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technology.

Being an interesting target for security research, we ac-
quired a TETRA base station for testing purposes, manufac-
tured by one of the top five vendors. Surprisingly, this base sta-
tion is running on a customized PowerPC platform. PowerPC
is a RISC architecture originating from the same era as the
TETRA specification. Despite mostly disappearing from the
consumer device market, PowerPC has interesting properties
for Industrial Control Systems (ICSs) and network equipment.
Popular real-time operating systems, which form the base of
such devices, continue having PowerPC support [14], [20].

The TETRA specification is publicly available except for
its export-restricted encryption modes [5], [6]. The only open-
source Software-Defined Radio (SDR) implementation lacks
features like sending data to a base station [36]. Thus, TETRA
base stations cannot be tested over-the-air with existing tools.
Moreover, over-the-air testing is very limited when it comes
to crash analysis. Instead, we create a PowerPC binary patcher
and testing toolsuite with the following features:

• A generic PowerPC binary patcher capable of insert-
ing custom hooks written in C into Executable and
Linking Format (ELF) files.

• A thread-aware function call tracer compatible to the
Callgrind format.

• Extension of the underlying Enea Operating System
Embedded (OSE) commands to dynamically execute
arbitrary firmware functions on the system.

• A fuzzer that observes the base station’s state and
panic messages.

In this paper, we focus on the PowerPC binary patcher,
function call tracer, and dynamic function caller. Parts of this
work are publicly available on GitHub [33]. Since TETRA
is critical infrastructure, this paper does not cover any vul-
nerability research or reverse-engineering of security-critical
functions.

Our base station setup and why we decided against
emulation-based approaches are described in Sec. II. In
Sec. III, we start with reverse-engineering the firmware that we
aim to patch. The actual PowerPC binary patcher is designed
and implemented in Sec. IV. Implementations of various
dynamic debugging capabilities including a function tracer are
provided in Sec. V. The fuzzing framework is described in
Sec. VI. We conclude our work in Sec. VII.

Abstract—Even though PowerPC mostly disappeared from the 
consumer device market, its architectural properties continue 
being popular for highly specialized systems. This particularly 
includes embedded systems with real-time requirements that 
are deeply integrated into critical infrastructures as well as 
aeronautics, transportation, control systems in power plants, etc. 
One example is Terrestrial Trunked Radio (TETRA), a digital 
radio system used in the public safety domain and deployed in 
more than 120 countries worldwide: base stations of at least one of 
the main vendors are based on PowerPC. Despite the criticality of 
the aforementioned systems, many follow a security by obscurity 
approach and there are no openly available analysis tools. While 
analyzing a TETRA base station, we design and develop a set 
of analysis tools centered around a PowerPC binary patcher. We 
further create various dynamic tooling on top, including a fast 
memory dumper, function tracer, flexible patching capabilities at 
runtime, and a fuzzer. We describe the genesis of these tools and 
detail the binary patcher, which is general in nature and not 
limited to our base station under test.

I. INTRODUCTION

The TETRA specification dates back to 1995 and serves 
a similar purpose as Global System for Mobile Communica-
tions (GSM)—wireless voice and data transmission but for 
emergency services [5]. While both specifications stem from 
the same era, TETRA was designed with safety and security 
applications in mind. More than 120 countries over the world 
deployed it [31]. It is the predominating technology used by 
the police, fire departments, and ambulances across Europe. 
As a governmental project with many dependencies, the roll-
out took longer than expected. Thus, despite being rather 
old from a technological perspective, it is very new from 
an organizational standpoint—there are no plans to transition 
to a more recent technology. As of today, the older analog 
communication it was meant to replace still exists as fallback. 
While GSM, known as 2G cellular network, got multiple 
major revisions and is updated to 5G now, TETRA remains 
on 2G-like transmission quality. 3G and onwards have more 
modern extensions for emergency communication systems, 
but TETRA sufficiently serves the purpose of voice and text 
message transmission. TETRA uses completely independent 
infrastructure, which ensures that it is available during mobile 
carrier outages, which is likely the reason to stick to this

Workshop on Binary Analysis Research (BAR) 2021
21 February 2021, Virtual
ISBN 1-891562-69-X
https://dx.doi.org/10.14722/bar.2021.23009
www.ndss-symposium.org



II. BACKGROUND

In this following, we document how we set up the base
station to enable custom firmware injection. Then, we discuss
advantages and disadvantages of emulation-based approaches
compared to running on physical hardware.

