
Is Your Firmware Real or Re-Hosted?
A case study in re-hosting VxWorks control system firmware

Abraham A. Clements
Sandia National Laboratories

aacleme@sandia.gov

Logan Carpenter
Sandia National Laboratories

lcarpen@sandia.gov

William A. Moeglein
Sandia National Laboratories

wmoegle@sandia.gov

Christopher Wright
Purdue University

christopherwright@purdue.edu

servers. This also allows many instances of the system to be
started – with the number of instances only limited by the
availability of general purpose computing resources.

The primary challenge to re-hosting firmware is providing
valid inputs for the hardware that is not implemented in the
emulator. Emulators such as QEMU [6] provide the ability
to emulate a variety of CPU architectures, but provide very
limited support for the huge variety of peripherals (e.g., timers,
UARTs, Ethernet controllers) used in commodity embedded
systems. Many different approaches have been proposed to
address these challenges. One approach is to implement the
hardware at low-level memory mapped register interface as
done in QEMU – a laborious task that does not scale well.
Another approach is hardware-in-the-loop emulation [18],
where accesses to peripherals are forwarded to physical
hardware – which reduces its scalability. Machine learning [14]
is an approach where interactions with peripherals are recorded
on hardware and used to build models of peripherals. These
models are then used during emulation. Another approach is
to use a fuzzer [12] to provide inputs for the peripherals. Both
machine learning and fuzzing peripherals limits control over
the devices making them unsuitable for high fidelity emulation.

A promising approach is High Level Emulation (HLE) [8],
[7], [10], [11] where common abstractions within the firmware
are utilized to remove the need to provide low-level support
for peripherals. Both Firmadyne [7] and Costin et al. [10],
[11] utilize the Linux kernel abstractions to enable re-hosting
Linux based firmware. HALucinator [8] uses hardware
abstraction layers provided by micro-controller manufacturers,
enabling re-hosting of simple bare-metal applications.

Our goal is to advance the art of re-hosting to enable
answering questions about how low-level logic and vulnerabili-
ties in Real-Time Operating Systems (RTOS) impact the larger
systems in which they are a part. While we are not yet able to
achieve this final end goal we report our current progress here.
To achieve this goal we extend HALucinator to work with a
commercial RTOS. For a more general review of re-hosting we
refer the reader to [34]. RTOSes aim to make the process of
writing firmware for embedded systems easier. These RTOSes
provide the basic constructs for a real-time system and give
the developer abstract mechanisms to define system behavior.
These mechanisms are often organized as layers, which hide
the working details of the system from higher layers. In addi-
tion, these operating systems define an interface–called a Board
Support Package (BSP)–to enable portability across a large
variety of hardware. These layers, and in particular the BSP,
provide a natural place for HALucinator to decouple firmware
from its hardware and enable re-hosting in an emulator.

Here we focus on VxWorks, a commercial RTOS

Abstract—Emulating firmware is increasingly popular for
systems research, particularly vulnerability research. In this
paper we describe how we extend HALucinator to work with
real-world systems that use the popular VxWorks RTOS.
We describe the Re-hosting Support Layer (its definition and
implementation) with the functions necessary to get a Schneider
Electric SCADAPack 350 remote terminal unit, a Schneider
Electric Modicon 340 programmable logic controller, and
Hughes 9201 BGAN inmarsat terminal up and re-hosted (at
least partially). We share the process and our path of performing
this work over the last year, and give a retrospective approach
for re-hosting other RTOSes. We provide a case study with 3 real
devices, and show that we can re-host portions of the firmware
and perform analyses to show the success of our approach.

I. INTRODUCTION

Firmware running on embedded systems is ubiquitous.
Any modern system performing control or automation
functionality likely contains an integrated micro-controller
executing firmware. This firmware controls how the device
behaves and interacts with the physical world. While we are
dependent on these systems, analyzing firmware for security
vulnerabilities is a challenging task because of its tight
integration with hardware. This requires nearly all dynamic
analysis of firmware to be performed executing the firmware
on the hardware, which significantly limits the ability to
inspect the its execution. Execution inspection capabilities are
typically provided by a debugging port on hardware and are
usually limited to a handful of breakpoints. Further, leaving
the debugging port accessible is generally considered a poor
security practice and thus is often not even an option for
third parties trying to analyze firmware. Requiring hardware
also increases the expense and decreases the scale at which
automated analyses can be applied, e.g., programmable
logic controllers can each cost several thousands of dollars.
Automated vulnerability testing such as fuzzing requires
running many instances of the device to enable effective
discovery of vulnerabilities and the dollar cost of devices can
significantly limit the scale at which testing can be performed.

Emulating embedded systems by re-hosting their firmware
has been demonstrated as a technique to overcome the require-
ment of hardware in performing dynamic analysis of firmware
[7], [10], [11], [27]. To do this, a firmware is run on a software
emulator, which allows it be run on commodity desktops and

Workshop on Binary Analysis Research (BAR) 2021
21 February 2021, Virtual
ISBN 1-891562-69-X
https://dx.doi.org/10.14722/bar.2021.23006
www.ndss-symposium.org

commonly found in safety-critical industries such as
aerospace, automotive, medical, and manufacturing [2], [15],
[3]. It is used extensively by major companies including
Siemens, Boeing, Bosch, Huawei, Northrop Grumman, and
others. WindRiver, the maker of VxWorks, estimates there are
on over 2 billion devices running VxWorks [25]. Probably
the most publicized use of VxWorks was in the Mars Rover,
where NASA Jet Propulsion Laboratory (JPL) used VxWorks
in the Mars Exploration Rover [30]. VxWorks has also been
demonstrated to have critical vulnerabilities [4], [26].

By leveraging and replacing some of the abstraction layers
used for the development of VxWorks, we have found that we
can enable HALucinator to re-host the firmware from these
complex systems. We refer to our abstraction replacements
as a re-hosting support layer (RSL) and currently we enable
file system operations, execution of multiple asynchronous
tasks, recording system logs, and interactive communication
over both Ethernet and serial ports. We demonstrate our
re-hosting support layer, performing a set of dynamic analyses
on firmware from a Schneider Electric SCADAPack 350
remote terminal unit, a Schneider Electric Modicon 340
programmable logic controller, and Hughes 9201 BGAN
inmarsat terminal. These devices were chosen because of
the use in critical infrastructure, and underlying support for
their processor’s instruction set architecture in HALucinator.
This enables us to focus on problems specific to re-hosting
RTOS’es. We report our task analysis, initialization analysis,
function/symbol analysis and execution statistics in section IV.

While the re-hosting support layer presented in this work
is specific to VxWorks, we believe many of the concepts
and lessons learned in its development may be applicable to
other real-time operating systems. Thus, we also provide a
retrospective approach for others to use in development of
re-hosting support layers for additional RTOSes. In summary
this work presents using HALucinator to provide a re-hosting
support layer for VxWorks to enable emulation of 3 real-world
devices, analysis, detailed explanation, and statistics recorded
while re-hosting these devices, and a retrospective and advice
on re-hosting embedded RTOS devices.

II. BACKGROUND

Before describing our re-hosting support layer, we
formally define some of the terminology used in this work.
We then discuss the benefits of re-hosting and the scale
we use for determining the utility of a re-hosted firmware.
Next, since our work requires a functional knowledge of both
HALucinator and VxWorks we provide a brief review of each.

A. Vocabulary
Firmware Re-hosting: The process of executing firmware

on a platform other than its originally intended hardware.
Emulation vs Re-hosting: The terms emulating a firmware

and re-hosting firmware are often used interchangeably. This is
because the two ideas are so closely related. In this paper, we
refer to emulating a system by re-hosting a firmware. That is,
the goal is to emulate the system for a specific purpose and the
means of doing it is re-hosting the firmware. We find using this
terminology helps making decisions during re-hosting, because
the right decision usually depends on what we are trying to
emulate. For example, do we need to provide high fidelity for

0

Prerequisites for Emulation Satisfied

At least one instruction executes in
emulator

1
OS begins Initialization

OS starts to execute but enters bad state

2

Interactive Execution

At least one bi-directional interface
working

3
Core OS Functions Working

IO, Filesystem Task Scheduling, Networking

4

OS Tasks and Select Vendor Tasks Working

Select external interfaces match real
system

5

OS Tasks and Vendor Tasks Running

From external perspective nearly identical
to real system

In
tr

o
sp

ec
ti

o
n

V
u

ln
er

ab
ili

ty
R

es
ea

rc
h

V
ir

tu
al

Te

st
b

ed
s

Fig. 1. Re-hosting Utility Scale

power management in our re-hosting? If we are emulating to
test power management, then yes; otherwise, probably not.

