
Polypyus – The Firmware Historian

Jan Friebertshäuser, Florian Kosterhon, Jiska Classen, Matthias Hollick
Secure Mobile Networking Lab, TU Darmstadt

{jfriebertshaeuser,flokosterhon,jclassen,mhollick}@seemoo.de

cover a history of approximately one decade of firmware de-
velopment. For a subset of these, partially leaked or manually
reverse-engineered symbols are available. However, to enable
binary patching, security analysis, and further experimentation
with Bluetooth and Wi-Fi firmware on popular devices, these
symbols need to be ported to all firmware versions [31], [36].

Binary diffing compares binaries without source code.
Currently, the state-of-the-art tools for this are BinDiff [43]
and Diaphora [29]. They identify similar functions in a binary
even if names are stripped. To this end, they can compare
disassembler and decompiler output and consider call graph
statistics. While BinDiff and Diaphora work well on most
binaries, this is not the case for raw firmware. Both depend
on functions being identified correctly. However, disassemblers
like IDA Pro and Ghidra, which support these binary diffing
tools, fail at function identification on the Advanced RISC Ma-
chine (ARM) Thumb2 instruction set. Yet, fixing disassembler
issues with the ARM Thumb2 instruction set is rather complex
and comes with different properties per compiler setting [28].
Surprisingly, due to avoiding false positives, the most recent
version of IDA Pro fails to identify significantly more functions
in firmware binaries than older versions.

Binaries within a firmware family are very similar. They are
typically compiled for the same architecture—ARM7, Cortex
M3 and M4 in our case—as well as with the same compiler
options. Thus, matching functions look almost the same in
binary format, except from relative branches and memory ref-
erences. Polypyus takes advantage of these binary similarities
to identify matches within seconds that state-of-the-art binary
diffing tools cannot find. Our contributions are as follows:

• A benchmark of recent ARM Thumb2 disassemblers
and decompilers, including how their results impede
BinDiff and Diaphora performance.

• Design and implementation of Polypyus, a binary-
only firmware historian that works disassembler-
independent.

• Evaluation of Polypyus on a decade of Broadcom and
Cypress Bluetooth firmware history.

• Reconstruction of function signatures and types from
Eclipse Persistent Document Object Model (PDOM)
files for various Cypress wireless chips.

The Polypyus binary differ is available on GitHub [38].
While the evaluation in this paper focuses on Bluetooth
firmware, we also successfully used the binary differ on
Broadcom Wi-Fi firmware. Since it does not require any
disassembler, it is not limited to ARM. However, its parameters
might need to be adjusted for optimal results.

Abstract—Embedded systems, IoT devices, and systems on
a chip such as wireless network cards often run raw firmware
binaries. Raw binaries miss metadata such as the target archi-
tecture and an entry point. Thus, their analysis is challenging.
Nonetheless, chip firmware analysis is vital to the security of
modern devices. We find that state-of-the-art disassemblers fail
to identify function starts and signatures in raw binaries. In
our case, these issues originate from the dense, variable-length
ARM Thumb2 instruction set. Binary differs such as BinDiff and
Diaphora perform poor on raw ARM binaries, since they depend
on correctly identified functions. Moreover, binary patchers like
NexMon require function signatures to pass arguments. As a
solution for fast diffing and function identification, we design and
implement Polypyus. This firmware historian learns from binaries
with known functions, generalizes this knowledge, and applies
it to raw binaries. Polypyus is independent from architecture
and disassembler. However, the results can be imported as dis-
assembler entry points, thereby improving function identification
and follow-up results by other binary differs. Additionally, we
partially reconstruct function signatures and custom types from
Eclipse PDOM files. Each Eclipse project contains a PDOM
file, which caches selected project information for compiler
optimization. We showcase the capabilities of Polypyus on a set
of 20 firmware binaries.

I. INTRODUCTION

Security of modern devices does not only depend on the
operating system but also the hardware and firmware they
run on. Systems on a chip run their own embedded Real-
Time Operating System (RTOS) that is an additional target for
attackers. Due to resource constraints, both the chip and the
RTOS miss modern security mechanisms, and, thus, become
an entry point into the operating system [3], [4], [6], [25], [30],
[31], [35]. The firmware running on those chips is difficult to
extract. Once extracted, analysis of raw binaries comes with
many challenges. Even though most parts of raw binaries are
not obfuscated to preserve performance, they often miss strings
and other helpful indicators for reverse-engineering. Moreover,
they lack memory region and function start annotations, in
contrast to Executable and Linking Format (ELF) or Portable
Executable (PE) binaries. Note that even on ELF and PE
binaries, modern recursive disassemblers fail to identify 25 %
of function starts on average if they are stripped [33, p. 9].

Especially within wireless baseband research, it is typical
to encounter raw firmware binaries that have similarities, as
they originate from the same family of wireless chips. In this
paper’s case study, we use a set of Bluetooth binaries that

Workshop on Binary Analysis Research (BAR) 2021
21 February 2021, Virtual
ISBN 1-891562-69-X
https://dx.doi.org/10.14722/bar.2021.23004
www.ndss-symposium.org

This paper is structured as follows. Sec. II evaluates the
function identification performance of various disassemblers
and shows how failures lead to low-quality diffing results.
Thus, we propose the Polypyus binary-only differ and describe
its implementation in Sec. III. We evaluate binary-only diffing
on 20 different Bluetooth firmware versions in Sec. IV. More-
over, we reconstruct function signatures and type information
from 19 different PDOMs of Cypress Bluetooth, Wi-Fi and
Zigbee firmware in Sec. V. We discuss related work in Sec. VI
and conclude our findings in Sec. VII.

II. FUNCTION START IDENTIFICATION ISSUES

This section shows that various disassemblers make severe
mistakes on raw ARM Thumb2 binaries and how these lead to
subsequent errors within binary differs. Sec. II-A explains why
already identifying instructions is a complex problem for dis-
assemblers. This is confirmed by the benchmark results of IDA
Pro, Ghidra, Binary Ninja, and radare2 in Sec. II-B [27], [32],
[42], [34], and Sec. II-C cherry picks common disassembler
mistakes. Sec. II-D discusses the impact of these mistakes on
binary differs. Our results agree with another recent study that
compares disassemblers on stripped PE and ELF files [33].

A. Disassembling Instructions

Most functions start with pushing registers or loading a
global variable. Thus, a disassembler can linearly inspect a
binary, search for push instructions, and end functions on pop
instructions. However, a function might have various branches
that end at different pop instructions. Moreover, there are
exceptions like branching to the Link Register (LR) or contents
of a function pointer table. Thus, instead of aggressively scan-
ning for push instructions, some disassemblers implement a
recursive approach meaning that they only consider an initial
function and follow its subsequent calls.

The underlying problem of identifying functions is the high
instruction density. Considering 2B random input and then
running this with the Capstone disassembler [8], configured
for ARM Thumb2 little endian, random input is a valid 2B
instruction with 89% probability or the start of a valid 4B
instruction with 9% probability. Any mistake in identifying
an instruction’s start, which could be at a 2B or a 4B offset,
leads to misinterpreted instructions.

B. Disassembler Benchmark

In practice, we observed many disassembler mistakes dur-
ing manual firmware analysis. We design and run a disas-
sembler benchmark with the most popular tools to quantify
this observation in Sec. II-B1. The disassembler performance

0x000: 00 04 20 00 dcd bootcheck
0x004: bd 03 00 00 dcd __reset+1
0x008: 6d 01 00 00 dcd __tx_NMIHandler+1
0x00c: a1 01 00 00 dcd HardFaultInt+1
...

__tx_NMIHandler
0x16c: 00 bf nop
0x16e: 00 bf nop
0x170: 22 e0 b WDogInt

Listing 1: CYW20735 ROM starting with interrupt vectors.

highly depends on their setup, thus, we also explain the
initial configuration in detail. The results in Sec. II-B2 show
significant differences in disassemblers.

1) Benchmark Considerations: A benchmark requires ver-
ifiable results—yet, known symbols for raw, stripped firmware
binaries are rare. Hence, we only benchmark one specific
example throughout this paper. However, we observed simi-
lar behavior on disassemblers within ARM-based Wi-Fi and
fitness tracker firmware.