A. Base Station Setup

The TETRA Base Station (BS) analyzed in this paper
consists of a Base Radio (BR) and a Site Controller (SC).
The site controller serves firmware and configuration files
to the base radio via Trivial File Transfer Protocol (TFTP).
To this end, they are connected via an Ethernet cable. Since
10BASE-T and 100BASE-TX only require two pairs of pins
to operate and this data rate is sufficient, the remaining two
pairs are used for a proprietary CP2 clock signal operating
at 20 MHz. In our setup, we split this cable to connect the
base radio to the proprietary site controller CP2 clock signal
but control firmware and configuration files via a Raspberry
Pi. Even though this setup requires physical access, it is still
valuable for firmware analysis. The overall setup is depicted
in Fig. 1.

Moreover, the base radio has an authenticated serial in-
terface that can issue selected commands. These commands
include an AirTracer, which shows all TETRA air interface
traffic. Except from that, the debugging capabilities are limited.

For safety reasons, we configured the base station to an
invalid frequency, attach a dummy load instead of an antenna,
and place it into an Electromagnetic Field (EMF) shielded
room.

B. Binary Analysis Options

The firmware sent via TFTP comes as ELF file. The ELF
file is not stripped, meaning that it does not only contain basic
information about the target, but even includes function names.
However, the target architecture is PowerPC and the precise
CPU variant is undocumented. The ELF file can be analyzed
statically and dynamically. Especially dynamic analysis meth-
ods vary a lot, such as full-system emulation, emulation of
single functions or simply running on the base radio with
special hooks. We considered the following methods:
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Fig. 1: TETRA base station setup with firmware injection.

1) Firmware Emulation: Quick Emulator (QEMU) can
emulate PowerPC and attach a debugger to it to step through
the code [26]. Loading the ELF file into QEMU and booting
it fails at code related to hardware detection. This error can
be bypassed by hooking the hardware detection function and
returning a valid hardware model. Then, the firmware tries to
configure and enable a timer that does not exist in QEMU
for this machine. This timer is likely for the CPU scheduling
routine and, thus, the operating system cannot run without it. It
might be possible to fix these issues, however, they also show
how hardware-dependent the firmware is.

Another option would be to only partially execute selected
parts of the firmware for security analysis. Unicorn [32],
which is based on QEMU, recently got experimental PowerPC
support in a fork [30]. However, PowerPC support did not
exist when we started this project. Moreover, while executing
a packet handler and passing a single input to it is simple
to achieve with Unicorn, more advanced utilization comes
with similar issues as booting the whole firmware in QEMU
due to its hardware dependencies. Even worse, Unicorn lacks
peripheral support included in QEMU.

In general, this can be solved with a lot of engineering work
to implement interrupts, timers, and even thread switches. For
example, Avatar solves hardware dependencies [37], [22], and
Frankenstein goes as far as emulating a Bluetooth firmware
with a virtual modem and task switches [27]. Recently, not
only single parsers of a Mediatek baseband were fuzzed [19],
but even the Shannon baseband firmware was emulated includ-
ing hardware components [15]. However, implementing this
for a TETRA base station requires a lot of work, even with
the progress in the field of PowerPC emulation. Thus, despite
this would bring better introspection capabilities, we stick to
the concept of physically running modified firmware.

2) Physically Running Modified Firmware: A different
option is to inject modified code into the base radio. This
eliminates challenges like hardware dependencies. However,
this approach comes with other difficulties, such as creating a
valid firmware image, being limited to the base radio’s speed,
non-determinism due to uncontrollable side-effects, as well as
limited interaction with the target.