Re-hosting Support Layer (RSL): The functionality that
is replaced during a firmware’s execution to enable re-hosting.
In the context of HALucinator and this paper, the re-hosting
support layer is the set of handlers and models that enable
HALucinator to re-host a firmware.

VxWorks vs Device Code: In developing a re-hosting
support layer, it is often useful to distinguish the origin of the
functionality being replaced. The origin of the code impacts
how widely used the functionality is. Intercepting code that
is part of VxWorks will be common across all systems using
VxWorks and replacing it will enable wide application of the
re-hosting support layer. On the other hand, device specific
code will only be found on a device or a small family of
devices. Replacing it limits applicability of the re-hosting
support layer, but can increase fidelity of the emulated system.
We will refer to code that is part of VxWorks as VxWorks
code and all other code as device code.

B. Emulation Utility Scale
To aid in communicating the utility of an emulated

system, we have created a scale to describe the capabilities a
re-hosted firmware provides. The level of utility needed from
an emulated system depends on the reason for emulating it.
The scale is inspired by the levels of autonomous driving [1].
Our scale goes from zero to five, with zero having the least
utility and five having the most.

As can be seen in the Figure 1, Level 0, means that at
least one instruction executes in the emulator, implying that
we have the ISA identified correctly and firmware loaded at
the correct base address. At this point we can choose any
address and start executing from it, but execution will likely
not be meaningful. Level 1 begins when execution starts at the
correct entry point and the system starts to properly initialize.

2

At this point we likely have missing hardware requirements
that will cause the firmware to not finish initialization. Levels
0 and 1 enable inspecting execution, but is not useful for
much more than manual analysis of a few key points.

Level 2 begins when at least one bi-directional interface is
working. Examples include reading/writing files, networking,
serial ports, or an interactive shell. At Level 3 all the core OS
functions are working including file system, task scheduling,
and networking. With a functional interface, levels 2 and
3 become useful for manual and automated vulnerability
research like fuzzing.

After completing core OS functionality, device specific
applications should be at least partially functional. Level 4
begins when one or more of the device specific applications are
working and it implies that select applications should behave
similar to the physical system. Level 5 is achieved when all
OS and device specific applications are working. At this point,
from an external – black box perspective – the emulated system
should behave like the real system. It is important to note that
Level 5 does not mean it is identical to the real system, as there
are likely differences in timing and internal state from the real
system. If you want perfectly fidelity you probably need to
use the real system. The process of developing and adding our
re-hosting layer follow the pattern of pushing the utility of the
emulated system up this scale by focusing on the interfaces and
software layers needed to move from one level to the next.

C. HALucinator
This work substantially extends HALucinator, and thus we

review key parts of its architecture and design principals here.
For a more thorough description we refer you to the original
paper [8]. HALucinator provides a framework to perform High
Level Emulation (HLE) for bare-metal firmware. It does this by
identifying hardware abstraction functions in the firmware and
replacing them. These functions abstract low-level hardware
operations into high-level API’s that simplify development.

HALucinator implements replacement functionality using
three components in an attempt to maximize code reuse. These
components are handlers, peripheral models, and external
devices. The handlers interact directly with the emulator’s
state (i.e., registers and memory) to read/write relevant data
to or from the emulated system’s memory. Handlers are also
the least portable between firmware, as they are implemented
specifically per abstraction layer. The handlers often make
calls to a peripheral model, where the model implements the
behavior of an on-chip or external peripheral, such as a UART,
or Ethernet controller in a generic way. This enables reuse
of the models in re-hosting multiple firmwares, enabling the
handler to be a thin translation layer, mapping the semantics
of the firmware’s API to a generic model of a peripheral.

To enable the peripheral models to receive input from and
send output to a variety of devices, the peripheral models
leverage HALucinator’s IO Server. The IO Server publishes
and receives tagged messages to and from external devices.
The external devices are usually scripts that tie host system
resources to the emulator. In this work we refer to the set of
handlers and models needed to enable re-hosting a class of
firmware as a re-hosting support layer (RSL).

The HALucinator paper showed that HLE can be used to
re-host firmware in an interactive manner and it also enables
automated vulnerability discovery for small bare-metal

systems. In this work, we extend the HALucinator platform
to enable re-hosting commercial firmware using the VxWork
RTOS by developing a re-hosting support layer for VxWorks.

D. VxWorks
VxWorks started as a set of enhancements to VRTX [23].

In the late 1980’s, Wind River developed its own kernel to
replace VRTX within VxWorks. Over time, VxWorks went
from support for 32-bit processors to becoming an RTOS
with a networking stack and eventually 64-bit processing
in the 2010’s. VxWorks supports ARM, Intel and Power
architectures, both 32-bit and 64-bit. One of the key features of
VxWorks is that the OS kernel is separate from applications,
board support packages, middleware, and other packages.
This allows for updates of the OS and components, without
having to change the applications. These same abstractions
help facilitate re-hosting the firmware using HLE.

Our example firmware use VxWorks 5.5 and 6.4, so we
focus on their details here. VxWorks 7 brings significant
changes and we leave re-hosting it to future work. Figure 2
shows generalization of some key layers in VxWorks relevant
to our re-hosting support layer. It starts from the top with appli-
cations and moves down through the software stack eventually
reaching hardware. Conceptually, a re-hosting support layer
needs to replace blocks such that every vertical column has a
replacement before reaching hardware. Doing this will enable
the re-hosted firmware to emulate the system it implements.

Starting at the top of Figure 2 we have a set of applications
that are implemented as tasks in VxWorks. A number of these
are provided with VxWorks and others are device specific.
Not all the VxWorks applications will be present or executing
on every system. Below the application layer, VxWorks
provides a POSIX-like API through its IO Subsystem. It
provides functions such as open, close, read, write, etc. This
is a thin layer that looks up the driver that should handle
the operation, and forwards the parameters to the appropriate
driver functions. Drivers are registered with VxWorks by using
calls to iosDrvInstall which registers the Create, Remove,
Open, Close, Read, Write, and IOCTL functions for the driver
and returns a driver. The driver is then passed to iosDrvAdd
which associates it with a path. These two functions and the
drivers associated with them are featured prominently in our
re-hosting support layer.

VxWorks provides drivers for file systems (e.g., DosFs)
tty devices (serial ports), and network devices. In addition
to drivers provided by VxWorks, device specific drivers can
also be added. The VxWorks drivers rely on device specific
BSP implementations to perform their operations. VxWorks
provides its own TCP/IP stack with the ability to register
device specific protocols in the networking stack. Connection
of these protocol stacks is done through VxWorks’ Networking
Mux interface. This provides an interface to register device
specific drivers conforming to the MUX API. Implementing
these functions enables data to be sent and received over the
network. One of these types of interfaces is the Extended
Network Device (END), which is used for Ethernet devices
and is the most applicable to our re-hosting support layer.

III. VXWORKS RE-HOSTING SUPPORT LAYER

With this overview of VxWorks we are now ready to
describe our VxWorks re-hosting support layer. We start by

3

IO Subsystem (IOS)

DosFS

cbio

ttyDev netDev

Serial

IO

Flash

Device

BS

Driver(s)

tffs Network Mux

END

UART Ethernet

TCP/IP Stack

END

o

r

Legend

VxWorks Component Board Specific (BS)

Replacing with HALucinator Hardware

POSIX Layer

Drivers

Lower Level

Components

BSP

Hardware

Ftpd Shell

Custom

Protocol

Applications

…

…

Custom

App

Custom

App
…

Socket

API

Fig. 2. VxWorks Layer Diagram. This is an example and is generic. Some
of the boxes shown here may change, disappear and others may appear
depending on the specific device.

laying out its pre-requisites and then proceed through each of
the key components in the order that we recommend adding
them. This order pushes the utility of the emulated system
up the emulation utility scale. Our re-hosting support layer
enables initializing VxWorks, executing multiple threads,
triggering interrupts, serial communication, a DOS file system,
and Ethernet communications.