Partial symbols for the benchmarked Bluetooth firmware
leaked as part of WICED Studio patch.elf files [14].
They include function names, function starts, and global vari-
able names for the BCM20703, CYW20719, CYW20735, and
CYW20819 chips listed in Tab. I. Note that these symbols lack
function ends. The start of a new function is not necessarily
the end of the previous function, since compilers put variables
after the end of functions. Such variables do not always belong
to that specific function but sometimes are part of a library.
Thus, we can only benchmark function starts.

It is required to know the ROM and RAM region of a
Bluetooth firmware to dump it. Within the Bluetooth firmware
the ROM starts at 0x0 and the RAM at 0x200000.1 ROM
can be read and executed, while RAM can also be written.
There is no execution prevention. The ROM of each firmware
starts as shown in Listing 1. The reset vector is always
located at offset 0x4. It starts the firmware by initializing
hardware components and booting the underlying ThreadX op-
erating system. Even though this knowledge about a firmware
binary has to be reverse-engineered in the first place, it is
substantial for disassembler performance. Thus, we provide
the disassemblers with the ROM and RAM position as well as
the reset vector, if possible.

In the following, we use the CYW20735 firmware for a
benchmark. It has 10 791 functions. 10 584 of these functions
are located in ROM. However, 207 functions are located in in
RAM, instrumented by the so-called Patchram [31]. The ROM
is changed with up to 256 breakpoints that point to RAM.
Patched functions in RAM might be different from the leaked
symbols, which can lead to a few mistakes. Thus, we ignore
functions located in the RAM regions for our statistics.

IDA Pro: IDA Pro 6.8 linearly sweeps over the whole
firmware to identify instructions when possible and addition-
ally approaches recursive descent. By default, IDA Pro 7.x only
disassembles functions if a proper starting point is provided
and continues with recursive descent.

For comparability, we disable the automatic analysis in
IDA Pro 6.8. Then, for all IDA versions, we perform the
following setup. We select ARM little endian as architecture
and select ARMv7-M in the options. After binary import with
default settings, we create ROM and RAM program sections
and mark the first address in ROM as Thumb via Alt+g. For
comparability, we mark the reset vector as offset and create
a new function at its location as first step of the analysis. While
IDA Pro 7.x starts analysis once provided with the reset
vector, we manually re-enable automatic analysis after this step
in IDA Pro 6.8.

1Note that on firmware prior to 2012, which is based on the ARM7TDMI-S
core, the RAM starts at 0x80000.

2

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,584

radare2 4.3.1/Capstone 4.0.1 aaaa

radare2 4.3.1/Capstone 4.0.1 aaa

Binary Ninja 1.3.2015
Binary Ninja 2.0.2166
Ghidra 9.1.2 ARM agressive
Ghidra 9.1.2 with RAM/ROM sections
Ghidra 9.1.2
IDA Pro 6.8 + reset + linear
IDA Pro 7.2 + reset + linear
IDA Pro 7.2 + reset

IDA Pro 7.4 + reset + Thumbs Up
IDA Pro 7.4 + reset + linear

IDA Pro 7.4 + reset + all interrupts
IDA Pro 7.4 + reset

IDA Pro 7.4 baseline import
Baseline: Known function starts

Functions

Correct functions Incorrect functions Correct BinDiff matches with ≥ 0.90 similarity Incorrect matches
Correct Diaphora matches with ≥ 0.80 ratio Incorrect matches

10584

10455

2176

2379

7947

9763

2167

7946

8109

7950

7939

8126

9151

9151

7654

7670

12.89 %

0.28 %

0.29 %

13.92 %

15.45 %

0.32 %

13.93 %

13.87 %

16.97 %

17.00 %

17.46 %

19.36 %

19.32 %

18.28 %

18.28 %

Fig. 1: Disassembler performance for function start identification on the CYW20735 firmware.

IDA Pro 7.x can be forced to perform a linear analysis to
create instructions where possible similar to the IDA Pro 6.8
default mode of operation. The area for this analysis can be
defined with the following command, which we use within the
ROM section:
idc.plan_and_wait(start, end)

Another tool to recognize function starts in ARM binaries
is the Thumbs Up plugin for IDA Pro [28]. Initially, it performs
a linear analysis on ROM sections utilizing the same command
as above, and then makes heuristics on the already identified
functions to apply them to the remaining ROM.

Ghidra: We import the binary as ARM v7 little endian,
with default compiler and analysis options. Then, we run
the same analysis again with the experimental aggressive
instruction finder. For comparison, we also create a fresh
import and initially run the aggressive instruction finder, which
leads to the same result as running these steps separately.

Binary Ninja: We set analysis and triage to full. More-
over, we configure the base address and the entry point. Binary
Ninja automatically detects the correct architecture options.

radare2: For radare2 we use the Capstone disassembler
by setting the architecture to arm and 16 bit length. First, we
run the basic auto analysis with aaa, and then we run the
extended analysis using aaaa.

2) Benchmark Results: Fig. 1 shows an overview of the
disassembler performance. Binary Ninja identified the most
functions, while the recursive approach in IDA Pro 7.x has the
lowest false positive rate.

IDA Pro: On IDA Pro 7.x, just starting at the reset
vector is insufficient to find subsequent functions via branches.
This only slightly increases when considering the full inter-
rupt vector table. Too many function calls in the CYW20735

firmware are implemented as offsets in function tables and
other constructions the disassemblers fail to identify. Yet, this
approach resulted in only 7 false positives.

The forced linear sweep identifies 7947 functions but also
recognizes many false positives. Surprisingly, the automatic
linear sweep without any options in IDA Pro 6.8 provides
better results with 8109 functions.

For the disassembler quality, there is almost no difference
between IDA Pro 7.2 and IDA Pro 7.4. In contrast, the
Thumbs Up [28] scripts significantly improve the IDA Pro 7.4
disassembler but do not solve all issues.

The subsequent analysis based on correctly provided func-
tions still leads to false positives in IDA Pro 7.4. This even
leads to some functions that cannot be marked as such as they
are already located within other functions. Note that automatic
analysis was still enabled during function import.

Ghidra: Ghidra 9.1.2 identifies 7950 correct functions.
The experimental aggressive instruction finder identifies 176
additional correct functions. At the same time, it also identifies
70 false positives.

Adding memory segments and marking the ROM as non-
writable also does not significantly change the results, even
though it improves readability of the decompiler output. In
our setup, the number of false positives is identical, while the
correct functions decrease by 11 when adding sections. This
is the opposite of the expected impact.

Binary Ninja: Both Binary Ninja versions perform very
similar. With 9151 correctly identified functions, they find the
most true positives. In the newer version, the correct functions
stay the same but the false positives increase by 4, which might
just be some non-determinism within the disassembler.

radare2: radare2’s aaa analysis identifies 7654 correct
functions. The radare2 extended analysis adds 16 correct

3

functions but 3 false positives. Overall, running the extended
analysis is not much improvement but takes several minutes.
Despite taking very long, radare2 identifies the fewest func-
tions.

C. Common Disassembler Mistakes

Many disassembler mistakes are easy to spot as a human,
yet hard to solve programmatically. In the following, we
provide an intuition on these mistakes. Even though it is not
the purpose of this paper to improve the disassembler per se,
Polypyus is able to provide the disassembler with some hints.

a) Invalid Function Length: A very common mistake is
ending functions too early, e.g., on the first return instruction
when there are multiple function returns. Also the opposite
is possible, e.g., IDA Pro 7.2 considers the reset vector
function on the BCM4335C0 to be 14 736B, which is a major
part of this firmware. Also Ghidra 9.1.2 has issues with
function lengths, e.g., it often identifies a function start with a
push instruction correctly but ends before a return instruction.

b) Correct Instructions but no Function: Even when
the IDA Pro disassembler does not make any mistakes with the
instruction offsets, it often does not recognize function starts
within the instructions. This happens if there are no references
to the function [28], however, firmware often has indirect
function offset tables, meaning that no correctly identified
reference does not necessarily indicate dead code.

c) Data Marked as Code: The symbol import of all
correct function starts still produces false positives in IDA Pro.
Often, data is misinterpreted as code. Even the reset vector
table is interpreted as function at offset 0x0.

