conditional Des-
tinations, where each branch assigns from the same source
to a different destination. (Figure 11 shows these two types
of code regions in a callsite-inspired problem.) More difficult
path problems used multiple related conditionals.

Field problems used at least two levels of memory indi-
rection along with Conditional Sources. See Figure 2 for an
example of an easy field problem. More difficult field problems
used more levels of indirection.

Callsite problems, like that seen in Figure 3, used Con-
ditional Sources, paired Conditional Destinations (i.e., the
conditions between the two were identical), and straightline
code between the two with direct information flow from the
shared destination of the Conditional Source to the shared
source of the Conditional Destination. More difficult callsite
problems presented the paired conditionals in reverse order.

4These names are notional and do not reflect a formal use of flow-,
path-, callsite-, and field-sensitivity. However, we constructed imprecise VSA
information to reflect the results of an analysis that lacked at least one critical
sensitivity (flow- or path-, for these problems), and we constructed the precise
VSA information to reflect flow- and path-sensitive results.
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// assume o i s 2
f1 = a l l o c ( ) ;
f 2 = a l l o c ( ) ;
b = a l l o c ( ) ;
∗b = f1 ;
∗∗b = SENSITIVE ;
∗b = f2 ;
∗∗b = PUBLIC;
i f ( o == 1) {

∗b = f1 ; }
i f ( o == 2) {

∗b = f2 ; }
r e s = ∗b ;
p r in t (∗ r e s ) ;

(a) Code Snippet

f 1 : −>Mem1
f2 : −>Mem2
b : −>Mem3
o : 2
r e s : −>Mem2

Mem1: SENSITIVE
Mem2: PUBLIC
Mem3: −>Mem2

(b) Precise VSA
Information

f 1 : −>Mem1
f2 : −>Mem2
b : −>Mem3
o : ?
r e s : −>Mem1, −>Mem2

Mem1: SENSITIVE , PUBLIC
Mem2: SENSITIVE , PUBLIC
Mem3: −>Mem1, −>Mem2

(c) Imprecise VSA
Information

Fig. 2. An example of the easy field problem, where the code never prints
sensitive data, along with its precise and imprecise VSA information.

Fig. 3. An example of the problem layout. This example is a callsite problem
paired with precise VSA information. The correct answer is sometimes.

Pairing each of the 24 snippets with each of the three
possible VSA information types, we had a total of 72 stimuli.
We organized the stimuli into counterbalanced blocks of trials,
where each block had eight different problems paired with
the same type of VSA information. Within each block, the
stimuli were placed in a fixed random order (i.e., the same
order for each participant). We also counterbalanced the order
of the blocks: across participants, the block containing each
VSA information type appeared equally often first, second,
or third. This counterbalancing procedure resulted in nine
experimental lists, where every problem appeared in every
condition, and every block appeared in every position across
lists. Each participant saw one of the nine experimental lists.

B. Procedure

After completing the informed consent process, participants
filled out a basic demographic questionnaire, providing their
age, highest level of education, and level of experience with
C and similar programming languages, information leakage,
pointer analysis, and reverse engineering.

Participants sat in a dimly lit, sound-attenuating booth, with
their eyes approximately 60 cm from the computer monitor
displaying the stimuli. We asked participants to sit as still as
possible throughout the experiment and to avoid leaning for-
ward or backward. A Fovio eye tracker recorded participants’
eye movements during the task. After participants were seated
comfortably, the eye tracker was calibrated using a five point
calibration screen. Then participants read the instructions for
the task.5 The instructions explained that the participant would

5The complete instructions are provided in our supplemental materials.

be using code snippets and three types of VSA information
(precise, imprecise, or no VSA information) to determine
whether each code snippet would always, sometimes, or never
print sensitive information. The instructions gave examples to
illustrate the nature and format of the precise and imprecise
VSA information, and they demonstrated how PUBLIC and
SENSITIVE information could be traced through the code
snippets to the print. We instructed participants to prioritize
accuracy but to answer the questions as quickly as possible.