A. Pre-requisites
Obtain Firmware. Before re-hosting firmware we need to

obtain the firmware and determine how to load the firmware
into HALucinator. The firmware used in this paper was all
obtained by downloading it from their respective manufactures.
In all cases, the firmware was a binary file in the downloaded
package (i.e. the firmware was at most compressed, not
encrypted or otherwise packed). In general, obtaining firmware
can be a significant challenge [29], [35], [34]. As our goal
is advancing the capabilities in re-hosting firmware, we chose
devices for which obtaining the firmware was straight forward.

Determine Architecture. After obtaining the firmware
we have to determine the processor architecture, load address
for the firmware, memory map, and entry point to re-host
the firmware. The processor architecture can be obtained by
physical examination of the hardware on which the firmware
runs, looking for strings in the firmware, or using tools
such as binwalk [24] that use a heuristic based analysis to
guess the processor architecture by examining the binary
and looking for instructions. In our case, a combination of
physical examination, strings, and heuristic approaches were
used. All of our examples run on ARM micro-controllers that
implement the ARM v5T instruction set [16].

Determine Load Address and Memory Map. Getting the
correct load address for the firmware is essential for correct
execution. If the processor chip is known and datasheets are
available, much of the memory map can be obtained from
there. Otherwise, we determined the correct loading addresses

by loading into Ghidra [19] and examining the correctness of
the disassembly after running Ghirda’s default auto-analyses.
We then used trial and error and examined the use of constant
addresses to determine the correct load address. With the
firmware loaded into Ghidra at the correct offset, we then use
Ghidra to determine the rest of the memory map by looking
for references to missing memory. We then add memory to
satisfy these missing memories. For the purpose of re-hosting,
over-provisioning memory does not impact the execution as
it will just not be used. Thus, if it looks like a memory range
may be accessed, we add a block of memory to enable the
access whether or not it will actually occur. We also leverage
dynamic analysis to identify additional regions of memory
and iteratively add these as they are discovered.

Symbol Discovery and Function Naming. To effectively
replace a layer in a firmware, we need to identify the addresses
of the functions. The re-hosting support layer utilizes function
names to identify functionality to replace. Labeling functions
in firmware can be a challenging problem – LibMatch [8] and
other solutions [37], [13], [22], [17] can be referenced for
solving this problem. On VxWorks 5 and 6 these techniques
are not needed, as they embed a partial symbol table in the
binary. Tools such as Ghidra’s ”VxWorksSymTab Finder.java”
[20] and VxHunter [38] can extract function names from this
table, and we leverage them to map symbol names to addresses
in HALucinator. This enables us to refer to the functions by
their symbolic names in configuration files for HALucinator.
This increases both the readability of the configurations files
and their portability between different firmware.

Determine Entry Point. Using the symbols, we look for
the instruction that should execute first. We do this by looking
for callers of the function usrInit. Tracing back up the call
chain until we can go no further has led to the entry point
where VxWorks starts execution. It is important to note that on
the real system, a boot loader likely ran before this instruction,
so it may be necessary to fix up some memory state for Vx-
Works to initialize properly. In addition, the firmware may have
multiple ways of starting up (e.g., hard power ups, soft-reset,
factory reset, etc). This can mean there are multiple ways that
usrInit can get executed, each with a different set of assumed
events that occurred previously. We generally try to boot into
a hard power-up mode, performing a factory reset if possible.
This setup will rely on the least amount of configuration being
present at startup. How this is done is device specific, but the
initialization process will generally indicate what state needs
to be set and provide clues about expected values.

B. Logging
At this point the firmware should execute with a Level

1 utility (i.e., it will start initializing but likely fail quickly).
One of the things we have found indispensable in pushing the
utility to higher levels is to intercept and log error messages.
This enables detecting when errors occur, their source, and
often get a human readable message. Our re-hosting support
layer provides the ability to capture errnoSet, and map it to a
human readable string using values from [9]. We also capture
calls to various device specific error and debug functions
that were identified in the process of re-hosting. These are
usually human passed readable strings providing clues about
the nature of the error.

4

C. Initialization
VxWorks has a defined startup process that follows a set

of steps to initialize memory and call additional bootstrapping
code. The specific steps vary between systems, but generally
include loading ROM code into memory and setting initial
values at set addresses. One example of this data is the
boot line, which allows certain parameters, such as network
addresses and boot devices, to be set in a string. This string is
loaded to a fixed memory address for the system that can be
accessed later by bootstrapping code. If this startup code is
not available, it is still necessary to initialize memory before
jumping to bootstrapping code.

The system starts its kernel bootstrapping by calling a
run-once root task, usrRoot, which is the first task executed
by the kernel. This task is responsible for initializing
hardware and spawning additional system tasks, such as
serial communications and networking. Since the underlying
hardware does not exist in the re-hosted system, we must
replace functions which initialize hardware in order to prevent
the system from hanging.

Both the memory initialization and kernel bootstrapping
will be device specific. However, we have broken the
VxWorks re-hosting support layer into generic components
that can be reused depending on the system. For example,
the SCADAPack initializes hardware components for serial
communications, a DOS file system, and networking. This
combination of devices is specific to the SCADAPack, but the
initialization routines rely on drivers which can be replaced
to provide generic hardware support.

While bringing up a system for the first time, it is often the
case that each of these drivers will be added one at a time to
ensure they are properly handled. In our case, each component
can usually be disabled by simply skipping the initialization
routines for that component. Any components that are not
essential to the system or analysis can remain disabled. We
apply an iterative process of enabling a component and trying
to execute to the end of initialization (e.g., the end of usrRoot).
If a new error is encountered or we get stuck somewhere, we
examine the cause and address it by fixing up the offending
device-specific code. In practice, this usually requires little
more than skipping low-level hardware initialization functions
that are waiting on hardware that is not present in the emulator.

For our sample firmwares, we do not execute the
bootloader prior to starting VxWorks. Thus, it is necessary
to set the bootline. We do this by intercepting the call to
bootStringToStruct and writing our boot string to the address
of the pointer in the first argument of the call. We then allow
execution to continue as normal. In this way our bootline gets
injected before it is used for initialization.

D. Interrupts
One of the primary reasons to use an RTOS is to enable a

processor to perform asychronous tasks. The use of interrupts
is essential for enabling this. VxWorks provides its own
abstraction for managing interrupts and uses a method called
intConnect to associate a callback function and priority
with each interrupt. A generic interrupt handler is then
called, which uses a BSP function to lookup the from the
IRQ controller what interrupt occurred and map it to a
VxWorks interrupt vector number. This method is usually
called xxxIntLevVecChk where the xxx is a device specific

App calls
read

iosRead

tyRead

Read buffer

Uart_ISR

tyIRd

write

iosWrite

tyWrite

Write buffer

tyITx

tx charrx char

Function

Buffer

Function call

Blocking Memory
Access

Non-Blocking
Memory Access

Replaced
Function

Legend

interrupt

Fig. 3. Shows the read and write operations of serial devices implemented
using the VxWorks ttyDev driver, and conceptual replacements made in our
re-hosting support layer.

identifier chosen by the developer. xxxIntLevVecChk is passed
two parameters by reference; the first points to a level and
the second points to the VxWorks vector number passed to
intConnect for the interrupt that was triggered.

We implement interrupts by adding a simple interrupt
controller to QEMU that has an array of memory mapped
bytes, which if any are set, triggers an interrupt. We intercept
the call xxxIntLevVecChk which will get executed to determine
what interrupt occurs. We then lookup in our interrupt
controller the interrupt source and return the value. VxWorks
will then execute the handler for the desired interrupt.