D. Impact on Binary Diffing

Disassembler issues lead to subsequent binary diffing prob-
lems. Sophisticated statistics based on call graphs fail if a few
functions within such a graph are missing. Moreover, binary
diffing is also applied to false positives. Yet, BinDiff and
Diaphora both require function starts, and thus, some false
positives do less harm than not identifying most functions.
Our observations on binary diffing performance agree with a
previous comparison [41], however, that test case was a more
narrow patch analysis and used a symbolized binary.

BinDiff: We show the impact of function recognition on
binary diffing by running BinDiff 6 on IDA Pro 7.4 with
the CYW20735 and CYW20819 firmware for the following
settings: (1) all function starts but no names imported from the
known symbols, (2) reset vector with forced linear analysis
in the ROM section, and (3) recursive only function detection
via reset vector. BinDiff provides a similarity score and we
consider all results with a score ≥ 0.90. Functions below this
threshold might still be correct, however, they contain also
many false positives. In practice, such false positives impede
further reverse-engineering.

Setting (1) returns 7539 correct matches, setting (2) de-
creases to 5590 matches, and (3) further decreases to 1692
matches. In contrast, setting (1) has a false positive ratio of
0.084, setting (2) is almost the same with a ratio of 0.089,
but setting (3) lowers this to 0.018. These numbers show that
BinDiff results depend on the function starts identified by the

disassembler. However, false positives within function start
identification significantly increase false positives.

Moreover, we run BinDiff 4.2 on IDA Pro 6.8. As IDA Pro
6.8 sightly outperforms IDA Pro 7.x during database initial-
ization of both firmware versions, CYW20735 and CYW20819,
this effect duplicates within the BinDiff 4.2 results, and iden-
tifies 6059 functions correctly in a setup comparable to (2), at
a similar false positive ratio of 0.083 Thus, surprisingly, the
outdated setup works better.

Thumbs Up looks very promising when considering dis-
assembler results. However, the false positives it identifies
impede binary diffing as well.

Diaphora: We take the same statistics as with BinDiff.
We run Diaphora including slow heuristics for all settings
and consider the best matches as well as all partial matches
with a ratio ≥ 0.80. In contrast to BinDiff, Diaphora considers
decompiler output. As a first baseline, we run Diaphora on the
database with reset and linear sweep. Without decompiler
and slow heuristics, it finds 3320 matches. The decompiler
increases this to 4409 matches without slow heuristics and
4838 matches including slow heuristics.

Using these thresholds, Diaphora provides a similar false
positive rate as BinDiff but with fewer matches. However, as
it is an open-source project, it would be possible to add more
heuristics in the future.

radiff2: When running radiff2 on the binaries, we en-
counter two issues. First, raw binaries are not supported [40].
Then, after adding all analysis options to the -G parameter,
radiff2 only identifies 42 matches within a few seconds and
prints “Exceeded anal threshold while diffing fcn.cafe and
fcn.babe” multiple times.

Ghidra Versioning: The Ghidra versioning works best
if provided with correct function signatures. It sometimes
identifies similar functions correctly without them but performs
significantly worse than BinDiff, even on non-raw binaries.
Moreover, enabling all analysis options typically leads to
crashes, preventing us from making a fair comparison.

III. RAW BINARY DIFFING APPROACH

As shown in the previous section, faults within the dis-
assembler lead to subsequent issues with binary diffing. Yet,
firmware compiled with similar options is often byte-identical
except from relative references. Based on this observation, we
build the Python-based tool Polypyus, following the Greek
historian Polybius. Polypyus learns byte similarities from a
firmware history and applies these to new firmware binaries.

A. Polypyus Workflow and Tool Integration

The history can be collected from firmware with
reverse-engineered or leaked symbols. Polypyus supports the
.symdefs format generated by common ARM compilers and
a proprietary patch.elf format provided by WICED Studio.
Moreover, it can read and write function definitions as .csv.

Function import and export scripts allow integration into
existing disassemblers, however, Polypyus does not depend on
them. It runs standalone. When importing Polypyus results into

4

mm_freeACLBuffer
0x17b4c: 00 28 cmp r0, #0
0x17b4e: 02 d0 beq locret_17b56
0x17b50: 08 38 subs r0, #8
0x17b52: f2 f7 43 b8 b.w dynamic_memory_Release

locret_17b56
0x17b56: 70 47 bx lr

Listing 2: mm_freeACLBuffer within CYW20735.

mm_freeACLBuffer
0x0d0dc: 00 28 cmp r0, #0
0x0d0de: 02 d0 beq locret_d0e6
0x0d0e0: 08 38 subs r0, #8
0x0d0e2: f4 f7 f7 bf b.w dynamic_memory_Release

locret_d0e6
0x0d0e6: 70 47 bx lr

Listing 3: mm_freeACLBuffer within CYW20819.

a projects, this does not only add matched functions but indi-
rectly improves disassembler quality, because the disassembler
is provided with correct function starts and disassembles
subsequent functions. After importing Polypyus matches to the
disassembler, it is still possible to run binary diffing tools. They
find more matches than Polypyus and profits from improved
assembly quality in general, as previously shown in Fig. 1.

B. Binary Matchers

Listing 2 and 3 show the same function within the memory
manager for two different firmware versions. Except from a
relative branch instruction they are byte-identical. Polypyus
combines these functions as follows:

mm_freeACLBuffer: 00 28 02 d0 08 38 ** f7 ** ** 70 47

We call this representation a matcher. The more input files
provided to Polypyus, the more matchers are created.

During the learning phase, Polypyus applies fuzzyness to
equally long functions with the same name. Bytes that differ, as
in branch instructions, are masked. Even non-fuzzy functions
can be byte-identical, such as mathematical operations.

Creating a new matcher requires a function’s length. If the
length is not determined by the input format, it is required
to determine the function length. Functions do not necessarily
end where the next function starts, as the compiler tends to
put variables at the end of functions, which are not always
part of the same function. Thus, we recommend using an
external disassembler and importing the length determined by
the disassembler into Polypyus, instead of simply assuming
function starts being equal to function ends.

A matcher with a high fuzziness comes at the risk of false
positive matches. The most common example for this is a
function that only contains a 2B or 4B branch instruction
to another function. This would create the following matcher:

jump_function: ** ** ** **

bb_setBdAddress
push {r4, lr}
bl bcs_pmuWaitForBtClock
ldr r1, =bb_localAccessCode
ldr r0, =rm_deviceBDAddr
bl bb_computeAC
ldr r1, =bb_localAccessCode
ldr r0, =rm_deviceBDAddr
bl bb_progMasterPiconetInfo
pop.w {r4, lr}
b.w bcs_pmuReleaseBtClock

Listing 4: bb_setBdAddress on CYW20735 & CYW20819.

However, there can be more complex and still very fuzzy
matchers. For example, the function bb_setBdAddress,
which sets the Bluetooth device MAC address, reads identical
with symbols, as shown in Listing 4. Due to the relative
addresses, it generalizes to the following matcher:

bb_setBdAddress: 10 b5 ** f0 ** ** ** 49 ** 48 ff f7 b2 ff
** 49 ** 48 ff f7 e9 ff bd e8 10 40 ** ** ** **

As the branch to bb_computeAC happens to be at the same
offset within the baseband library, it still creates four matching
bytes despite being a location-dependent operation.

C. Minimum Length and Cost Function

Polypyus prevents false positives by considering a min-
imum function length and a fuzziness cost function that is
relative to the function length. While the parameters presented
in this paper are tuned to work well with the Bluetooth
firmware set, binaries of different architectures might benefit
from adapting these parameters.

Minimum Length: A minimum function length prevents
short fuzzy matchers causing false positives. In the Bluetooth
firmware set, thresholds between 10B and 24B are reasonable.
For all functions in our symbolicated firmware subset, we
consider a prefix of length k. Then, we search for other
functions with the same prefix, as depicted in Fig. 2.