Nonetheless, we choose the second option. It allows us
to modify packets before they are sent over-the-air, trace
execution on the physical hardware for complex operations,
and more. While there are some basic PowerPC binary patch-
ers [18], [29], ours is able to patch the firmware using C
and reconstruct a valid, bootable firmware image for the base
station.

III. STATIC FIRMWARE ANALYSIS

As a first step, we perform a static analysis of the firmware
binary running on the base radio.

A. Firmware Version and Operating System

Despite acquiring the TETRA base station in 2017, its
firmware build dates indicate that it was last updated in
2007. Since it was a test device, this is reasonable. For the
mere purpose of designing a PowerPC binary patcher this
does not make any difference. It is unlikely that the vendor
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fully re-implemented the firmware since then. The TETRA
specification only got minor updates over the recent years.

The bootloader, which is stored separately in a ROM on
the base radio, is called “Enea POLO Bootloader”. This
stands for Portable OSE Boot Loader [1, p. 8]. The version
string “061201” indicates a build date in 2006. Without
any modifications, the bootloader accepts unsigned firmware
images over Ethernet via TFTP. Given the base station setup,
where the base radio directly connects to the site controller,
this still does not allow any attacks from an outside network.
If the bootloader fails to load a firmware binary via TFTP, it
launches a built-in shell. Otherwise, it continues executing the
_START symbol in the firmware.

The firmware contains the string “(C) Copyright 2003
Enea Embedded Technology”, and the boot log hints to OSE
as operating system in version 4.5.2. OSE 5 was announced
in 2004 [2]. The string “built by ‘awr012’ at Jan 19 2007
17:00:53” suggests a more recent build date, meaning that
the underlying OSE might have received a few more recent
patches. OSE supports build options that compile both the
operating system and applications into one binary [1]. Thus,
the build date for the TETRA functionality is likely the same.

As of today, OSE is still maintained and sold by Enea AB,
a Swedish company [3]. According to the operating system
description, it is well-suited for TETRA, since it is optimized
for high-performance communication systems with hard real-
time characteristics. Its deployment areas include telecom
networking systems and wireless devices.

Basic functionality extracted from the OSE manuals was
documented publicly in 2005 [1]. Moreover, an old OSE kernel
reference manual from 1998 was leaked [4]. The original
manuals are not publicly available.

B. Firmware Format

The firmware is packed as a gzip-compressed ELF file.
This is a common format that can be analyzed with tools like
readelf.

The header shows that the base radio runs on a 32 bit
PowerPC processor, which is a well-documented processor
family [9]. Moreover, the string “m8xxIOMemMap” inside the
firmware hints to the more specific MPC8xx family by Mo-
torola [10], which has been acquired by Freescale Semincon-
ductor. Dissecting the base radio reveals an MPC8260ADS
System on Chip (SoC), which contains a modified version of
the MPC603e big-endian PowerPC CPU [8]. We estimate that
it has 48 MB RAM. When calling the command board in the
bootloader, the following additional information is printed:

Motorola MPC8260ADS board
Bus clock 66MHz, core clock 264MHz, CPM clock 165MHz, BRG

clock 83MHz

Ghidra supports this architecture [23], allowing static reverse-
engineering.

The ELF file is non-stripped—it exports many symbols. In
total, the firmware exports 7007 function and further 10 512
non-function names. Hence, even though the firmware is rather
complex, it can be analyzed without source code and a fair
reverse-engineering effort.

C. Interrupt Vectors

Based on the generic PowerPC documentation [9], we
start by analyzing the interrupt handlers. These are located
at offset 0x100 in the binary with the reset vector that
calls zzexception. Most interrupt handlers are either not
set, throw an exception via SysAccessExcept, or call an
interrupt service routine using GenIsr.

D. Libraries and Function Prefixes

We can infer which public libraries are used along with
proprietary libraries that start with common prefixes from the
non-stripped ELF file. A list of the most interesting functions
that we are able to assign a purpose to are listed in Tab. I.