E. Supporting Asynchronous Tasks
VxWorks has two modes for the scheduler to run in:

synchronous and asynchronous. Our example firmwares
utilizes the asynchronous scheduler that executes in a periodic
manner. This is done by configuring a timer to trigger an
interrupt at the period with its associated ISR executing the
scheduler. We provide this functionality in our re-hosting
support layer, by intercepting the execution of sysClkEnable
and replacing it with a model that starts a timer. On expiration
of the timer we trigger the interrupt associated with the system
clock. We determine the interrupt used to trigger the clock
by statically examining calls to intConnect and looking at
those that are in the call tree of sysClkInit. We also intercept
sysClkDisable with a handler that stops the timer to prevent
the interrupt from occurring when it should not.

F. Serial Communications
Serial communication is used for talking to other devices

and for debugging. VxWorks provides a tty driver [31] which
provides terminal like behavior to a serial port and enables
POSIX file API’s to be used for serial port interaction. This
driver registers the POSIX layer functions creat, delete,
open, close, read, write and ioctrl with the IO subsystem.
Applications can then open the serial ports like a file and use
read/write and ioctl calls to configure and interact with them.

Figure 3 shows the events that occur when a call is made to
read or write from an application. Consider a call to read on its
execution it calls the IO subsystem’s read function (iosRead).

5

iosRead looks up the driver that should handle the read and
then calls the driver’s read function. For ttyDev devices, this
is tyRead, which attempts to take a semaphore before reading
from a receive buffer. The semaphore will be given if there is
data to be received or it will cause the task to be removed from
execution until data is available and the task can be resched-
uled. Writing works similarly, except a semaphore is used to
ensure there is room in the write buffer before writing the data.

The ttyDev driver provides functions for the low-level
device driver to use for reading (tyIRd) and writing (tyITx)
serial data. The UART’s ISR calls these functions to put data
into the read buffer and get data from the write buffer. In this
way, by defining a few low-level functions, different serial
port hardware can easily be integrated into VxWorks.

To implement our re-hosting layer for serial, we replace
tyWrite with a handler that reads out the data and sends it out
HALucinator’s IO server. This makes it so data is always sent
immediately and removes the need for triggering an interrupt
when data is sent. If devices directly use VxWork’s ttyDev
device, without customization, receiving serial data is done
by triggering an interrupt when the data is received for the
serial device from the IO server. Then, intercepting the device
specific UART ISR and calling tyIRd with the data. However,
different receive models are possible and the SCADAPack uses
a receive task to get the data from the serial port. In this
case, its receive ISR releases a semaphore that the receive task
blocks on. The receive task then reads the data in and calls
tyIRd (actually called utyIRd on SCADAPack). To accommo-
date this, our serial ISR handler for the SCADAPack modifies
the state to indicate to the original handler that data has been
received and then allows it to execute. The receive task will
then execute tyIRd, which we intercept to inject the received
data prior to its execution; and then we allow it to execute.

In addition to the handlers supporting reading and writing,
handlers are added to monitor ioctl calls. Inserting the serial
port layer requires identifying the addresses of tyWrite, tyIRd,
tyIoctl – which were in the symbol tables of our firmware
samples – and the serial port ISR function. We find the serial
port ISR by examining calls to intConnect.

We currently intercept the low-level driver functions
for polling read/writes, but the same effect can be created
by intercepting tyRead and waiting until data is received.
Because we are using emulated hardware, we can use a
virtually unlimited transmit buffer so there is no need to block
on transmitting data and our interception tyWrite will occur
before the low-level write function is called, enabling it to be
used as if polling mode is configured.

G. File System
The file system of the SCADAPack, Modicon, and Hughes

firmware all utilize the dosFS file system provided by Vx-
Works. Much like the ttyDev, VxWorks installs the file system
as a driver using a call to iosDrvInstall — registering callback
functions that provide read, write, create, delete, open, ioctl and
close operations on files. We intercept calls to all these driver
functions and map them to the host system in HALucinator.
With the file system becoming a directory on the host system.

These functions are not named in the symbol tables in
our firmware. For the sake of clarity we will refer to these as
dosFsXXX where XXX is the operation the function performs
(e.g, dosFsRead, dosFsWrite). In our re-hosting layer the

functions dosFsRead, dosFsWrite, dosFsClose are mapped
directly to their equivalent function on the host system using
python’s os library. The other functions require mapping
VxWorks specific parameters to their equivalent on the
host system. dosFsOpen’s flags need to be mapped to their
equivalent opening mode. In addition, VxWorks can create the
directories when opening a file by setting a flag. We implement
equivalent logic to create directories if this flag is given.
Similarly, dosFsDelete is used for both files and directories
and we handle both depending on the path specified.

The most complex of the functions is dosFsIoctl.
dosFsIoctl takes as one of its parameters a pointer to the
device (i.e., dosFS device), the file descriptor, a function code
pointer and an untyped value. The function code determines
what kind of operation is performed on the file. The 400plus
project [21] identified 31 ioctl operations used in VxWorks.
We implement the eight different operations we encountered
in the SCADAPack firmware. Specifically, fioRead, fioSeek,
fioWhere, fioRename, fioReadDir, fioTimeSet, and fioMove.
We have also logged attempts to uses of other ioctl operations,
enabling us to know if additional operations need to be
implemented. Each of these ioctl operations use a different
data structure for their value parameter. They follow POSIX
defined formats, but offsets for various fields must be carefully
determined for each firmware to ensure correct operation.

Adding the handlers for the re-hosting layer requires
identifying the addresses of the dosFsXXX functions. None
of these functions are named in the symbol tables of our
firmware samples. However, they are easily identified by
examining the call to iosDrvInstall in dosFsLibInit. Both these
functions are in the symbol table of all our firmware samples.
In addition, offsets for the data structures used for the ioctl
functions may need to be updated. This can significantly
increase effort and we are looking for ways to reduce it.

H. Ethernet
The re-hosting support layer supports Ethernet by inter-

cepting the functions used by the VxWorks muxLib interface
to talk to Extended Network Devices (ie. END in VxWorks
documentation) [33]. Specifically, we intercept functions
specified in the END OBJ passed to muxDevLoad [32]
Section 10.1. This structure defines the callback functions
used to manage the Ethernet devices. It includes operations
to send data, manage multi-cast addresses, load and unload
the device, start and stop the device, and handle IOCTLs. We
implement handlers for xSend which reads out the frame data
and sends it using the IO Server. We also implement handlers
for xStart and xStop, which enable and disable receiving of
frames and triggering interrupts when frames are received at
the IO Server. All other functions currently in the END OBJ
are stubbed out to enable monitoring their execution, but
execute without modification. These stubs can be removed to
improve re-hosting performance.

While the functions to send Ethernet frames are part of the
END OBJ, receive functions are not in the END OBJ. Vx-
Works intends for developer defined code to receive the frame
and call muxReceive after putting the frame in the appropriate
network frame data structure. Further complicating receiving is
that to minimize delaying other interrupts, muxReceive should
not be called in the ISR. Thus, the ISR signals the netTask to do
the actual reading of the frame and calling of muxReceive. Our

6

re-hosting support layer intercepts the Ethernet ISR and makes
a call to netJobAdd passing it the address of the function used
to perform the receive outside the ISR. netJobAdd releases
the semaphore in the netTask is waiting for, enabling it to be
scheduled for execution. Upon execution, netTask calls the EN-
DReceive function. We intercept this function and replace its
logic with functionality that: (1) reads the frame from the Eth-
ernet model, (2) allocates the network data structure by making
a call to netTupleCreate, (3) copies the Ethernet frame into the
structure, and finally (4) calls muxReceive with the structure.

Locating the functions needed to add the Ethernet in the
re-hosting support layer, requires manual reverse engineering
as the functions intercepted are device specific. We locate the
END OBJ functions by statically and dynamically examining
calls to muxDevLoad. muxDevLoad is a VxWorks function and
was found in the symbol tables of all our sample firmware.
The receive functions addresses were found by examining
calls to intConnect. This gives the ISR for receiving the
frames, and we then examine the ISR’s for calls to netJobAdd
to find the function used by the netTask to receive the frame.
Using our Ethernet re-hosting layer we are currently able
to send and receive an Ethernet frame and get a successful
response to an ARP query. Work is ongoing to optimize the
receiving of frames to enable more complex interaction.