Each function contains at least one 2B instruction. Thus,
at k = 2, each function at least matches itself, meaning
that the amount of total matches is the same as the total
number of functions. With increasing k, the total matches
slightly decrease, as some functions are smaller than the prefix
length and, thus, are not considered as equal. To determine a

5 10 15 20 25 30

1

10

100

1000

10000
31977

Sequence length k in bytes

N
um

be
r

of
fu

nc
tio

ns
(l

og
)

Total
Max
Mean
k = 10

k = 24

Fig. 2: Relation between the prefix length to the number of
functions in the symbol data with the same prefix.

5

threshold for the minimum length, we consider the mean and
the maximum matches depending on k. The mean represents
the average number of functions per prefix, and the maximum
the highest number of functions with the same prefix.

The numbers in Fig. 2 indicate that there exist a few
short functions that can be found several times in all firmware
versions. Hence, Polypyus favors longer functions in case there
are multiple matching matchers. This solves the issue caused
by one matcher being the prefix of another matcher.

Furthermore, we want to limit the problem that a small
function matches all function prologues of unknown func-
tions. The maximum number of functions per prefix drops
significantly before the prefix length of k = 10 and again
at k = 24, after which it stays almost constant. This drop
shows that additional bytes in the prefix help to distinguish
between functions. Based on this observation, the Polypyus
default configuration for the minimum function length is 24B.

Cost Function: Without a cost function, Polypyus would
simply create fully fuzzy matchers for each byte length and
ignore the bytecode. Intuitively, a cost-based approach restricts
the creation of matchers. More fuzziness means higher costs.
Dense clusters of fuzziness are more expensive than sparsely
distributed fuzzy bytes. A function’s allowance is based on its
length and configurable thresholds. We define the following
requirements for a matcher’s fuzziness cost function:

(1) Fuzziness should not be allowed in short functions.

(2) The maximal fuzziness should only be allowed if it
is sparsely distributed through the function.

(3) The cost attributed to a long succession of fuzziness
should be higher than the sum of multiple shorter
succession of the same total length.

(4) The cost function should be adjusted to the high ARM
Thumb2 code density.

M
in

im
um

di
st

an
ce
d

to
ne

ig
hb

or
fu

zz
in

es
s

7 1.48 2.96 4.67 6.23 8.17 9.80 12.00 13.71 16.19 17.99

6 1.53 3.06 4.84 6.45 8.46 10.15 12.43 14.21 16.77 18.64

5 1.59 3.18 5.02 6.70 8.79 10.54 12.91 14.75 17.42 19.36

4 1.65 3.31 5.23 6.97 9.15 10.98 13.44 15.36 18.14 20.15

3 1.73 3.46 5.46 7.28 9.55 11.46 14.03 16.04 18.94 21.04

2 1.81 3.62 5.72 7.62 10.00 12.00 14.69 16.79 19.82 22.03

1 1.90 3.80 6.00 8.00 10.49 12.59 15.42 17.62 20.81 23.12

0 1.00 2.00 3.16 4.21 5.52 6.63 8.12 9.28 10.95 12.17
0

1 2 3 4 5 6 7 8 9 10
Fuzzy sequence length k

Fig. 3: The cost of a fuzzy-marked sequence of bytes based
on the sequence length and its minimal distance to another
fuzzy-marked sequence in the same function.

Polypyus applies the cost of a matcher as follows:

matcher-cost(m) =
∑

(k,d)∈Fm

sequence-cost(k, d) (A)

matcher-cost(m) ≤ (|m| − µ) · φ (B)

sequence-cost(k, d) =
k

p(dk/2e) · (1 + proximity-penalty(d))

(C)

proximity-penalty(d) =

{
0 , d = 0

0.9d , otherwise
(D)

where m is the matcher, µ is the minimal function size defined
above, d and φ are the minimal and the maximal relative
distance to the next fuzzy byte in the matcher, and p(k) is
the likelihood of a uniformly sampled half-word sequence
to be code without assumptions on the first half-word in
ARM Thumb2. Fig. 3 presents the costs of individual fuzzy
sequences for combinations of the byte distance d and the
sequence length k.

We validate weather the cost function satisfies the require-
ments (1)–(4).

(1) Disallow Short Functions: The cost function does
not allow fuzziness in short functions. According to Equa-
tion A, a fuzzy sequence of length k always costs at least
k. Equation B limits the allowed maximal matcher cost to a
term that is negative for functions shorter than the minimal
function length. Matchers that are smaller than the minimal
function length plus 1/φ involve no costs. Then, costs grow
linearly with a gradient of φ, which disallows short functions.
Considering a fixed matcher size, the equation underrates the
maximal fuzziness to be smaller than φ by a relative factor
that is proportional to the function size, and descends with a
growing matcher size.

(2) Require Sparse Fuzziness: Equation D defines a
penalty factor that exponentially falls with an increasing min-
imal distance to the next fuzzy byte sequence and converges
to zero. Meanwhile, the term k

p(dk/2e) in Equation C exponen-
tially increases with the sequence length k. This way, short
clusters of fuzzy bytes and long successions of fuzzy bytes
are costly.

(3) Penalty for Long Successions: The function p(k)
that represents the probability of a byte to be valid code
can be approximated by 0.977k (see Sec. II-A). We ensure
that the penalty for clustering decreases slower than the cost
for long fuzzy sequences rises. If this is the case and if the
third requirement given above is not violated by any of the
initial values, then no combination of the byte distance d or
sequence length k can violate the requirement. Therefore, the
proximity penalty is an exponentially decreasing function with
0.9k that falls slower than k

0.977k
grows, with respect to the

approximation error. As shown in Fig. 3, the initial values do
not violate this requirement.

(4) ARM Thumb2 Code Density: The cost of a fuzzy
sequence is proportional to the likelihood that it will not
match just code. This is a reasonable metric for our scenario.

The Equations A–D describe the requirements to create a
common function class in Polypyus. If a function class is not

6

meeting the requirements, we test, with a greedy algorithm,
whether subsets of the functions meet them, in which case
these subsets form a common function class. All functions
that are not part of common function class form standalone,
non-fuzzy matchers to find exact matches of these functions.

D. Function Prologue Matchers

Function-based matchers substitute the need for binary
diffing with other tools. However, as described in the typical
workflow in Sec. III-A, Polypyus is meant to support existing
disassemblers and state-of-the-art binary diffing tools. Thus,
also identifying functions without assigning their correct name
helps in the overall process.

In addition to the normal matchers, Polypyus has the option
to also learn function prologues. This feature must be ex-
plicitly enabled. Within the Bluetooth firmware history, many
functions start with common instructions, such as pushing
and initializing the same registers. Polypyus learns the most
common prologues from the history and applies these to the
target binary to create unnamed functions. The default setting
in the user interface is 8B prologue length, and Polypyus only
considers frequent prologues.

E. Fast Matching Algorithm

When provided with the four symbolized firmware binaries
and one target binary, Polypyus creates matchers and finds
matches based on those within a few seconds on a recent
consumer-grade laptop, e.g., 8.5 s to create matchers from three
binaries in a history and 9.5 s to find matches in a target binary.
This performance is achieved by several optimizations:

• A matcher prefix tree deduplicates the matchers.

• Match finding is a depth first search in the prefix tree.

• Bins in the tree reduce the number of visited matcher
fragments.

• Search is restricted to partitions of the binary that
potentially contain code.

IV. RAW BINARY DIFFING EVALUATION

In the following, we analyze the quality of matches on a
history collected from 20 chips with build dates ranging over
a decade. An overview of these is shown in Tab. I.

A. Known Firmware Changes and History

Over this decade, the underlying ARM core changed. The
oldest available datasheet of the BCM20702A1 chip from
2010 states that it uses an ARM7TDMI-S-based microprocessor
with integrated RAM and ROM [12]. The slightly newer
BCM4335C0 firmware from 2012 is already based on a Cortex
M3 [11]. In 2016, the core changed again to a Cortex M4 [13].
Even though datasheets are not available for all chips, the
Cortex M4 introduces additional instructions, which can be
determined with a disassembler. Not all Cortex M versions
introduce new instructions, meaning that the newest chip series
could also be based on a different core.