The network stack contained in libraries like ipcom was
developed by the Swedish company Interpeak AB, which was
acquired by Wind River Systems in March 2006 [21]. The
base radio’s Command-Line Interface (CLI) has a version
command that prints all information about the network stack:
(#) IPCOM $Name: ipcom-ose-r5_12_3
(#) IPLITE $Name:
(#) IPTCP $Name: iptcp-any-r1_6_2
(#) IPTFTPS $Name: ipappl-any-r1_12_2

Understanding the network stack is vital to exchange data
with the base radio over Ethernet instead of the existing serial
interface. In the following, we will create new network services
and fuzz existing ones.

The CLI that is accessible via the serial interface is
contained in the shell and cmd functions. We will use these
later on to add custom commands, such as calling arbitrary
firmware functions with chosen parameters out of context
during runtime.

TABLE I: Function groups in the ELF and their purpose.

# Prefix Purpose
40 — zlib, symbol names match library [11].

140 — libc, symbol names match library [12].
70 efs_ High-level file system functionality.
41 clfs_ Low-level file system functionality.

429 ipcom_ IP communication.
147 iplite_ IP communication.
75 iptcp_ Transmission Control Protocol (TCP).
17 iptftp_ Trivial File Transfer Protocol (TFTP).
11 tftp_ Trivial File Transfer Protocol (TFTP).
48 snmp_ Probably Net-SNMP library.
38 scomm_ Site communication with UDP socket abstraction.
11 pthread_ OSE POSIX-compliant thread wrapper.
26 ose_ Generic OSE functions.

116 afm_ OSE Atomic File Manager (AFM).
18 fam_ OSE Flash Access Manager (FAM).
18 shell_ OSE Command Line Shell.
79 cmd_ Shell commands like ls or cat.
25 rtc_ OSE Real Time Clock (RTC).
85 pmd_ OSE Post Mortem Dump (PMD).

133 bs_ Probably basic system process and timer management.
171 core_ Core functionality.
35 sysconf_ Configuration access.

177 zz Functions that force the syscall interface.
21 xx Kernel-side implementation of functions like xxmutex_

lock.
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IV. POWERPC BINARY PATCHER

Enea OSE comes with a debugging toolsuite called Illu-
minator [2]. However, Illuminator is closed-source and only
available for Enea’s customers. From the few things that
are publicly documented, it seems to integrate into the OSE
development platform and likely requires source code of the
target [1]. Since we neither have access to the base radio source
code nor to Enea-internal tools, we implement a binary patcher
that can extend the firmware ELF file. This binary patcher is
the foundation to building debug tools like dumping memory
during runtime or tracing function execution.

A. Hooking PowerPC Functions

The binary patcher aims to allow functions to be extended
in the beginning (PRECALL), end (POSTCALL), or to be
overwritten (REPLACE). Adding instructions prior to or after
a function is very useful for analysis and does not require
to understand the code of the target function. Many binary
analysis frameworks support these types of hooks, such as
F RIDA [24].

NexMon, a binary patching framework for ARM, inserts a
new function at a free memory location and then overwrites
selected branch instructions [28]. This is NexMon’s default
hooking approach and significantly reduces the instruction
overhead spent in the hook itself. However, this means that the
patcher needs to know all references to a function, i.e., replace
each bl memcpy instruction with bl memcpy_patch. Ad-
ditionally, functions may also be referenced by function tables
instead of branch instructions, which also need to be replaced.
Since disassemblers tend to make a lot of mistakes during
static analysis [25], there is a high chance to miss function
references.

A more reliable solution is to modify the target function. A
typical function prologue and epilogue in PowerPC assembler
are shown in Listing 1. Interestingly, all functions in our target
firmware start with the stwu and mflr r0 instructions in
any order. Both instructions are position-independent and can
be moved to any other position in the address space without
side effects. Thus, we can replace the first instruction of the
original function and transparently jump to a PRECALL or
REPLACE hook. A PRECALL hook needs to take care of
executing the replaced first instruction of the original function
before returning to the second instruction of the original
function.