As described above, we presented the stimuli in blocks of
eight problems, displaying the same type of VSA information
for all problems in a block. Before each block, a screen of
instructions indicated whether the trials in that block would
have precise, imprecise, or no VSA information. Participants
were given breaks between the blocks.

We used E-Prime 3.0 software to present the experimental
stimuli. Each trial began with a fixation cross “+” presented
in black 48 point font on a white background. We instructed
participants to stare at the cross until the code and VSA infor-
mation appeared; it was displayed alone on the screen for 2
seconds and remained on the screen when the images appeared.
The code always appeared on the left side of the screen, and,
when present, the VSA information appeared on the right.
Three response buttons, labeled ALWAYS, SOMETIMES,
and NEVER, appeared in the lower right-hand corner of the
screen (see Figure3). Each stimulus remained on the screen
until the participant clicked on one of the response buttons
with the mouse. Then, a new screen appeared with a button
that said “Continue to next problem.” Participants clicked on
that button when they were ready to advance to the next trial.
Most participants completed the self-paced experiment within
45 minutes, although a handful took longer.

C. Participants

Twenty Sandia employees (four female) participated in the
experiment. They were compensated for their time at their
normal hourly rate. The mean age of the participants was 32
(range 22-49). Four of the participants held bachelor’s degrees,
twelve held master’s degrees, and four held Ph.Ds.

Of the twenty participants, eleven reported having 8-20
years of experience with C and similar programming lan-
guages. All but three of these participants indicated that they
had experience with answering questions about information
leakage, and all but one indicated that they had experience with
pointer analysis. All of them reported that they had experience
with reverse engineering.

The other nine participants were less experienced. They
reported having 2-5 years of experience with C, but minimal or
no experience with answering information leakage questions.
One participant rated themselves as being knowledgeable about
pointer analysis and two rated themselves as being knowledge-
able about reverse engineering. The rest of the participants
indicated that they had little or no experience in those areas.

IV. BEHAVIORAL RESULTS

Before analyzing our results, we assessed whether the
difficulty level, information leakage type, and problem type
impacted participants’ responses as we intended. If we were
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Fig. 4. Average accuracy (left) and response times (right) by difficulty level.
Error bars in all figures represent the standard error of the mean.
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Fig. 5. Average accuracy (left) and response times (RTs, right) for problems
where always, sometimes or never was the correct response.

Participants’ Answer
Always Never Sometimes

Always 124 9 27
Correct Never 2 127 31
Answer Sometimes 5 16 139

TABLE I. COUNT OF PARTICIPANTS’ ANSWERS BY CORRECT ANSWER.

successful in stimulus design, participants should have faster,
more accurate responses to easier problems than to more
difficult problems, and the type of information leakage (i.e.,
whether the answer was always, sometimes, or never) should
not have affected accuracy or response time (RT).

Figure 4 shows the average accuracy and response times
(RTs) for each problem difficulty level. We used paired t-
tests to determine whether difficulty level impacted partici-
pants’ performance. As predicted, participants had significantly
higher accuracy for easier problems (t(19) = 3.91, p < 0.001),
and they spent significantly more time on more difficult
problems (t(19) = 7.88, p < 0.001). These results indicate that
our easy and more difficult problems functioned as intended.

Figure 5 shows the average accuracy and RTs for each
information leakage condition. These problems were intended
to be equivalent in difficulty to one another - problems that
never printed sensitive information should not be more diffi-
cult than problems that always or sometimes did. One-way
ANOVAs [24] showed no significant differences in accuracy
(F (2, 57) = 2.02, p = 0.14) or RTs (F (2, 57) = 0.51,
p = 0.60) across the three conditions. These results show
that we successfully developed problems that were similar in
difficulty for each information leakage condition.