In 2016, Broadcom sold their wireless IoT division to Cy-
press [10]. However, Broadcom kept customers like Apple and
Samsung. Since then, firmware was developed independently.

In the Samsung Galaxy S10 firmware, stack canaries were
introduced. These change function prologues and harm perfor-
mance on matchers created without stack canaries.

The iPhone 11 firmware introduced a few debug strings
with function names. These could be annotated and used
to train Polypyus. However, some of the function names

TABLE I: Bluetooth firmware history for disassembler and Polypyus benchmarks.

Chip Device Build Date Symbols Known Functions ROM Size ARM Core Full Matches + Starts
BCM2046A2 iMac Late 2009 2007 — — 0x31c00 ARM7TDMI-S (?) 0 10
BCM2070B0 MacBook 2011, Thinkpad T420 Jul 9 2008 — — 0x57800 ARM7TDMI-S (?) 0 9
BCM20702A1 Asus USB Dongle Feb (?) 2010 — — 0x5fc00 ARM7TDMI-S 0 33
BCM4335C0 Google Nexus 5 Dec 11 2012 — — 0x8f000 Cortex M3 266 2392

BCM4345B0 iPhone 6 Jul 15 2013 — — 0xb3000 Cortex M3 371 2989

BCM20703A1 MacBook Pro early 2015 Dec 23 2013 — — 0xc7000 Cortex M3 708 4350

BCM43430A1 Raspberry Pi 3/Zero W Jun 2 2014 — — 0x8f400 Cortex M3 209 1859

BCM4345C0 Raspberry Pi 3+/4 Aug 19 2014 — — 0xc1c00 Cortex M3 307 2546

BCM4358A3 Samsung Galaxy S6, Nexus 6P Oct 23 2014 — — 0x8f000 Cortex M3 275 1978

BCM4345C1 iPhone SE Jan 27 2015 — — 0xb7000 Cortex M3 295 2477
BCM4364B0 MacBook/iMac 2017–2019 Aug 21 2015 — — 0xd4000 Cortex M3 340 2804

BCM4355C0 iPhone 7 Sep 14 2015 — — 0x90000 Cortex M3 231 1838

BCM20703A2 MacBook/iMac 2016–2017 Oct 22 2015 X 8603 0xc7000 Cortex M3 101 1583

BCM4347B0 Samsung Galaxy S8 Jun 3 2016 — — 0xf4800 Cortex M4 414 2720

BCM4347B1 iPhone 8/X/XR Oct 11 2016 — — 0xfc000 Cortex M3 695 3599

CYW20719B1 Evaluation board Jan 17 2017 X 15 036 0x1d2000 Cortex M4 1519 6214

CYW20735B1 Evaluation board Jan 18 2018 X 10 791 0x14f000 Cortex M4 2241 7129

CYW20819A1 Evaluation board May 22 2018 X 10 276 0xf6800 Cortex M4 1543 5772

BCM4375B1 Samsung Galaxy S10/S20 Apr 13 2018 — Canaries 0x130000 Cortex M4 (?) 14 362
BCM4378B1 iPhone 11/SE2 Oct 25 2018 Strings Canaries 0x132800 Cortex M4 (?) 15 380

Polypyus is provided with inputs from four symbolicated firmwares. Matching results are for function identification and starts with Polypyus defaults: 24B
minimum length for function identification and optional 8B prologues for function starts.

7

TABLE II: Firmware similarity by function names.

Firmware A Firmware B Unique Symbols Common Symbols
BCM20703A2 CYW20719B1 12 161 5655

BCM20703A2 CYW20735B1 8402 5496

BCM20703A2 CYW20819A1 8215 5332

CYW20719B1 CYW20735B1 4790 10 435

CYW20719B1 CYW20819A1 6115 9515

CYW20735B1 CYW20819A1 1927 9570

indicate that Broadcom did a lot of refactoring and firmware
improvements on this latest firmware. Moreover, the additional
debug print statements change the binary structure.

Overall, refactoring is a significant factor within the Blue-
tooth firmware history. As shown in Tab. II, when considering
common function names, the BCM20703A2 firmware from
2015 significantly differs from those of the Cypress evaluation
boards. However, the evaluation board firmware from 2017
and 2018 is very similar, except from some additional libraries
depending on the board version that appear as unique symbols.

Additionally, firmware versions have different feature sets.
For example, the oldest evaluation board within the Bluetooth
firmware set has the most functions. Moreover, chips in laptops
tend to have larger ROMs than those in smartphones.

B. Polypyus Binary Diffing Results

We run Polypyus on the full firmware set listed in Tab. I.
For the history, all firmware versions with symbols are consid-
ered. If the target is a firmware with symbols, we exclude the
target itself from the history. Matches found by the function
matchers configured to the 24B default are listed separately
to the matches found with 8B prologues.

a) History Observations: First of all, the matches in
Tab. I are very platform-dependent. Polypyus does not find any
matches in the older ARM7TDMI-S core, as this is using a dif-
ferent binary format. Moreover, for the BCM20703 firmware,
which is still a Cortex M3, the evaluation boards that run on
the Cortex M4 do not provide high-quality input. However, the
BCM20703 symbols help identifying functions in other Cortex
M3 based firmware.

Even though we do not have datasheets for the newest
BCM4375B1 and BCM4378B1 firmware, we assume that they
are still based on a Cortex M4 due to their instruction set.
The stack canaries are compiled into most functions, and this
impedes Polypyus performance. However, if Polypyus would
be trained with a new classifier that specifically searches for
stack canaries, these could as well have a positive impact on
function start identification.

The test set of the three evaluation boards performs the
best. The CYW20735 evaluation board, which was built after
the CYW20719 but before the CYW20819, profits a lot from
the known symbols of the other firmware.

b) Match Quality: For the firmware with symbols, we
evaluate the match quality as shown in Fig. 4. The quality
of the identified functions is very high. The prologues have
more false positives, which can be improved by increasing

the prologue size—however, this would also reduce the total
number of prologue matches.

Approximately 1/3 of the incorrect functions in Fig. 4 is
actually correct when we analyze these by hand. The symbol
names do not match because these functions were obviously
renamed. Renaming includes obvious typos, such as md4 to
md5, or consistency of names within libraries. However, we
did not remove them from the experiments, as we do not know
this for every function.

The false positives that remain can be further eliminated by
increasing the minimum function length to a value like 30B.
However, we found that also matches at a minimum function
length of 8B are still more accurate than BinDiff on a flawed
IDA Pro database. In the CYW20735 firmware, the default of
24B identifies 2184 correct functions at a false positive rate
of 2.88%. A minimum function length of 30B reduces this to
1804 functions at a false positive rate of 2.66%. However, a
8B minimum function length increases the correct functions
to 3521 with a false positive rate only of 3.95%. This shows
how effective the Polypyus cost function is.

11.19 %

6.99 %

5.77 %

9.17 %

1.26 %

2.88 %

4.19 %

2.02%

0 3,000 6,000 9,000 12,000

CYW20819

CYW20735

CYW20719

BCM20703

Functions

Correct functions Incorrect functions
Correct prologues Incorrect prologues
Total number of functions

Fig. 4: Polypyus matches within the symbolized firmware,
incorrect matches due to function name changes not removed.

2.09 %

6.36 %

8.92 %

8.30 %

0.32 %

10.93 %

12.84 %

12.16 %

0.86 %

11.57 %

12.25 %

3.30 %

2.29 %

3.84 %

4.07 %

3.14 %

0 3,000 6,000 9,000 12,000

CYW20719 reset

+ Polypyus with prologues

+ linear sweep

CYW20719 without Polypus

CYW20735 reset

+ Polypyus with prologues

+ linear sweep

CYW20735 without Polypus

CYW20819 reset

+ Polypyus with prologues

+ linear sweep

CYW20819 without Polypus

BCM20703 reset

+ Polypyus with prologues

+ linear sweep

BCM20703 without Polypus

Functions

Correct Incorrect Total

Fig. 5: Effectiveness of Polypyus import in IDA Pro 7.4
including prologues, incremental steps marked with −→.