IV. FIRMWARE ANALYSES

To analyze the effectiveness of our re-hosting, we first
examine the success of extracting the symbol table from
our example firmware. We then demonstrate the utility of
our re-hosted firmware by performing a series of analyses
of interest to a firmware analyst. These include recovering
the file systems, enumerating the tasks created, inspecting
execution traces through custom tools we have built for
Ghidra, and enabling the VxWorks shell when not initialized.

These analyses and our re-hosting capabilities are a work
in progress. Thus, we focus primarily on the SCADAPack 350
as it is the firmware we have spent the most effort re-hosting.
Typically, we develop for it and then port our solutions
to the other devices. Currently, we are able to re-host the
SCADAPack’s firmware well enough to send and receive
serial data and send and receive Ethernet frames. Porting to
the Modicon and Hughes are a work in progress and we are
still working to complete their initialization. We report our
findings to date for all devices.

A. Symbol Recovery
Recovering of symbols is essential for the portability of

our re-hosting support layer, as it enables the rapid adaptation
of the layer to new firmware. Our firmware samples use
VxWorks 5.5 and VxWorks 6.4 which embed a symbol table
in the binary. We use Ghidra 9.2 [19] to load the binaries
into memory using the offsets and memory layout determined
manually. We then use the VxWorksSymTab Finder.java script
that ships with Ghidra to read the symbol table and populate
it into a Ghidra project, after which Ghidra’s default auto
analyses are run to identify functions and other references.
Table I shows the number of function names recovered, the
total number of functions identified by Ghidra’s analyses,
the total number of symbols read, and the total number of
symbols Ghidra reported. In the worst case, 53% of the
functions identified by Ghidra have names in the symbol
table. In the best case 86% of the functions are recovered.

TABLE I.
SYMBOLS RECOVERED USING GHIDRA VXWORKSSYMTAB FINDER

Functions Symbols
Firmware Recovered Total % Recovered Total %
ScadaPack 4,904 6,440 76% 6,111 15,386 40%
Modicon 8,057 15,324 53% 16,914 23,004 74%
Hughes 19,164 22,221 86% 22,274 42,503 52%

TABLE II. FUNCTIONS INTERCEPTED DURING INITIALIZATION.
Grouping Handler SP Exe Mod. Exe H. Exe

DosFS dosFsCreate 2
DosFS dosFsDelete 3
DosFS dosFsIoctl 9
DosFS dosFsOpen 9
DosFS dosFsClose 11
DosFS dosFsRead 11
DosFS dosFsWrite 6
DosFS iosDevAdd 6 10 8
Error errnoSet 16 170

Ethernet eth Ioctl 26
Ethernet eth Send 1
Ethernet eth Start 2
H. Init 0xa0052280 1
H. Init 0xa042c1d8 192
H. Init flPollTask 1
H. Init FUN a0010830 2
H. Init FUN a049242c 1
H. Init FUN a04ac780 1
H. Init FUN a04ac804 768
H. Init inmFlashErase 2
H. Init sysSpin 16
H. Init usrMmuInit 1

Init bootStringToStruct 1 1
Interrupts xxxIntLvlVecChk 57 203
Logging intConnect 6 40
Logging intDisable 2 6
Logging intEnable 22 11 13
Logging intExit 56
Logging taskSpawn 24 13 13

Mod. SendToDisplay 1
Mod. Init CntSyst1MicroDeltaTime 1
Mod. Init FUN 2022bd5c 2
Mod. Init kl NandFlashDrvInit 1
Mod. Init taskDelay 8
Mod. Init usrToolsInit 1

SP Init FUN 020a6c10 1
SP Init at25Close 2
SP Init at25Open 2
SP Init at25ReadNBytes 2
SP Init cbioDevVerify 1
SP Init defaultSerialInit 1
SP Init detectBootType 1
SP Init eepromReadNBytes 16
SP Init flCall 3
SP Init getclock 2
SP Init readBattery 1
SP Init usbPhciInit 1
SP Init writeSH3000Register 5
SysClk sysClkEnable 1 1
ttyDev tyIoctl 5
ttyDev tyRead 1 382
ttyDev tyWrite 33 1017

∗Check-mark means the symbol is recovered with default symbol
finding script for the given device.

B. Re-hosting the firmware
We re-host the three firmware samples and let them

execute as far as they can. Table II shows the functions

7

we intercept and replace with our firmware re-hosting layer
for each firmware. For symbols present in the symbol table
a check mark is also given. Empty columns mean the
handler did not execute on that device. Starting with the
SCADAPack, you can see that it uses the Ethernet, DosFS,
and ttyDev drivers. The majority (13) of it’s handlers are
to handle device specific initialization. Of these, all but
at25ReadNBytes, eepromReadNBytes, and detectBootType
skip the function or return a constant value. at25ReadNBytes
and eepromReadNBytes are both device specific functions that
execute the same handler. The handler returns values from a
file that was created by reading the contents of the eeprom on
the physical system. detectBootType writes a value to a global
variable to indicate that the boot mode is a factory reset. The
value was determined by examining callers to detectBootType.
These handlers highlight some of the challenges with properly
initializing the system that do not port well from device to
device. Without access to the physical device, we would have
had to manually reverse engineer callers to at25ReadNBytes
and eepromReadNBytes to determine the valid values to return.

Of the three devices, the SCADAPack gets furthest through
its execution. It completes execution of its initialization and is
waiting to be configured. We boot it in a factory reset mode
and so it has no control logic to execute. In addition, the device
can speak a variety of control protocols over its serial ports.
This means that in actual use they are likely connected to other
devices and it is essential that non-protocol data–like debug
strings and boot info–not be written to them. We can see this
by the lack of calls to tyWrite. We are able to get it to receive
and process both serial and Ethernet data, but this functionality
was not exercised in the capture used to generate Table II.

The our re-hosting support layer for the Modicon 340 is the
least mature of our samples. It currently gets stuck in the last
function call of its usrAppInit–the last high level function of
it’s initialization. It is waiting on data from a SD Card that we
have not yet implemented. From the handlers intercepted you
can see that it is writing to a ttyDev. To get this firmware to the
same point as the SCADAPack, we need to get the interrupt
vector table to initialize and the start the system clock. At that
point we can stop intercepting taskDelay–which we currently
skip to prevent hanging forever. This allows us to get further
in initialization to determine what resources the system uses,
but prevents other tasks from being scheduled. We also need
to determine how the system initializes its Ethernet interface
as it does not appear to use the boot line for this purpose.

The Hughes 9201 BGAN completes its initialization, but
does so with a large number of errors. It calls errnoSet 170
times and many of these are related to the creation of network
devices and file systems. We are working to continue fixing
up it’s initialization so that these components will work. Even
with these limitations we can learn some interesting things
about the Hughes device. For example, it uses a ttyDev for
printing out debugging information and runs the VxWorks
shell. Figure 4 is a screen capture of the shell initialization.
We can also see that number of symbols recovered is only
one less than the firmware finds (e.g. 22,274 vs 22,275).