Although participants’ performance did not differ signifi-
cantly across the information leakage conditions, we observed
that participants chose the sometimes response most often (see
Table I), even though all responses were correct equally often.
When the correct answer was always or never, participants
were likely to choose sometimes if they answered the problem
incorrectly, perhaps answering sometimes when they were
unsure. In the future, we suggest having an additional response,
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Fig. 6. Average accuracy (left) and RTs (right) by problem type.
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Fig. 7. Average accuracy (left) and RTs (right) by VSA information type.

unsure, to distinguish between answers that are confidently
sometimes and those that are not.

We also assessed the effect of problem type on participants’
performance. Figure 6 shows the average accuracy and RTs for
each problem type. One-way ANOVAs showed that problem
type had a significant effect on accuracy and RTs (both
F s > 6.49, both ps < 0.001). Paired t-tests showed that
participants had significantly higher accuracy and significantly
faster RTs for flow problems than for any other problem type
(all ts > 1.82, all ps < 0.05). Participants performed next
best on path problems, with significantly better accuracy and
significantly faster RTs than on field and callsite problems (all
ts > 1.90, all ps < 0.04). Participants performed most poorly
on field and callsite problems. While the participants’ RTs
were significantly faster for field problems than for callsite
problems (t(19) = 2.12, p = 0.02), their average accuracy
for these two types of problems did not differ significantly
(t(19) = 1.53, p = 0.07, one-tailed). These results showed
that flow problems were easiest for participants, while callsite
and field problems were the most difficult.

A. Impact of VSA Information Type

The results above indicate that our stimuli showed the
intended variations in difficulty across conditions. Participants
had better performance for easier problems and similar perfor-
mance across information leakage conditions (although they
answered sometimes more frequently). The different problem
types varied in difficulty, producing a range of performance.

Our primary goal in this experiment was to assess the
impact of different VSA information types on participants’
accuracy, RTs, and patterns of eye movements. To do this,
we first analyzed the impact of each VSA information type
(precise, imprecise, and no VSA information) on participants’
overall performance, and we then assessed the impact of the
different VSA information types on participants’ performance
across the two difficulty levels and the four problem types.

Figure 7 shows participants’ overall accuracy and RTs
in the three VSA information conditions. One-way ANOVAs
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Fig. 8. Average accuracy (left) and response times (RTs, right) by VSA
information type and difficulty level.

showed that VSA information type had a significant effect
on the participants’ accuracy and RTs (both F s > 10.24,
both ps < 0.001). Paired t-tests showed that participants
were significantly more accurate when given precise VSA
information than when given imprecise or no VSA information
(both ts > 3.93, both ps < 0.001). Surprisingly, they were
also significantly more accurate when given imprecise VSA
information than when given no VSA information (t(19) =
1.79, p = 0.04, one-tailed). For the RT data, paired t-tests
showed that participants responded significantly faster when
given precise VSA information than when given imprecise
or no VSA information (both ts > 6.29, both ps < 0.001),
and significantly slower when given imprecise VSA informa-
tion than when given no VSA information (t(19) = 2.01,
p = 0.03, one-tailed). Overall, the results showed that precise
VSA information improved both the speed and accuracy of
participants’ decisions. Contrary to our predictions, imprecise
VSA information also led to improved accuracy, but that
improvement came at a cost: participants were much slower
in the imprecise VSA condition than in any other condition.