8

C. Disassembler Improvement

Since Polypyus is meant to integrate into existing work-
flows with other disassemblers, we evaluate its impact when
working with IDA Pro 7.4. We evaluate all firmware versions
with symbols. First, we start with the reset vector, then
we add function names and prologues identified by Polypyus
(market with + Polypyus), and finally, we run a linear sweep
over the ROM (marked with + linear sweep). For comparison,
we run the same experiment without Polypyus and just mark
the reset vector and run a linear sweep.

The results shown in Fig. 5 indicate that Polypyus indeed
helps with identifying functions in all firmware versions. With
one exception, it also reduces the false positive ratio. This
might either be the case because Polypyus identified more false
function prologues in the CYW20819 firmware compared to the
others or because of IDA Pro 7.4 dynamics after the import
that identify false functions, as it was already the case for the
fully correct function import in Fig. 1.

Another interesting observation that can be seen in Fig. 4
is that function detection works better on the BCM20703
firmware with a Cortex M3 than on the remaining Cortex M4
firmware. This might be due to the more complex instruction
set or different compiler settings.

V. FUNCTION SIGNATURE AND TYPE RECONSTRUCTION

In addition to function starts, binary patching with C-based
frameworks requires correct function signatures to pass argu-
ments. NexMon is such a binary patcher supporting ARM [37].
Initially developed for Broadcom Wi-Fi chips, it has been
ported to fitness trackers, vacuum cleaners, and more [9],
[24]. As of now, each NexMon port has a wrapper.c file
that defines selected functions required for supported patches.
The wrapper is hand-written and based on manual reverse
engineering. Thus, adding a new firmware version is a huge
effort that we aim to automate in the following.

WICED Studio [14] contains Persistent Document Object
Model (PDOM) files for Bluetooth, Wi-Fi and Zigbee chips.
Not all of them are for sale and we do not have their raw
firmware, however, we can still use the PDOM information to
restore function signatures and custom types.

A. Eclipse and PDOM Purpose

The PDOM architecture consists of a client, an indexer and
a database [16]. PDOM clients are Eclipse features like the
C/C++ search page, searching for declarations and reference
actions, content assist, and more. This information is stored in

the PDOM database for fast access. In case it is not available,
a slower direct access via the Document Object Model (DOM)
is possible. Depending on the project size, a full indexer
could index a project within seconds or hours. Thus, for large
projects, a faster indexer that stores less information into the
database is a common setting. All PDOMs analyzed in the
following only contain partial information.

B. Utilizing PDOM in Reverse

The PDOM database contains valuable information about
a project that exceeds the raw binary. Function signature and
type information can be restored by using the database in
the reverse direction. Since this is not the intended use case,
we need to reverse-engineer the PDOM format. While it is
sparsely documented with a few notes from 2006 [15], it is
still maintained and open-sourced within the Eclipse project.
Based on the Eclipse implementation, we create a custom
PDOM database extractor that stores all information into a
SQLite database. Even though the database extraction is slow,
the SQLite-based import into IDA Pro is fast.

The database is structured by indexes. The file header
contains offsets to the indexes, e.g., linkages, a file index, or
an index of defective files [19]. In our case, only the linkage
indexer is relevant. Each linkage is a top-level node of stored
bindings. Two types of linkages differentiate between C and
C++ nodes [21]. There are around 80 different bindings, but we
only require a small subset to identify functions, parameters,
and return types.

A linkage node is structured as follows [21]:

PDOMNode PDOMNamedNode PDOMLinkage

8B 4B 16B

In the following, we analyze the function btsnd_hcic_
ble_remove_from_white_list of the CYW20735B1
PDOM file to provide an example for the data structure. Since
it is a C++ function, it is based on the PDOMCPPFunction
record [17]. This function is stored at offset 0xfa4b12 with
its binary values shown in Fig. 6. We can follow its pointers
to obtain further information by executing the PDOM library
function getRecPtr [20]. For the function name pointer
0x1f496b, getRecPtr returns the file offset 0xfa4b5a,
which contains the function name length and its name as string.

The number of parameters is directly encoded as 0x2.
Then, to retrieve the function parameter names, we fol-
low the first_param pointer 0x1f4979 and apply the
PDOMCPPParameter definition [18]. Since only the first
parameter pointer is defined in a PDOMCPPFunction, each

PDOMNode PDOMNamedNode PDOMBinding PDOMCPPFunction

00 01 short factory_ID
00 07 short node_typ
00 11 ptr parent
9d 98

00 1f ptr name
49 6b

00 1f 49 7e ptr first_decl
00 00 00 00 ptr first_def
00 00 00 00 ptr first_ref
00 00 00 00 ptr local_to_file
00 00 00 00 ptr first_extref

00 00 00 02 int num_params
00 1f 49 79 ptr first_param
1f 00 1f 49 71 00 type function_type
99 3e 7a f1 int signature_hash
00 00 00 00 ptr exception_spec
00 42 short annotation
00 02 short required_arg_count
00 00 00 00 00 00 execution function_body
00 00 00 00 00 00 type declared_type

Fig. 6: PDOMCPPFunction node for btsnd_hcic_ble_remove_from_white_list C++ function definition.

9

TABLE III: PDOM history with function signature similarity benchmark.

Eclipse PDOM Input CYW20735B1 CYW20719B1 CYW20706A2
Chip Build Date Same Names Signature Similarity Same Names Signature Similarity Same Names Signature Similarity
CYW20706A2 May 2 2016 2236 74.20% 2377 72.44% 1817 88.51%

CYW20706A2 Aug 24 2016 1334 91.95% 998 87.46% 446 100%

CYW20719B0 Aug 4 2016 2345 94.90% 2595 93.94% 1819 69.97%

CYW20719B0 Aug 24 2016 767 95.56% 820 95.79% 382 70.53%

CYW20719B0 Jun 28 2017 1138 98.42% 863 97.58% 410 76.55%

CYW20719B1 Jun 7 2017 1271 97.75% 994 100% 431 80.35%

CYW20721B1 May 30 2018 1040 97.94% 788 99.19% 235 95.03%

CYW20729B0 Aug 23 2016 3476 81.24% 5749 79.43% 2603 69.49%

CYW20735B0 May 2 2016 2255 80.31% 2500 78.58% 1805 68.73%

CYW20735B0 Aug 24 2016 2132 97.34% 2030 95.16% 1211 76.78%

CYW20735B1 May 30 2018 1249 100% 991 97.35% 417 78.66%

CYW20739B0 May 2 2016 2294 80.21% 2542 78.62% 1811 68.81%

20729B0 Zigbee Aug 24 2016 79 93.16% 263 90.81% 43 93.65%

20729B1 Zigbee Jun 19 2017 171 93.28% 376 92.71% 50 94.56%

20739B1 Zigbee Jun 7 2017 1547 93.17% 1007 95.33% 439 72.75%

43xxx Wi-Fi 5pm, Aug 31 2016 673 88.22% 1153 88.46% 281 89.55%

43xxx Wi-Fi 8pm, Aug 31 2016 398 92.49% 687 92.24% 94 71.48%

43xxx Wi-Fi Jun 7 2017 1714 84.10% 2354 87.32% 1008 85.38%

43012C0 Wi-Fi Aug 9 2017 1011 96.06% 707 93.00% 311 91.55%

4594/11 810 91.07% 6364/14 725 90.28% 2833/8603 81.18%

Combined Same Name/Total Functions 38.90% 43.22% 32.93%

Persistent Document Object Model (PDOM) files extracted from Cypress WICED Studio 6.2 and 6.4. Not all chips listed here are publicly available as evaluation
kit, thus, some binaries are missing in the function identification analysis. Projects that were built multiple times contain partially redundant PDOM files.

parameter contains a pointer to the next parameter. By fol-
lowing these pointers and applying names, we can extend the
function signature as follows:
btsnd_hcic_ble_remove_from_white_list(addr_type, bda)

However, extracting a type requires further actions. A type
can be direct, indirect, storable, or null [21]. In our case,
the 6B function_type definition starts with 0x1f, which
means that it is an indirect type. Indirect types are stored in an
additional record, in our case stored at 0x1f4971. The type
is unpacked using the unmarshalType and unmarshal
functions [23], [22]. Note that unpacking types can get rather
complex. In our case, the function type is BOOL32. Further-
more, the function type record is directly followed by records
containing information about the first and second parameter
type. Applying all types results in the following final function
signature:
BOOL32 btsnd_hcic_ble_remove_from_white_list(UNIT8

addr_type, UINT8* bda)

C. Function Signature Reconstruction Results

Tab. III shows that the PDOMs contained in WICED Studio
can restore approximately 40% of the function signatures of
the previously extracted Bluetooth firmware. On the left-hand
side, all PDOM databases and their project creation times are
listed. For some chips, multiple projects exist with different
amounts of indexed information.