1 stwu r1, -0x10(r1) ; r1 is the stack pointer, make room
2 ; Replace this with branch to hook
3 mflr r0 ; Move contents of link register to r0
4 stw r0, 0x10(r1) ; Push r0 onto stack
5 ; Function code
6 lwz r0, 0x10(r1) ; Load r0 from stack
7 mtlr r0 ; Move contents of r0 to link register
8 addi r1, r1, 0x10 ; Restore old stack pointer
9 blr ; Branch link return

Listing 1: Common function entry and exit.

B. Trampoline Code

In theory, replacing the first instruction would already be
sufficient for patching functions assuming that the original

code and the patch are using the same Application Binary
Interface (ABI). However, using this simple approach we
could not carry any additional metadata in hooks, such as
a function’s runtime or the current thread. Additionally, this
triggered a gcc cross-compiler bug in our first implementation
attempt. Thus, we introduce a special trampoline code, which
is individual for each hooked function. It saves the context of
the call to the stack, adds metadata like the original function
name and address, which in turn allows to return to the original
code path.

Another reason for the trampoline code are the PowerPC
calling conventions. In contrast to architectures like x86, which
push the return address to the stack when calling a function,
PowerPC does not have a native stack. Instead, the stack is
a software construct, and PowerPC requires special registers
to store information like the return address. Access to the
link register is only possible with the mflr (move from link
register) and mtlr (move to link register) instructions, as
they are used in Listing 1. Yet, these instructions are not
mandatory—a function that does not call subsequent functions
does not save the link register.

Moreover, the first eight function parameters and return
values are passed as registers. Thus, if a function signature
that defines all these parameters is unknown, the purpose of
each register cannot always be determined.

The trampoline code saves the context including all up to
eight possible function arguments, link register, function name
and call stub address into a Call Information Frame (CIF). We
store the CIF pointer to the register r14, which is non-volatile
by convention, meaning that follow-up functions must preserve
its contents [17]. The CIF allows calling the original function
in exactly the same context as it was called originally, which
is required by PRECALL and POSTCALL hooks.

C. Trampoline Performance

A patched function contains additional trampoline code
consisting of three components to keep it flexible.

1) Individual Code per Hook
Hook-specific code prepares the trampoline CIF for
the hook, such as the call stub address or the function
name as string, which requires 17 instructions.

2) Saving the Context
Moreover, there is generic code that can be reused for
all hooks to save volatile registers in the trampoline
call information frame. This requires 15 instructions.

3) Restoring the Context
Finally, to restore volatile registers from the tram-
poline CIF, there is additional generic code, which
requires 12 instructions.

In total, each trampoline code introduces an overhead of
44 instructions, in addition to the implementation of the actual
functionality that is added using the hook. For example, a
void function, if not optimized, could be represented with a
single blr instruction, while more complex functions require
an arbitrary amount of instructions.
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Fig. 2: Applying custom hooks to the original firmware ELF.

D. Applying Patches to the Firmware ELF

The base radio has two unused memory regions: One
252 kB region in the beginning directly after the interrupt
vectors, and another one of 15.6 MB after the ELF .bss
section. While the second region would be optimal in terms of
space, it cannot be reached using a single instruction jump
from the two program code sections. A PowerPC branch
instruction can be absolute or relative. The branch instruction
itself is encoded into 6 bit, leaving 24 bit for the absolute
or relative address [16]. The remaining 2 bit of the 32 bit
instruction encode if the branch is relative or absolute and if it
includes the link register or not. However, the empty 15.6 MB
section starts at the address 0x2098d68, which requires
a 26 bit representation. This cannot be represented with an
absolute branch, and a relative branch from the highest code
address at 0x27f7db would still require 25 bit. Thus, the only
solution to address this space would be using function pointers
by loading the address into a register, which adds further
overhead to the hooks. Instead, we leave some distance to the
interrupt vector definitions, which is required for stability, and
end up with the hook region 0x2500–0x3ffff, which is
246.75 kB. While this has been sufficient for our experiments,
the binary patcher could be extended to use the second memory
region when accepting the additional overhead of a function
pointer table.