Figure 8 shows the average accuracy and RTs for each
VSA information type, broken down by problem difficulty. A
two-way repeated measures ANOVA showed that accuracy was
significantly affected by VSA information type (F (2, 95) =
15.09, p < 0.001) and by difficulty level (F (1, 95) = 11.74,
p < 0.01). There was also a significant interaction between
VSA information type and difficulty level (F (2, 95) = 4.01,
p = 0.02). RTs were similarly affected by VSA information
type (F (2, 95) = 39.03, p < 0.001) and by difficulty level
(F (1, 95) = 59.25, p < 0.001), and the ANOVA again showed
significant interaction between the two (F (2, 95) = 7.29,
p < 0.01). When no VSA information was shown, participants
had much lower accuracy and much longer RTs on more
difficult problems relative to easier problems. Showing par-
ticipants imprecise VSA information eliminated the difference
in accuracy between easier and more difficult problems, but
the difference in RTs remained. Showing participants precise
VSA information eliminated the accuracy difference and nearly
eliminated the RT difference. Paired t-tests confirmed this,
showing a significant difference in accuracy between easier and
more difficult problems when no VSA information was shown
(t(19) = 4.16, p < 0.001), but not when imprecise or precise
VSA information was shown (both ts < 1). The average
RTs for easier and more difficult problems were significantly
different for all three VSA information conditions (all ts
> 2.05, all ps < 0.03), but the magnitude of the difference
was much smaller when precise VSA information was shown.
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This pattern indicates that the presence of VSA information
was particularly helpful for more difficult problems, making
participants’ accuracy on more difficult problems comparable
to their accuracy on easier problems.

We also assessed the interplay between problem type and
VSA information type (Figure 9). For the accuracy data, a two-
way repeated measures ANOVA showed a significant main ef-
fect of problem type (F (3, 209) = 10.52, p < 0.001), a signifi-
cant main effect of VSA information type (F (2, 209) = 19.64,
p < 0.001), and a significant interaction between the two
(F (6, 209) = 3, 51, p < 0.01). Similarly, the RT data showed
a significant main effect of problem type (F (3, 209) = 17.41,
p < 0.001), a significant main effect of VSA information type
(F (2, 209) = 72.85, p < 0.001), and a significant interaction
between the two (F (6, 209) = 2.28, p = 0.04).

One-way ANOVAs comparing the four problem type con-
ditions within each VSA information type condition showed a
significant effect of problem type on accuracy and RTs when
there was no VSA information or imprecise VSA information
(all F s> 3.76, all ps< 0.02). However, when participants had
precise VSA information, there was no longer a significant
effect of problem type for either accuracy (F (3, 76) = 0.35)
or RTs (F (3, 76) = 0.36). Once again, the presence of precise
VSA information mitigated the impact of problem difficulty,
allowing participants to perform equally well for all four
problem types (with no significant differences in accuracy or
RTs). We expected that precise VSA information would reduce
all problem types to the same kind of question; this confirmed
our expectation.

B. Impact of Experience

To assess the impact of the participants’ prior experience
with information leakage questions, pointer analysis, and re-
verse engineering on their performance, we compared the aver-
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Fig. 11. An example of the ROIs for one stimulus. Blue regions within the
Code ROI are Public ROIs, and red regions are Sensitive ROIs.

age accuracy of participants who had professional experience
in those areas (11 participants) to those who did not (9 partic-
ipants) for each VSA information type. A two-way ANOVA
with VSA information type and experience level as factors
showed a significant interaction between VSA information type
and experience (F (2, 36) = 3.29, p < 0.05). Post-hoc t-tests
showed that more experienced participants had significantly
higher accuracy than less experienced participants when given
no VSA information (t(13) = 1.91, p = 0.04). However,
the difference between the two groups was eliminated when
either precise VSA information or imprecise VSA information
was available (both ts < 1). As shown in Figure 10, the
presence of either type of VSA information enabled the less
experienced participants to perform at the same level as the
more experienced participants.