The current re-hosting capabilities are useful and we are
working to expand them. One of the current limitations arise
from changes to the initialization from our RSL improperly
skipping parts of initialization that are needed but problematic
(e.g., functions that polls on hardware preventing further

TABLE III. COMMON NAME TASKS CREATED
Task Name Scadapack Modicon Hughes

tExcTask
tLogTask
tNbioLog
tTffsPTask
tNetTask
tFtpdTask

TABLE IV. DEVICE SPECIFIC TASKS
Scadapack Modicon Hughes

t0 com1Tx tJobTask tEthSend
BULK CLASS masterReq tErfTask USB RXTX

BULK CLASS IRP mrTx1 tDhcpcStateTask tTelnetd
tBulkClnt com2Tx tDhcpcReadTask tBridgeAger
tRxTask0 mrTx2 tTftpd tDhcpsTask
tRxTask1 com3Tx tFtp6d tShell
tRxTask2 mrTx3 tStartSnmpd tPicDriver
fileWatch mTcpServ MidRangePPP D 1 SYSLOG
com1Rest mruServ MidRangePPP C 1
com2Rest mauServ EnableUSB
com3Rest mastIpSta tXbdService

Startup bkgrndIo t920 PollTask
udpConfig softWatch

ioCtrl socketWatch
ioRecv HALThread

execution, but also sets critical data structures). Another chal-
lenge is providing missing information. For example, the boot
loader will pass VxWorks a boot string that configures things
like networking and initial users. The general structure of this
string is standardized, but values can be device specific. Some
of the firmware contain a default string that can be used. Others
have minimal strings that fail to initialize much of the desired
hardware. Finally, differences in execution during re-hosting
vs. physical execution also arise. For example, HALucinator’s
high overhead in triggering interrupts and executing its
handlers make it run the system clock much slower than on the
physical device. We suspect this at least contributes to the slow
network processing, as it causes delays in switching between
tasks that process the Ethernet traffic. We are evaluating adding
the ability to inject code for handlers, instead of executing
python code in a break point. This would greatly improve
performance, at the cost of ease of development and potential
portability of handlers. We are also considering integration of
a generic system clock that runs within QEMU that uses the
number of instructions executed instead of time to trigger. This
would enable fine tuning the balance between time executing
the clock’s interrupt service routine and executing other code.

C. Task Analysis
Analyzing the tasks that firmware starts can tell an analyst

a lot about what the system does and how it does it. To
support this type of analysis we add a handler that logs the
calls to the function used to create new tasks taskSpawn.
We log all the parameters which gives us the task’s: name,
stack size, priority, entry point, flags, and parameters passed
to the entry point. The common tasks created through their
initialization process are shown in Table III and device
specific tasks are shown in Table IV. From this you can see
that all three run a logging task (tLogTask) and a networking
task (tNetTask). The SCADAPack and Hughes device also
both run VxWork’s FTP server (tFtpdTask). The modicon
device also appears to runs a FTP server tFtp6d and a Trivial
FTP server tTftpd but these are specific the modicon device.

Looking at device specific tasks we can see that the
SCADAPack starts a number of tasks for each serial port

8

Fig. 4. Output from Hughes 9201 ttyDev during initialization

(tRxTaskN, comNRest, mrTxN, comNTx). The fact each
serial port is managed by four tasks indicates complex and
critical behavior occurring on the serial ports. This makes
them of interest for further security analysis. Looking at
the Modicon and Hughes device we also find a number of
network facing services (e.g., DHCP, SNMP, Telnet) that
could be of interest to security analysts.

As previously mentioned, the Hughes device executes
a VxWorks shell over a serial port. We have been able to
interact with the shell using re-hosting and use it to execute
commands, inspect the system, and execute scripts. However,
because of all the errors during initialization we cannot yet
say whether this interface would be unprotected on physical
systems. It is possible that later execution, or a missing part of
initialization disables it or sets a password on it. In addition,
it possible that physical protections like not routing the serial
pins to pads on the PCB are used to protect the interface.

D. Discovering and Enabling the VxWorks Shell
VxWorks provides an interactive shell designed for

interfacing with the operating system. The shell serves two
purposes: as a command interpreter and for prototyping and
debugging. The command interpreter is similar to a UNIX shell
where commands are issued to exercise system functionality.
The prototyping and debugging features allow for low-level
introspection and control into tasks running on VxWorks. This
allows the user to set breakpoints in code, call user routines,
examine and modify memory, and catch errors on the system.

The shell must be included in the application by
the developer. This is done by calling shellInit in the
bootstrapping task, usrRoot. The shell would likely be
included during system development since it is the primary
mechanism for debugging applications. Each of the three
devices we inspected contained the shell symbols, but not all
started the shell task at startup. Since we control execution of
the re-hosted firmware, we can enable the shell by inserting
our own call to the shellInit function at startup.

Inspect Running Tasks. Going beyond the knowledge of
what tasks have been started. The shell allows tasks to be listed
and inspected dynamically. Showing what tasks are running at
any given time. Additionally, the shell can show information

about a task, such as the location of its stack, and spawn or
suspend tasks. Comparing running tasks to started tasks can
indicate where re-hosting fidelity needs to be improved.

Modify Filesystem. The shell can be used to traverse
the device filesystem and modify files using a file editor.
Modifying scripts on the re-hosted device filesystem can
persistently modify behavior of the system. For example,
some devices rely on scripts at startup for initialization.

Read/Write Memory. Memory can be read and written
using shell commands. This can be used to leak information
or modify the memory of a running process.

Run User Routines. The shell has a table of symbols
which can be invoked from the command line. This mechanism
can be used to run arbitrary user functions on the device.

E. Ghidra Integration
In many cases during the re-hosting process something

goes wrong. Determining where this occurred and
understanding it accelerates the re-hosting process. To
support this we have developed a tool, called HQ-Tracer,
which parses the execution log from HALucinator/QEMU and
loads it into Ghidra. This tool colors all instructions executed
in the trace and highlights the current instruction in the
trace. It also enables interactively stepping through the traces
in Ghidra using a command-like interface similar to GDB.
These commands include stepping forward and backward X
number of instructions (default of 1 at a time), continue until
you exit the given function, and it allows to search for a
specific address forward/backward. If you only have a single
thread/task, there is a stack tracker that attempts to keep a
call stack to quickly see the function call path to the current
instruction, though this feature is disabled by default and can
be toggled on. In addition, the trace enables executing python
code as a command which enables performing customized
filtering and stepping through the trace. During our debugging
and discovery phases of re-hosting, we often would not
understand why some things were not working. Loading the
trace into Ghidra enabled us to quickly determine the location
of the error and determine work arounds.

V. APPROACH FOR RE-HOSTING OTHER RTOSES

In re-hosting VxWorks we discovered multiple places
where HALucinator needed extensions, and the approach
used to re-host firmware in the original HALucinator paper
needed refinement. Based on this experience we propose
an approach to use as a starting point when re-hosting an
RTOS. In this approach, we assume you can get the firmware
loaded into HALucinator, identify the entry point and begin
execution (i.e., you have reached Emulation Utility Level 1).
We also assume that key functions of the RTOS have been
identified. This can be done using symbols, function labeling
techniques, or manually. If it needs to be done manually, then
this approach can serve as a template to help identify what
these function need to be identified. This process is primarily
derived from the approach we took, but incorporates ideas
and suggestions that we wish we had known starting out.
We believe these ideas can shorten the process of building a
re-hosting support layer for other operating systems.

(1) Instrument error handling and print statements.
Once the execution in the HALucinator can begin, we
recommend intercepting and logging calls to error handling

9

functions first. This provides a high level way to track what
the firmware is doing and determine where execution is going
wrong. If these can be mapped back to human readable
strings this is particularly useful, as it provides hints of how
to fix the issue or even determine if the issue needs resolved.
For example, if the error is for an interface you don’t intend
to use in the emulated system, then you may not need to
fix it. In addition to error handling code instrumenting, print
statements (e.g. printf, etc) provide indication of what is
being executed and if things are going as expected.

(2) Understand and execute RTOS initialization to com-
pletion. With error handling and print statements instrumented,
the next step is to get the OS initialization process to complete.
This will require understanding the boot process for the OS
and determining when initialization is complete, i.e., the
system switches to its steady state operations. For VxWorks,
this is generally the completion of execution of usrRoot. The
initial goal is not to get everything to initialize correctly,
but rather to get execution to reach the end of initialization.
This lets you know what needs to be initialized and then to
selectively work on individual components as needed.

We did this by stubbing out functions that prevented reach-
ing the end of initialization. This includes hardware initializa-
tion functions that polled non-existent IO, task delay functions,
clock reading functions, and anything else that prevents reach-
ing the end of initialization. We replace these functions with
stubs that indicate they executed successfully (e.g., returning
zero) or just skipped their execution. For functions reading
clock values we return an increasing value on each call.

The goal at this stage is to understand what needs to be
initialized. To this end, we delay starting asynchronous context
switching as long as possible. This simplifies debugging and
execution tracing. If initialization is dependent on another task
running and providing a resource, we often skip the execution
of this function during the initial re-hosting stage. In this
way, we can rapidly identify what needs to be initialized and
determine where we will spend our effort in re-hosting.