We load our code into a new section at offset 0x2500 into
the ELF file. This extends the program header table and moves
the remaining parts of the ELF file. Thus, we use libelf [13]
to add new program headers and keep track of file offsets in
section headers. We still need to fix the program header size
manually with our toolchain afterward.

The overall patching process is depicted in Fig. 2. More
precisely, the steps to patch the ELF are as follows:

1) Load Original ELF
This is achieved using libelf.

2) Read ELF Headers and Symbol Table
These values are stored into internal variables.

3) Map Memory
The ELF data is mapped into a virtual memory
according to the section header, such that it can be
accessed by the virtual address.

4) Load Compiled Intermediate ELF
Using libelf, the intermediate ELF is loaded.

5) Read Intermediate ELF Headers and Symbol Table
We use the same approach as for the original ELF.

6) Copy Compiled Hooks
The .compiled section of the intermediate ELF is
copied into a local buffer, which contains all code and
data of the cross-compilation. The same local buffer
is used to add the trampoline code, so this buffer must
be 32 bit-aligned by adding zeros if necessary.

7) Load Hook Configuration
Load and read the hook configuration file hooks.
txt including function name wildcards.

8) Generate Call Stub
If the original function starts with a stwu or mflr
instruction, as supported by our binary patcher, this
instruction is used to generate a call stub. Otherwise,
the hooking process aborts with an error message.
The generated code is added to the code buffer, which
also holds the code of the intermediate ELF.

9) Generate Trampoline Code
Then, the hook-specific trampoline code is generated
according to the configuration file, and added to the
same code buffer.
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10) Hooking
Using the mapped memory, the code at the virtual
address of the original function entry is overwritten
with a branch instruction to the virtual address of the
newly generated trampoline code.

11) Add Changes to Original ELF
The new and modified data including headers is
written into the new ELF.

The generated ELF can now be loaded into the site con-
troller or the Raspberry Pi’s TFTP server, such that the base
radio bootloader can launch the customized firmware.

V. DYNAMIC FIRMWARE ANALYSIS TOOLS

Now that we are able to modify the original firmware,
we can continue to add debug and analysis capabilities. Most
importantly, we built tools for fast data exchange other than
the serial RS232 interface, a function tracer, and a dynamic
patcher.

A. Memory Dumps and Data Exchange

The site controller has a serial RS232 and an Ethernet
interface. While the CLI is based on the serial interface, the
Ethernet interface is faster and better suited to exchange larger
amounts of data.

We add an Ethernet-based UDP service using the scomm
library. This library uses the br_service_table to register
services that can send and receive UDP packets on a service-
defined port using the structure shown in Listing 2. Once we
extend this service table, our custom UDP service is active.

Each scomm_service defines three callbacks. The
socket_cb is only a wrapper, which can change the parame-
ter order before calling the scomm_recv_callback. Every
time the scomm_recv_callback receives a packet, it calls
the rx_cb and passes an scomm_packet containing the
data. The tx_cb is called by scomm_packet_transmit
after packet transmission.

Using a custom UDP service, we add various memory
observation commands to the OSE CLI. These are triggered
via the slow serial interface, but the memory contents are
exchanged using the Ethernet connection. The CLI can dump
specific memory regions, the whole memory, watch a memory
region, and search the memory for strings and hexadecimal
data.

struct scomm_service {
uint32_t port;
uint32_t unknown1;
uint32_t unknown2;
socket_rx_cb rx_cb;
socket_rx_cb tx_cb;
socket_sock_cb socket_cb;
uint32_t status;

};

Listing 2: scomm_service struct defining a UDP service.

B. Function Call Tracer

Static code analysis can be challenging: Which functions
are actively executed by the firmware? What is contained in
the function parameters? Even simple information like function
references is not always correctly determined by disassemblers.

Enea OSE is a multithreaded operating system. For indi-
vidual observation of each process, the process identifier and
every function enter and leave can be logged resulting in a
call tree. If two functions are entered subsequently, this adds
a new level to the call tree. While the call tree calculation can
take place outside of the patched firmware binary to optimize
performance, the logging itself needs to be added to the binary.
In addition to function enter and leave interactions, we log the
CPU cycle counter to estimate the time spent in each function.