V. EYE TRACKING RESULTS

Due to a technical problem impacting eye tracking data
from five participants, only 15 participants (eight experienced
and seven less experienced) were included in the eye tracking
analysis. Human eye movements consist of saccades (fast
eye movements from one location to another) and fixations
(where the eyes are relatively stationary). Virtually all visual
information processing occurs during fixations [32], [33]. In
our analysis, we used the default algorithm in the EyeWorks
software to calculate fixations, using one degree of visual
angle for the spatial parameter (estimated at 52 pixels based
on the distance from the participants’ eyes to our computer
monitor). We divided each stimulus into regions of interest
(ROIs) for the eye tracking analysis. We defined two high-
level ROIs: one for the code, on the left side of the screen,
and one for the VSA information, on the right side. We also
conducted a more fine-grained analysis, subdividing the code
and VSA information ROIs into smaller regions. We split the
VSA information region into two ROIs: Variables and Memory.
We identified seven possibly overlapping subdivisions in the
Code ROI: Start, Memory Initialization, Conditional Source,
Conditional Destination, Sensitive, Public, and Print. Not every
stimulus had all of these seven ROIs, and each line of code was
included in all relevant ROIs. Figure 11 shows example ROIs
for one stimulus. A more detailed explanation of the ROIs is
provided in the supplemental materials.
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Fig. 12. Average proportion (percentage) of fixations to the Code and
VSA Information Regions of Interest (ROIs) for each VSA information type
condition, additionally broken down by problem difficulty, by problem type,
and, for the precise VSA information condition only, by experience.

A. Fixations to the Code and VSA Information Regions of
Interest

For our high-level analysis, we calculated the total number
of fixations for each trial, then calculated the average pro-
portion of fixations to the Code and VSA Information ROIs.
Changes to the distribution of fixations to the different ROIs
reflect changes in the participants’ information processing
strategies, since people tend to fixate on the information that
they consider to be most relevant to their current task [19],
[48]. Figure 12a shows the results of this analysis. As expected,
participants did not fixate in the VSA Information ROI when
no VSA information was present. When the imprecise VSA
information was shown, approximately 18% of participants’
fixations (on average) were in the VSA Information ROI, and
when the precise VSA information was shown, approximately
37% of participants’ fixations were in the VSA Information
ROI. This shows that participants did use the VSA informa-
tion, and that they relied more heavily on the precise VSA
information than on the imprecise VSA information.

We found that problem difficulty had no impact on how
much participants fixated on the imprecise VSA information
(Figure 12b). When given precise VSA information, partici-
pants had a numerically higher proportion of fixations to the
VSA information for more difficult problems than for easier
problems. However, this difference did not reach statistical
significance (t(14) = 1.43, p = 0.08).

Incorporating participants’ experience levels, our analysis
showed that the more experienced participants drove this
trend toward fixating more on the precise VSA information
for difficult problems. As shown in Figure 12d, the less
experienced participants looked at the Code ROI more often
than they looked at the Precise VSA Information ROI. This
difference was significant for easier problems (t(11) = 3.00,
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p < 0.001) and marginally significant for more difficult
problems (t(10) = 1.80, p = 0.05). In contrast, the more
experienced participants had more similar proportions of fix-
ations to the Code and VSA Information ROIs. For easier
problems, they had a slightly higher proportion of fixations
to the Code ROI than to the VSA Information ROI. This
pattern switched for more difficult problems, with experienced
participants having a higher proportion of fixations to the VSA
Information ROI than to the Code ROI. This switch indicates
that the more experienced participants tended to rely more on
the VSA information for the more difficult problems.

When we considered the different problem types, we
observed again that when precise VSA information was
available, participants had a lower proportion of fixations to
the Code ROI and a higher proportion of fixations to the
VSA Information ROI (Figure 12c). The problem type did
not impact the proportion of fixations to the precise VSA
information (F (3, 56) = 0.58); participants devoted 33-40%
of their fixations to the VSA Information ROI across all four
problem types. However, problem type did have an impact on
the proportion of fixations to the imprecise VSA information
(F (3, 56) = 2.99, p < 0.04).

B. Fixations to the Smaller ROIs Within the Code and VSA
Information Regions

We next examined the patterns of fixations to the smaller
ROIs that marked specific features within the code or VSA
information. The VSA Information ROI contained Variables
and Memory ROIs (see Figure 11). We did not observe
any differences in the proportions of fixations to those ROIs
across any of the experimental conditions. For all conditions
in which VSA information was present, participants devoted
approximately equal proportions of fixations to the Variables
ROI and the Memory ROI.