(3) Identify tasks creation. With the system running
through its initialization process you can now identify the
tasks that it creates (or at least attempts to), their priorities and
usually a human readable name. We do this by intercepting
calls to taskSpawn and logging the tasks to a file, then allow
execution to continue unmodified. We also instrument the task
switching code to determine when a task starts execution.

(4) Identify interrupt handlers and driver registration.
With the system running through its initialization process,
you can now dynamically identify interrupt handlers, and
driver registration. Replacement of these drivers will enable
providing support for the hardware missing in the emulator.
The drivers and their initialization functions are likely the
source of most the errors encountered during initialization. We
identify these functions by intercepting the driver registration
functions iosDrvInstall and iosDrvAdd. Intercepting these
functions will tell you what kind of devices the system is
using and the functions used to interact with the system.

On VxWorks, a number of these drivers are software only
components provided by VxWorks and they use another set of
lower level callbacks to interact with the hardware. We found
it much easier to intercept these lower level callbacks rather
than the higher level set. For example, we intercept the utyLib

functions (e.g., tyWrite) for the serial port. This allows the
read and write functions provided by the tty driver to handle
the semaphores and interprocess communication needed for
multiple tasks to execute on the system in the firmware, rather
than having to have our handlers manage these semaphores.
Networking is much the same – a high level network driver is
added that provides the POSIX file api, but VxWorks intends
for network functionality to leverage the MUX interface.

Once you have identified the drivers, we suggest you
work to bring them up one at a time, following the order
the initialization function tries to initialize them, with one
exception. We suggest delaying starting the scheduler for as
long as possible, as debugging multiple tasks is significantly
harder than a single task. However, we found at some point
the initialization process starts other tasks and expects them
to execute prior to its completion. In these cases, complete
as much of the initialization as you can before starting the
scheduler, then enable it. For each driver, work to understand
their initialization process and how to determine that it is
performed correctly. Then for each interface you care about,
ensure that each driver initializes as completely as possible.

(5) Starting Non-cooperative Context Switching.
When either initialization is completing without errors or
initialization is dependent on having other tasks run, it is time
to start non-cooperative context switching. This is done by
starting a timer that triggers the system tick ISR periodically.
We recommend to initially start slow, and then increase rate as
needed for performance. At this point the operating systems
should be running along with tasks that are not dependent on
unsupported devices.

VI. RELATED WORK

The first large scale academic works that enabled system-
emulation and firmware re-hosting were Firmadyne [7] and
work by Costin that is very similar [10], [11]. The ideas
behind these works include extracting the file system from a
Linux firmware, and re-hosting using their own Linux kernel
using QEMU. Their tools work only for Linux firmware that
can natively use chroot inside of QEMU. After re-hosting
firmware, they perform static and dynamic analysis to report
vulnerabilities.

The group that created Avatar [36] also created
Avatar2 [18], which was completely re-designed from
the original Avatar implementation. Avatar2 is a dynamic
multi-target orchestration and instrumentation framework
that allows various other tools (angr [28], QEMU [6], GDB,
HALucinator [8], etc.) to integrate and communicate state
between them during dynamic execution. It can also be used
to perform hardware in the loop emulation of systems.

Using the drop-in fuzzer AFL [5], P2IM [12] provides in-
puts to a modified QEMU emulator for any peripheral or hard-
ware IO. Their approach is unique and different from existing
emulation approaches, as it does not use hardware, traces, or
detailed knowledge of the peripheral/hardware IO, rather they
are relying on the fuzzer to provide all interactions. By using
the drop-in fuzzer, it enables simple peripherals to be emulated,
but its ability to enable complex data and stateful hardware is
still either lacking or unknown. It also does not allow inter-
active system of system emulation as all IO is randomly gen-
erated. Leveraging machine learning, Pretender [14] records
hardware interactions and all accesses to memory mapped

10

input and output regions. These recordings are used to train
a machine model that during re-hosting provides inputs for
missing peripherals. Both of these approaches do not allow ex-
ternal inputs to peripherals making them unsuitable for system
of system modeling or use cases beyond vulnerability analysis.

In ”Challenges in Firmware Re-Hosting, Emulation, and
Analysis”, Wright et al. provide a comprehensive overview
of the challenges faced during system emulation, firmware
re-hosting, and analysis while providing classification and
comparison techniques on five different axes [34]. Using the
fidelity classification presented in that review, we note that
HALucinator and Avatar2 have higher fidelity than P2IM
and Pretender. We refer the reader to this paper for a more
comprehensive review of the challenges faced during general
system emulation and firmware re-hosting along with a wider
evaluation of tools, as our focus is more in depth and focused
on embedded devices that use VxWorks.

VII. CONCLUSION

With the re-hosting support layer we have implemented and
deployed for a SCADAPack 350, Modicon 340 and Hughes
9201 BGAN, the time for porting the layer to another device
using VxWorks can be significantly reduced. Re-hosting these
devices can be used for vulnerability discovery or other general
system analysis. We have thoroughly explained our re-hosting
support layer, functions and tasks intercepted in VxWorks,
and we have given a retrospective approach for re-hosting
other RTOSes. We are continuing to expand our capabilities
in this area with more devices in the works for re-hosting
using our expanded HALucinator handlers and techniques.

ACKNOWLEDGMENT

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective
technical results and analysis. Any subjective views or
opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of
Energy or the United States Government. SAND2021-2907 C

REFERENCES

[1] “The 6 levels of vehicle autonomy explained.” [Online]. Available:
https://www.synopsys.com/automotive/autonomous-driving-levels.html

[2] “Command & data-handling systems.” [Online]. Available:
https://mars.nasa.gov/mro/mission/spacecraft/parts/command/

[3] “Customer success: Varian medical systems.” [Online]. Available: https:
//www.windriver.com/customers/customer-success/medical/varian/

[4] “CVE-2019-12257.” Available from MITRE, CVE-
ID CVE-2019-12257., Dec. 2019. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12257

[5] AFL-Fuzz, “afl-fuzz.” [Online]. Available: https:
//github.com/google/AFL

[6] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Pro-
ceedings of the Annual Conference on USENIX Annual Technical Con-
ference. Berkeley, CA, USA: USENIX Association, 2005, pp. 41–41.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1247360.1247401

[7] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards
automated dynamic analysis for linux-based embedded firmware,” in
23rd Annual Network and Distributed System Security Symposium,
2016, San Diego, California, USA, February 21-24, 2016,
2016. [Online]. Available: http://wp.internetsociety.org/ndss/wp-

content/uploads/sites/25/2017/09/towards-automated-dynamic-
analysis-linux-based-embedded-firmware.pdf

[8] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “Halucinator:
Firmware re-hosting through abstraction layer emulation,” in 29th
USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 1201–1218. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/clements

[9] C. Co, “Vxworks error codes,” Dec 2014. [Online]. Available:
http://blog.lovecoco.net/168

[10] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale
analysis of the security of embedded firmwares,” in 23rd USENIX
Security Symposium. San Diego, CA: USENIX Association, Aug
2014, pp. 95–110. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/costin

[11] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: A case study on embedded web interfaces,” in
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security. New York, NY, USA: ACM, 2016, pp. 437–
448. [Online]. Available: http://doi.acm.org/10.1145/2897845.2897900

[12] B. Feng, A. Mera, and L. Lu, “P2im: Scalable and hardware-
independent firmware testing via automatic peripheral interface
modeling (extended version),” ArXiv, vol. abs/1909.06472, 2019.

[13] firminsight, “firminsight.” [Online]. Available: https:
//github.com/ilovepp/firminsight

[14] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry,
Y. Fratantonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel
et al., “Toward the analysis of embedded firmware through automated
re-hosting,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses, 2020.

[15] J. Laukkonen, “Will bmw’s infotainment solution idrive
you up the wall?” Feb 2020. [Online]. Available:
https://www.lifewire.com/examining-the-bmw-idrive-interface-534742

[16] A. Limited, ARM Architecture Reference Manual, ARM. [Online].
Available: https://developer.arm.com/documentation/ddi0100/latest/

[17] H. Mohanan, P. Bendapudi, A. Kumarasubramanian, R. Jalan, and
R. Venkatesan, “Function matching in binaries,” Apr 2012, uS Patent
8,166,466.