The code that implements this functionality is shown in
Listing 3. The process identifier is only available after OSE
is booted and undefined otherwise. The calltrace func-
tionality can be added as a hook to every function. The hook
definition allows wildcards, meaning that a hook to dlai_*
would log every function call in the air interface downlink.
The trace is transmitted using a Telnet service over Ethernet.

We test the function tracer on a large set of wildcards
covering the most important aspects of the firmware, as shown
in Tab. II. In some function groups, the trace hook leads to a
firmware crash. This happens despite the generated code is
valid. The station’s watchdog is set to larger intervals than the
additional hook instructions take to execute. Thus, we assume
that this is due to some real-time requirements in functions

TABLE II: Function groups and associated hook crashes.

# Prefix Crash
95 aie_ —
45 aiea_ —
50 aiei_ —
12 mac_pdu_ —

289 tx_ Crash after a few seconds.
49 rx_ Crash immediately after boot.
74 sm_ —

174 dlai_ —
28 ulai_ —
42 cca_ OSE_EPROCESS_ENDED

40 ccai_ —
10 lapd_ —

uint32_t calltrace() {
uint32_t pid = 0;
if (ose_ready) {
pid = current_process();

}
calltrace_log_enter(pid);
// Get cycle count from CPU registers for time measurement
uint64_t begin = cpu_cycle_count();
// Call original function w/o knowing anything about it
uint32_t ret = orig_call();
// Get cycle count again for duration
uint64_t end = cpu_cycle_count();
calltrace_log_leave(end - begin);
return ret;

}

Listing 3: Gather calltrace information.
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(a) KCachegrind interpretation.

aie brcst d chg dmnd send fallback
1.28%

(0.00%)
0*

aie brcst get params
1.41%

(0.00%)
96*

aie db get future cipher info
1.41%

(1.41%)
96*

aiea get ext svc broadcast info elem
5.55%

(0.00%)
0*

aie db get sc1ms supported
5.55%

(5.55%)
399*

aie ld scan for timeouts
40.48%
(0.00%)

0*

aie get ul iv
40.48%
(0.66%)

92*

aie km execute cipher change
39.82%

(39.82%)
1*

1.28%
87*

1.41%
96*

5.55%
339*

40.48%
92*

39.82%
1*

(b) gprof2dot interpretation.

Fig. 3: Function trace converted to Callgrind for further interpretation.

involved into sending and receiving packets, as the prefixes
tx_ and rx_ indicate. This assumption is affirmed by the
fact that OSE interrupt processes, which are close to hardware,
have special restrictions: on PowerPC, they are not allowed to
execute floating point or vector operations and cannot access
the heap [1, p. 14]. While the basic hook mechanism does not
contain such operations, the calltrace function does. As
a solution, interrupt processes can be excluded from function
tracing.

The calltrace output is still not that intuitive for
interpretation. Using a custom tbrc2callgrind.py script,
we convert the log output into the Callgrind format [34].
Originally, Callgrind output is meant to show how much time
is spent in which function to allow programmers profiling and
improving performance. While we do not aim at improving
the base radio’s performance, the output still provides us with
insights about which functions are called by a thread and how
they depend on each other. The Callgrind format is supported
by various tools that provide a human-readable representation.
These include the KCachegrind [35] tool shown in Fig. 3a as
well as the gprof2dot [7] script that converts the the graph
into the a format for plotting as shown in Fig. 3b.

C. Patching During Runtime

In the setup described in Sec. II-A, the base radio loads
a patched firmware ELF file from the site controller or the
Raspberry Pi. This requires a reboot of the base radio, which
takes a while. This is not ideal for debugging purposes. Thus,
we extend the patching toolchain to support partial firmware
modification during runtime.

The overall process relies on the previously described ELF
patcher. When comparing two generated ELFs files, they only
differ in the following information: the hooks section, which
contains the actual patches, and single 4 B-instructions with
jumps to these hooks. A patched ELF file always contains the
same new entry in the program header, thus, the code and hook
section do not move.