When looking at the smaller ROIs within the Code ROI,
we considered each problem type separately because some
ROIs were specific to certain problem types. The results for
each problem type are shown in Figure 13. As expected, we
observed a reduced proportion of fixations to each of the ROIs
in the code region when VSA information was present. In
most cases, the magnitude of the reduction was similar for
all ROIs, producing similar distributions of fixations across all
VSA information types. For example, in flow problems, the
Sensitive ROI always had the highest proportion of fixations
and the Public ROI always had the second highest proportion
of fixations, regardless of VSA information type. This indicates
that the presence of VSA information decreased participants’
fixations to the ROIs in the code region in general, rather than
having a disproportionate impact on some ROIs over others.

We saw one exception to this general pattern. In callsite
and path problems, participants had a higher proportion of fix-
ations to the Conditional Source ROIs than to the Conditional
Destination ROI when given no VSA information or imprecise
VSA information. That pattern reversed when they were given
precise VSA information; participants then had numerically
higher proportions of fixations to the Conditional Destination
ROI than to the Conditional Source ROIs. In these two problem
types, the relationship between the conditional source and the
conditional destination is critical to determining whether or
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Fig. 13. Average proportion of fixations to the line-by-line ROIs in the Code
region for the four problem types. Callsite problems are shown in (a), field
problems in (b), flow problems in (c), and path problems in (d).

not the code will print sensitive information. The fact that
participants spent less time studying the Conditional Source
ROIs when precise VSA information was present indicates that
they were using the information from the VSA information
when reasoning about these problems. With the assistance of
the VSA information, they did not need to spend as much
time studying the information in the Conditional Source ROIs.
Instead, they could study the VSA information and then
check their understanding of the VSA information against the
information in the Conditional Destination ROI. The VSA
information reduced the overall amount of time needed to
understand the code, but it also changed how participants
interacted with specific parts of the code.

C. Order of Fixations to ROIs

We next assessed the order in which participants fixated on
various regions in the code to determine whether their level of
experience or the type of VSA information presented had an
impact on their strategies. Given precise VSA information, par-
ticipants could have answered the question of whether the code
always, sometimes, or never printed sensitive information by
looking only at the print statement and the VSA information,
ignoring the rest of the code. The eye tracking data revealed
that some participants did just that, as shown in Figure 14.
A trace of all of the gaze points on this trial shows that this
participant started at the fixation cross, looked at the VSA
information, then the print statement in the code, then back to
the VSA information, and finally to the correct response button
at the bottom of the screen before clicking on that button.

To assess how often participants used this strategy, we
analyzed the time between trial onset and each participant’s
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Fig. 14. Gaze data for one participant on one trial. The green circle shows
the position of the participant’s gaze at the beginning of the trial, and the color
coding shows how the participant’s eye movements unfolded over time.

first fixation on the VSA Information ROI, the Start ROI in
the code region, and the Print ROI in the code region. If
participants read the code from top to bottom, we would expect
a shorter time to first fixation for the Start ROI relative to
the Print ROI. If a participant started from the Print ROI and
worked backwards through the code, we would expect the Print
ROI to have a shorter time to first fixation than the Start ROI.

We found that most participants generally read the code
from top to bottom, fixating on the Start ROI before the Print
ROI. Given no VSA information, the average time between
trial onset and the first fixation on the Start ROI was 6.44
seconds (SD = 6.55s), while the average was 19.5 seconds
for the Print ROI (SD = 11.28s). Only three participants
fixated on the Print ROI before the Start ROI (as determined
by average time to first fixation). All three of those participants
were from the highly experienced group.