If a function with the same name exists in both databases,
we calculate their signature similarity based on the return value
as well as parameter count, types, and names. Undefined types

are skipped in the comparison. Otherwise, each non-matching
property marks a function signature as non-similar. For exam-
ple, some functions exist in multiple firmware versions but got
additional parameters over time and are not similar.

Even the Wi-Fi and Zigbee firmware contain useful inputs
for the Bluetooth firmware because they partially share the
same code base and vendor-specific library functions.

VI. RELATED WORK

Polypyus is not the first tool leveraging binary simi-
larity for diffing and function start recognition. Since it
works disassembler-independent and finds matches in a large
firmware history within seconds, it is nonetheless a useful tool
for the reverse-engineering community. Moreover, the PDOM
reconstruction provides closed-source function signatures.

Interestingly, even though there is plenty of related work
about finding function starts [2], [5], [7], [39], a recent disas-
sembler benchmark confirms our results that 25% of function
starts are missed [33]. Polypyus learns from two or more input
binaries instead of huge pre-compiled known inputs, and still
provides decent results on function starts and diffing.

Recent work shows very promising results reaching more
than 98% of correctly identified functions including function
ends [1]. However, this work focussed on x86 binaries, both
32 bit and 64 bit. The x86 instruction set is less dense than
ARM Thumb2, thus, these results cannot be compared, and
the existing tools cannot be applied to our firmware binaries.

IDA Pro implements F.L.I.R.T. signatures to recognize
library functions [26]. However, these are limited to IDA Pro,
meaning that they can only be used with a valid license. The

10

user uploads the function signatures of one binary to a server
and then imports them into another binary. This limits user
control over the diffing process. While the implementation is
closed-source, the documentation states that it considers 30B
signatures and is limited to a fixed set of architectures. Since
F.L.I.R.T. signatures are imported from a single binary instead
of a firmware history, the signature generation likely depends
on the disassembler to recognize and filter position-dependent
instructions. Thus, not all architectures are supported.

Polypyus is more generic and way more independent. When
using it on both Bluetooth and Wi-Fi firmware, it finds a
lot of firmware-specific functions that are common across the
binaries, which are not only part of libraries and especially not
part of any open-sourced library.

VII. CONCLUSION

With Polypyus, we created a fast binary-only differ that
integrates into the existing workflow with other binary analysis
tools. History generation and function matching run within a
few seconds, making it a suitable tool for projects with a large
firmware set. Even though we did not evaluate Polypyus for
other architectures than ARM Thumb2, matchers are binary-
only. This means that it can be used for any architecture,
including proprietary instruction sets, as long as there is some
notation of functions that Polypyus can learn from.

The Polypyus function identification and diffing combined
with the reconstruction of function signatures and types from
Eclipse PDOM files will be helpful for C-based binary patch-
ing, such as NexMon for Bluetooth and Wi-Fi firmware.

ACKNOWLEDGMENT

We thank Christian Blichmann and Joxean Koret, the
core developers of BinDiff and Diaphora, for their feedback.
Moreover, we thank Jordan Wiens for the help with Binary
Ninja and Eyal Itkin for the Thumbs Up support. We thank
Ralf-Philipp Weinmann for feedback on this paper, Jakob Link
for testing Polypyus with Broadcom Wi-Fi firmware, and Anna
Stichling for creating the Polypyus logo.

This work has been funded by the German Federal Ministry
of Education and Research and the Hessen State Ministry
for Higher Education, Research and the Arts within their
joint support of the National Research Center for Applied
Cybersecurity ATHENE.

AVAILABILITY

Polypyus is publicly available on GitHub [38]. The binary
differ works without disassembler. As of now, the diffing
results can be imported by accompanying IDA Pro and Binary
Ninja scripts.

The repository comes with a large firmware set of binaries,
including all binaries with symbols as well as selected binaries
without symbols, such as the iPhone 11 and Samsung Galaxy
S10/S20 symbols.

Moreover, the repository contains the generic PDOM to
SQLite extractor as well as an PDOM importer for IDA Pro.

REFERENCES

[1] Jim Alves-Foss and Jia Song. Function Boundary Detection in Stripped
Binaries. In Proceedings of the 35th Annual Computer Security
Applications Conference, ACSAC ’19, page 84–96, New York, NY,
USA, 2019. Association for Computing Machinery.

[2] Dennis Andriesse, Asia Slowinska, and Herbert Bos. Compiler-Agnostic
Function Detection in Binaries. In 2017 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 177–189. IEEE, 2017.

[3] Hugues Anguelkov. Reverse-engineering Broadcom Wireless
Chipsets. https://blog.quarkslab.com/reverse-engineering-broadcom-
wireless-chipsets.html, Apr 2019.

[4] Nitay Artenstein. Broadpwn: Remotely Compromising Android and
iOS via a Bug in Broadcom’s Wi-Fi Chipsets. https://blog.exodusintel.
com/2017/07/26/broadpwn/, 2017.

[5] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David
Brumley. BYTEWEIGHT: Learning to Recognize Functions in Binary
Code. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 845–860, San Diego, CA, August 2014. USENIX Association.

[6] Gal Beniamini. Over The Air: Exploiting Broadcom’s Wi-Fi Stack (Part
1). https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-
broadcoms-wi-fi 4.html, 2017.

[7] Andrew R. Bernat and Barton P. Miller. Anywhere, Any-Time Binary
Instrumentation. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools, PASTE ’11, page
9–16, New York, NY, USA, 2011. Association for Computing Machin-
ery.

[8] Capstone. The Ultimate Disassembler. https://www.capstone-engine.
org/, 2020.

[9] Jiska Classen and Daniel Wegemer. Fitbit Firmware Modifications.
https://github.com/seemoo-lab/fitness-firmware, 2019.

[10] Cypress Semiconductor Corporation. Cypress to Acquire Broadcom’s
Wireless Internet of Things Business. https://www.cypress.com/news/
cypress-acquire-broadcom-s-wireless-internet-things-business-0, June
2016.

[11] Cypress Semiconductor Corporation. BCM4339: Single-Chip 5G WiFi
IEEE 802.11ac MAC/Baseband/Radio with Integrated Bluetooth 4.1 and
FM Receiver, March 2017. Rev. *H.

[12] Cypress Semiconductor Corporation. CYW20702: Single-Chip Blue-
tooth Transceiver and Baseband Processor, November 2017. Rev. *M.

[13] Cypress Semiconductor Corporation. Bluetooth (BR + EDR + BLE)
Connectivity Solution Families. https://www.cypress.com/products/ble-
bluetooth, 2020.

[14] Cypress Semiconductor Corporation. WICED Software. https://www.
cypress.com/products/wiced-software, 2020.

[15] Eclipse Foundation. PDOM & Indexing. https://wiki.eclipse.org/CDT/
designs/PDOM, 2006.

[16] Eclipse Foundation. PDOM Overview. https://wiki.eclipse.org/CDT/
designs/PDOM/Overview, 2008.

[17] Eclipse Foundation. PDOM CPP Function. https://git.eclipse.org/c/cdt/
org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/
internal/core/pdom/dom/cpp/PDOMCPPFunction.java, Jan 2021.

[18] Eclipse Foundation. PDOM CPP Paramter. https://git.eclipse.org/c/cdt/
org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/
internal/core/pdom/dom/cpp/PDOMCPPParameter.java, Jan 2021.