[18] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, “Avatar2: A
multi-target orchestration platform,” in Workshop on Binary Analysis
Research, colocated with Network and Distributed Systems Security
Symposium, San Diego, USA, San Diego, UNITED STATES, Feb
2018. [Online]. Available: http://www.eurecom.fr/publication/5437

[19] NSA, “Ghidra.” [Online]. Available: https://ghidra-sre.org/

[20] NSA, “Vxworkssymtab finder.java.” [Online]. Avail-
able: https://github.com/NationalSecurityAgency/ghidra/blob/
fe8d863c47f79d904c10c2c49d16ea4c1b674020/Ghidra/Features/
GnuDemangler/ghidra scripts/VxWorksSymTab Finder.java

[21] E. Perez, “400plus/iolib.h.” [Online]. Available:
https://github.com/400plus/400plus/blob/master/vxworks/ioLib.h

[22] R. Qiao and R. Sekar, “Function interface analysis: A principled
approach for function recognition in cots binaries,” in 47th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE, 2017, pp. 201–212.

[23] J. F. Ready, “Vrtx: A real-time operating system for embedded
microprocessor applications,” IEEE Micro, vol. 6, no. 4, pp. 8–17, 1986.

[24] ReFirm Labs, “binwalk.” [Online]. Available:
https://github.com/ReFirmLabs/binwalk

[25] W. River, “Functional safety.” [Online]. Available:
https://www.windriver.com/functionalsafety

[26] ——, “Security vulnerability response information: Tcp/ip network
stack (ipnet, urgent/11).” [Online]. Available: https://www.windriver.
com/security/announcements/tcp-ip-network-stack-ipnet-urgent11/

[27] S. Shah, “The arm-x firmware emulation framework.” [Online].
Available: https://github.com/therealsaumil/armx

[28] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

11

https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://mars.nasa.gov/mro/mission/spacecraft/parts/command/
https://www.windriver.com/customers/customer-success/medical/varian/
https://www.windriver.com/customers/customer-success/medical/varian/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12257
https://github.com/google/AFL
https://github.com/google/AFL
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
http://blog.lovecoco.net/168
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
http://doi.acm.org/10.1145/2897845.2897900
https://github.com/ilovepp/firminsight
https://github.com/ilovepp/firminsight
https://www.lifewire.com/examining-the-bmw-idrive-interface-534742
https://developer.arm.com/documentation/ddi0100/latest/
http://www.eurecom.fr/publication/5437
https://ghidra-sre.org/
https://github.com/NationalSecurityAgency/ghidra/blob/fe8d863c47f79d904c10c2c49d16ea4c1b674020/Ghidra/Features/GnuDemangler/ ghidra_scripts/VxWorksSymTab_Finder.java
https://github.com/NationalSecurityAgency/ghidra/blob/fe8d863c47f79d904c10c2c49d16ea4c1b674020/Ghidra/Features/GnuDemangler/ ghidra_scripts/VxWorksSymTab_Finder.java
https://github.com/NationalSecurityAgency/ghidra/blob/fe8d863c47f79d904c10c2c49d16ea4c1b674020/Ghidra/Features/GnuDemangler/ ghidra_scripts/VxWorksSymTab_Finder.java
https://github.com/400plus/400plus/blob/master/vxworks/ioLib.h
https://github.com/ReFirmLabs/binwalk
https://www.windriver.com/functionalsafety
https://www.windriver.com/security/announcements/tcp-ip-network-stack-ipnet-urgent11/
https://www.windriver.com/security/announcements/tcp-ip-network-stack-ipnet-urgent11/
https://github.com/therealsaumil/armx

[29] S. Vasile, D. Oswald, and T. Chothia, “Breaking all the things—a
systematic survey of firmware extraction techniques for iot devices,”
in Smart Card Research and Advanced Applications, B. Bilgin and
J.-B. Fischer, Eds. Cham: Springer International Publishing, 2019,
pp. 171–185.

[30] A. Volosincu, “Vxworks: Past and future,” Jul 2018. [Online]. Available:
https://blogs.windriver.com/wind river blog/2018/07/vxworks-past-
and-future/

[31] VxWorks, “Vxworks reference manual : Libraries.” [Online]. Available:
https://www.ee.ryerson.ca/∼courses/ee8205/Data-Sheets/Tornado-
VxWorks/vxworks/ref/libIndex.html

[32] VxWorks Network Programmer’s Guide 5.5, Wind River, 500 Wind
River Way, Alameda, CA, 94501, 8 2002. [Online]. Available: http:
//www.ing.iac.es/∼docs/external/vxworks.old/Network-Guide-5.5.pdf

[33] VxWorks Network Protocol Toolkit User’s Guide, Wind River, 500
Wind River Way, Alameda, CA, 94501, 8 2002.

[34] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A.
Clements, “Challenges in firmware re-hosting, emulation, and
analysis,” ACM Computer Surveys, vol. 54, no. 1, Jan. 2021. [Online].
Available: https://doi.org/10.1145/3423167

[35] S. J. Yang, J. H. Choi, K. B. Kim, and T. Chang, “New acquisition
method based on firmware update protocols for android smartphones,”
Digital Investigation, vol. Volume 14, pp. S68 – S76, 2015, the Proceed-
ings of the Fifteenth Annual DFRWS Conference. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1742287615000535

[36] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Avatar: A
framework to support dynamic security analysis of embedded systems’
firmwares,” in Network and Distributed Systems Security Symposium,
Feb 2014.

[37] R. Zhu, Y.-a. Tan, Q. Zhang, Y. Li, and J. Zheng, “Determining image
base of firmware for arm devices by matching literal pools,” Digital
Investigation, vol. Volume 16, pp. 19 – 28, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1742287616000037

[38] W. Zhu, R. Liu, J. Wang, and Y. Zhou, “Vxhunter: A tool set for
vxworks based embedded device analyses,” in black hat ASIA 2019
Workshop. blackhat.com, March 2019. [Online]. Available: https:
//www.blackhat.com/asia-19/arsenal/schedule/index.html#vxhunter-a-
tool-set-for-vxworks-based-embedded-device-analyses-14165

12

https://blogs.windriver.com/wind_river_blog/2018/07/vxworks-past-and-future/
https://blogs.windriver.com/wind_river_blog/2018/07/vxworks-past-and-future/
https://www.ee.ryerson.ca/~courses/ee8205/Data-Sheets/Tornado-VxWorks/vxworks/ref/libIndex.html
https://www.ee.ryerson.ca/~courses/ee8205/Data-Sheets/Tornado-VxWorks/vxworks/ref/libIndex.html
http://www.ing.iac.es/~docs/external/vxworks.old/Network-Guide-5.5.pdf
http://www.ing.iac.es/~docs/external/vxworks.old/Network-Guide-5.5.pdf
https://doi.org/10.1145/3423167
http://www.sciencedirect.com/science/article/pii/S1742287615000535
http://www.sciencedirect.com/science/article/pii/S1742287616000037
https://www.blackhat.com/asia-19/arsenal/schedule/index.html#vxhunter-a-tool-set-for-vxworks-based-embedded-device-analyses-14165
https://www.blackhat.com/asia-19/arsenal/schedule/index.html#vxhunter-a-tool-set-for-vxworks-based-embedded-device-analyses-14165
https://www.blackhat.com/asia-19/arsenal/schedule/index.html#vxhunter-a-tool-set-for-vxworks-based-embedded-device-analyses-14165

	Introduction
	Background
	Vocabulary
	Emulation Utility Scale
	HALucinator
	VxWorks

	VxWorks Re-Hosting Support Layer
	Pre-requisites
	Logging
	Initialization
	Interrupts
	Supporting Asynchronous Tasks
	Serial Communications
	File System
	Ethernet

	Firmware Analyses
	Symbol Recovery
	Re-hosting the firmware
	Task Analysis
	Discovering and Enabling the VxWorks Shell
	Ghidra Integration

	Approach For Re-hosting Other RTOSes
	Related Work
	Conclusion
	References