Given imprecise VSA information, the average time to
first fixation across all participants was shortest for the Start
ROI at 7.98 seconds (SD = 6.41s), slightly longer for the
VSA Information ROI at 9.49 seconds (SD = 7.18), and
longest for the Print ROI at 19.27 seconds (SD = 17.20). This
indicates that participants often started reading the code from
the top, glancing back and forth between the code and the VSA
information as they worked their way to the bottom. However,
the overall averages obscure the fact that different participants
used different strategies. While seven participants followed
the pattern observed when averaging across all participants,
eight did not. A group of four participants consistently fixated
on the VSA Information ROI first, then on the Print ROI,
and later on the Start ROI. Once again, all four were in the
highly experienced group. Another two highly experienced
participants tended to fixate on the Print ROI first, then on
the Start ROI, and later on the VSA Information ROI, after
working their way backwards through the code. Finally, two
participants, both among the least experienced, had unique
patterns. One of these tended to fixate on the VSA Information
ROI first, then on the Start ROI, and then on the Print ROI.
The other tended to fixate on the Print ROI first, then on the
VSA Information ROI, and later on the Start ROI.

The average times to first fixation in our three regions of

interest were quite different when participants were shown
precise VSA information. Here, when averaging across all
participants, the average time to first fixation was lowest for the
VSA Information ROI at 4.86 seconds (SD = 2.97), somewhat
longer for the Start ROI at 9.83 seconds (SD = 9.32s), and
longest for the Print ROI at 15.14 seconds (SD = 17.12s).
A total of eleven participants (six highly experienced and five
less experienced) consistently fixated on the VSA Information
ROI first. Seven of those eleven, including five of the highly
experienced participants, tended to fixate on the Print ROI
next and the Start ROI last (although one highly experienced
participant never fixated on the Start ROI at all in trials with
precise VSA information), while the other four participants
tended to fixate on the Start ROI before the Print ROI. Another
group of three participants tended to fixate on the Start ROI
first, the VSA Information ROI later, and the Print ROI last.
Finally, one of the less experienced participants tended to
fixate on the Start ROI first, the Print ROI next, and the VSA
Information ROI last.

One takeaway from the differences across VSA information
conditions is that precise VSA information made the less
experienced participants’ eye movements more like those of
the highly experienced participants. When given no VSA
information or imprecise VSA information, none of the less
experienced participants consistently used a strategy of starting
from the print statement and working backwards through the
code. In addition, when given imprecise VSA information,
none of the less experienced participants started by looking
at the VSA Information, whereas half of the more experi-
enced participants started there. Yet when given precise VSA
information, the majority of participants (11 of 15) tended to
use a strategy where they started from the VSA Information
ROI, and two of the less experienced participants adopted the
experts’ strategy of looking at the Print ROI before looking at
the Start ROI.

VI. DISCUSSION

In our experiment, we found that providing participants
with precise VSA information improved their speed and accu-
racy in assessing information flow through code. We also found
that providing imprecise VSA information improved partici-
pants’ accuracy relative to having no VSA information, but it
decreased participants’ speed. The speed-accuracy tradeoff is
a common finding in research on cognition [47], so it is likely
that the additional time spent on imprecise VSA problems led
to the accuracy improvement.6

We also found an interaction between problem difficulty
and the three VSA information conditions. Participants per-
formed reasonably well on easier code problems when given
no VSA information, but they struggled for more difficult
problems, spending much more time on each problem and
providing incorrect responses an average of 40% of the time.
When given imprecise VSA information, participants were still
slower for more difficult problems than for easier problems,

6We have noticed that reverse engineers often avoid using imprecise
automated analyses for support when they can perform a task manually. We
wonder if reverse engineers make this trade-off because their tools do not
meet their information needs, like developers [23], or because their analyses
are time-limited and they can identify and correct classification errors later.
This remains interesting future work.
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but the difference in average accuracy was eliminated. When
given precise VSA information, participants had equally good
accuracy for both easy and difficult problems, and the differ-
ence in response times (RTs) was nearly eliminated as well.7

We saw a similar pattern when considering different prob-
lem types (flow, path, field, and callsite problems). Precise
VSA information was particularly beneficial for the more diffi-
cult problem types. We observed significant effects of problem
type on participants’ accuracy and RTs when there was no
VSA information or imprecise VSA information, but providing
precise VSA information eliminated these differences, leading
to near-ceiling accuracy across all four types of problems.
Recall that our stimuli were fully counterbalanced, so the same
code problems appeared equally often with each type of VSA
information across all participants. This allows us to conclude
that the differences between VSA information types are driving
these results.