[19] Eclipse Foundation. PDOM Database Offset. https:
//git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/
parser/org/eclipse/cdt/internal/core/pdom/PDOM.java, Jan 2021.

[20] Eclipse Foundation. PDOM getRecPtr. https://git.eclipse.org/c/cdt/
org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/
internal/core/pdom/db/Chunk.java, Jan 2021.

[21] Eclipse Foundation. PDOM Linkage. https://git.eclipse.org/c/cdt/
org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/
internal/core/pdom/dom/PDOMLinkage.java, Jan 2021.

[22] Eclipse Foundation. PDOM unmarshal. https://git.eclipse.org/c/cdt/
org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/
internal/core/dom/parser/cpp/CPPFunction.java, Jan 2021.

[23] Eclipse Foundation. PDOM unmarshalType. https://git.eclipse.org/c/
cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/
cdt/internal/core/pdom/dom/cpp/PDOMCPPLinkage.java, Jan 2021.

11

https://blog.quarkslab.com/reverse-engineering-broadcom-wireless-chipsets.html
https://blog.quarkslab.com/reverse-engineering-broadcom-wireless-chipsets.html
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://googleprojectzero. blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero. blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://www.capstone-engine.org/
https://www.capstone-engine.org/
https://github.com/seemoo-lab/fitness-firmware
https://www.cypress.com/news/cypress-acquire-broadcom-s-wireless-internet-things-business-0
https://www.cypress.com/news/cypress-acquire-broadcom-s-wireless-internet-things-business-0
https://www.cypress.com/products/ble-bluetooth
https://www.cypress.com/products/ble-bluetooth
https://www.cypress.com/products/wiced-software
https://www.cypress.com/products/wiced-software
https://wiki.eclipse.org/CDT/designs/PDOM
https://wiki.eclipse.org/CDT/designs/PDOM
https://wiki.eclipse.org/CDT/designs/PDOM/Overview
https://wiki.eclipse.org/CDT/designs/PDOM/Overview
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/dom/cpp/PDOMCPPFunction.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/dom/cpp/PDOMCPPFunction.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/dom/cpp/PDOMCPPFunction.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/dom/cpp/PDOMCPPParameter.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/dom/cpp/PDOMCPPParameter.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/dom/cpp/PDOMCPPParameter.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/PDOM.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/PDOM.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/PDOM.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/db/Chunk.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/db/Chunk.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/db/Chunk.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/dom/PDOMLinkage.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/dom/PDOMLinkage.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/dom/PDOMLinkage.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/dom/parser/cpp/CPPFunction.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/dom/parser/cpp/CPPFunction.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/dom/parser/cpp/CPPFunction.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/dom/cpp/PDOMCPPLinkage.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/dom/cpp/PDOMCPPLinkage.java
https://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.core/parser/org/eclipse/cdt/internal/core/pdom/dom/cpp/PDOMCPPLinkage.java

[24] Dennis Giese. Not all IoT Devices are Created Equal: Reverse
Engineering of Xiaomi’s IoT Ecosystem. In beVX, 2018.

[25] Grant Hernandez and Marius Muench. Emulating Samsung’s Baseband
for Security Testing. BlackHat USA 2020, August 2020.

[26] Hex-Rays. IDA F.L.I.R.T. Technology: In-Depth. https://www.hex-rays.
com/products/ida/tech/flirt/in depth/, 2020.

[27] Hex-Rays. IDA Pro. https://www.hex-rays.com/products/ida/, 2020.
[28] Eyal Itkin. Thumbs Up: Using Machine Learning to Improve

IDA’s Analysis. https://research.checkpoint.com/2019/thumbs-up-
using-machine-learning-to-improve-idas-analysis/, 2019.

[29] Joxean Koret. Diaphora. http://diaphora.re/, 2020.
[30] Dominik Maier, Lukas Seidel, and Shinjo Park. BaseSAFE: Baseband

SAnitized Fuzzing through Emulation. The 13th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec ’20),
July 2020.

[31] Dennis Mantz, Jiska Classen, Matthias Schulz, and Matthias Hollick.
InternalBlue - Bluetooth Binary Patching and Experimentation Frame-
work. In The 17th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’19), Jun 2019.

[32] National Security Agency. Ghidra. https://ghidra-sre.org/, 2020.
[33] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios

Portokalidis, Bing Mao, and Jun Xu. SoK: All You Ever Wanted to
Know About x86/x64 Binary Disassembly but Were Afraid to Ask.
In 2021 2021 IEEE Symposium on Security and Privacy (S&P), pages

194–212, Los Alamitos, CA, USA, May 2021. IEEE Computer Society.
[34] radare. radare2. https://rada.re/n/radare2.html, 2020.
[35] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick.

Frankenstein: Advanced Wireless Fuzzing to Exploit New Bluetooth
Escalation Targets. In 29th USENIX Security Symposium (USENIX
Security 20), pages 19–36. USENIX Association, August 2020.

[36] Matthias Schulz. Teaching Your Wireless Card New Tricks: Smartphone
Performance and Security Enhancements Through Wi-Fi Firmware
Modifications. PhD thesis, Technische Universität, 2018.

[37] Matthias Schulz, Daniel Wegemer, and Matthias Hollick. Nexmon: The
C-based Firmware Patching Framework. https://nexmon.org, 2017.

[38] Secure Mobile Networking Lab. Polypyus on GitHub. https://github.
com/seemoo-lab/polypyus, 2020.

[39] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing
Functions in Binaries with Neural Networks. In 24th USENIX Security
Symposium (USENIX Security 15), pages 611–626, Washington, D.C.,
August 2015. USENIX Association.

[40] Siguza. radiff2 -A doesn’t work on raw binaries #13541. https://github.
com/radareorg/radare2/issues/13541, 2019.

[41] Maddie Stone. What’s Up with WhatsApp. https://github.
com/maddiestone/ConPresentations/blob/master/Jailbreak2019.
WhatsUpWithWhatsApp.pdf, 2019.

[42] Vector 35 Inc. Binary Ninja. https://binary.ninja/, 2020.
[43] zynamics. BinDiff. https://www.zynamics.com/bindiff.html, 2020.

12

https://www.hex-rays.com/products/ida/tech/flirt/in_depth/
https://www.hex-rays.com/products/ida/tech/flirt/in_depth/
https://www.hex-rays.com/products/ida/
https://research.checkpoint.com/2019/thumbs-up-using-machine-learning-to-improve-idas-analysis/
https://research.checkpoint.com/2019/thumbs-up-using-machine-learning-to-improve-idas-analysis/
http://diaphora.re/
https://ghidra-sre.org/
https://rada.re/n/radare2.html
https://nexmon.org
https://github.com/seemoo-lab/polypyus
https://github.com/seemoo-lab/polypyus
https://github.com/radareorg/radare2/issues/13541
https://github.com/radareorg/radare2/issues/13541
https://github.com/maddiestone/ConPresentations/blob/master/Jailbreak2019.WhatsUpWithWhatsApp.pdf
https://github.com/maddiestone/ConPresentations/blob/master/Jailbreak2019.WhatsUpWithWhatsApp.pdf
https://github.com/maddiestone/ConPresentations/blob/master/Jailbreak2019.WhatsUpWithWhatsApp.pdf
https://binary.ninja/
https://www.zynamics.com/bindiff.html

	Introduction
	Function Start Identification Issues
	Disassembling Instructions
	Disassembler Benchmark
	Benchmark Considerations
	Benchmark Results

	Common Disassembler Mistakes
	Impact on Binary Diffing

	Raw Binary Diffing Approach
	Polypyus Workflow and Tool Integration
	Binary Matchers
	Minimum Length and Cost Function
	Function Prologue Matchers
	Fast Matching Algorithm

	Raw Binary Diffing Evaluation
	Known Firmware Changes and History
	Polypyus Binary Diffing Results
	Disassembler Improvement

	Function Signature and Type Reconstruction
	Eclipse and PDOM Purpose
	Utilizing PDOM in Reverse
	Function Signature Reconstruction Results

	Related Work
	Conclusion
	References