Our analysis of participants’ eye movements provided
further evidence that the precise VSA information was helpful
to participants, particularly for more difficult problems. The
eye tracking data confirm that participants used the VSA
information, particularly the precise VSA information. All
participants had a higher proportion of fixations to the VSA
Information region of interest (ROI) when given precise VSA
information than when given imprecise VSA information. For
more experienced participants, the proportion of fixations to
the precise VSA information grew even higher when the
problems were more difficult. We also observed that the
presence of precise VSA information could change which
parts of the code participants looked at most. For callsite and
path problems, participants had a high proportion of fixations
to the Conditional Source ROIs when there was no VSA
information or imprecise VSA information. When precise VSA
information was shown, the relative proportion of fixations to
the Conditional Source ROIs dropped substantially, while the
relative proportion of fixations to the Conditional Destination
ROIs increased. This pattern indicates that participants may
have changed their strategies for reasoning about the code
when precise VSA information was available.

Finally, our analysis of the order of participants’ fixa-
tions showed that more experienced participants often used
different strategies for approaching the code problems than
less experienced participants. Some of the most experienced
participants tended to start from the print statement and work
their way up the code when given no VSA information. When
given imprecise VSA information, the majority of the more
experienced participants used this strategy, looking at the
print statement first, referring to the VSA information, and
then working their way through the rest of the code. When
given precise VSA information, the majority of participants
looked at the VSA information first, then checked the contents
of the VSA information against the print statement. In this
case, several of the less experienced participants adopted this
strategy as well, leading to more similar patterns of eye
movements for the more and less experienced participants.
This echoes the behavioral results, which showed that the VSA
information helped the less experienced participants to improve

7RTs remained relatively consistent for each VSA information condition
regardless of block order, indicating no significant learning effect.

their accuracy to the point where it was comparable to that of
the more experienced participants.

Although we greatly simplified this binary reverse engi-
neering task to fit the constraints of a small human study using
eye-tracking, we believe that the cognitive aspects observed are
similar to those in realistic tasks. However, additional research
is needed to determine whether our results generalize to more
complex VSA information beyond points-to information (i.e.,
that obtained for more complex code snippets).

VII. CONCLUSION

Overall, the results of this experiment show that fully
precise memory VSA information improves the speed and
accuracy of reverse engineers reasoning about information flow
problems. Precise VSA information was particularly helpful
for more difficult problems and for less experienced partic-
ipants. Given precise memory VSA information, participants
changed the ways in which they worked through the problems,
and several of the less experienced participants adopted the
same strategies as the more experienced participants. Partici-
pants did not rely as heavily on imprecise VSA information,
but even that VSA information was helpful in improving
accuracy. Participants spent the most time on problems with
imprecise VSA information, and their accuracy there was
significantly higher than when there was no VSA information
available. Like precise VSA information, imprecise VSA infor-
mation was particularly helpful for the more difficult problems
and for the less experienced participants, although it did not
improve the participants’ accuracy as much as precise VSA
information did.

Our findings show that aiming for more precision in VSA
information is useful for reverse engineers, and also that
full precision is not necessary for improving their accuracy.
However, having imprecise VSA information does slow re-
verse engineers. In situations limited by the human reverse
engineers’ time where accuracy does matter, fully precise
analyses like symbolic execution may be more appropriate.
In situations limited by human time where accuracy is not as
important, it may be better to have no supporting analyses than
an imprecise analysis. Further study is necessary to understand
which situations require accuracy in spite of the long time
scales required by realistic reverse engineering tasks today.
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