Assuming that the ELF of the firmware version running on
the base radio is known, it is very simple to diff it against a
version that modifies these patches. For debugging purposes,
two versions can be disassembled with objdump and diffed,

making the patches human-readable. For example, the differ-
ence added by the PREHOOK printf calltrace looks
as follows:

405360c405360
< 1cd5c4: 94 21 ff 18 stwu r1,-232(r1) ; orig. instruction
---
> 1cd5c4: 48 02 dc 2e ba 2dc2c ; jump to trampoline
586913a586914,586934
> 2dc1c: 94 21 ff 18 stwu r1,-232(r1) ; new hook code
> 2dc20: 48 1c d5 ca ba 1cd5c8 <printf+0x4>
> ; further instructions that are added...

We parse the diffing results block-wise, meaning that
we separate it into continuous blocks of assembler code. A
function for memory modification is already contained in
the patched standard firmware and the code section is not
protected against writes during runtime. Thus, we can apply
these changes to the base station while it is running. The blocks
are applied in ascending order, meaning that the patches are
written before the hook jumps are applied. This prevents the
original firmware from jumping into invalid patches.

Since this process requires cross-compilation, it is not
executed on the base radio directly. Instead, the base radio
is attached to a Raspberry Pi or a laptop that generates and
pushes the firmware patches.

D. Dynamically Calling Functions with Arguments

The ELF-based patching approach requires firmware re-
compilation and pushing the resulting diff into the base radio’s
memory. Often, debugging does not require complex patches
but simple functionality like calling a single function with
parameters out of context. For example, a function without
arguments and return value located at addr could be executed
as follows. Note that the void usually is not written explicitly:

void (*addr)(void)

However, passing arguments can get complicated due to
the PowerPC calling conventions. The CIF-based approach
introduced in Sec. IV solves this and even saves additional
metadata. When calling a single function that returns, we can
let the cross-compiler take care of passing arguments. For
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simplicity, we only differentiate between functions without
parameters and functions with the maximum number of ar-
guments, since we can leave arguments empty, and define the
following generic function call wrapper that is always added
to the firmware:

void* execute_address(int argc, void* addr, void** args) {
if (argc == 0) {

return ((void* (*)(void))addr)();
} else {

return ((void* (*)(void*, ...))addr)(args[0],
args[1], args[2], args[3], args[4],
args[5], args[6], args[7]);

}
}

This wrapper can be called directly from the base radio
CLI without an additional compilation step. For example, we
could now execute the printf function as follows:

printf("Hello %s %d", "World", 42);

The CLI can pass these three arguments to printf, which
is located at address 0x1cd5c4. Since we do not implement
the same syntax as C, we still need to tell it the number of
arguments and the argument types:

CSS: exaddr 0x1cd5c4 -p 3 %s "Hello %s %d" %s "World" %d 42
Hello World 42

The return type is interpreted to print it to the CLI. In
principle, a function returning a void pointer could point to
anything. We implement three options to handle the results
depending on the expected result. If we expect the result to
be a scalar, we print it directly to the console. Alternatively,
we handle the result as address and print a given number of
bytes from its destination. As a third special case we assume
that the result is a null-terminated string and print it.

VI. FUZZING WITH HYPHUZZ

A method to evaluate firmware security is fuzzing. Ran-
domized inputs are generated and sent to interesting parsers
to locate bugs. In the case of a TETRA base radio, we can
send such inputs to protocol handlers. We pick the UDP-based
scomm stack for an initial evaluation of our fuzzer.

A. Hyphuzz Overview

Hyphuzz, the TETRA base radio fuzzer, runs on two
devices. While the harness code runs on the base radio itself,
the controller runs on a Raspberry Pi. This separation is
necessary to be able to observe if the base radio crashed, and,
in the worst case, even power cycle it using a USB-controlled
power switch. However, for performance reasons, payloads are
generated and injected on the base radio. A high-level overview
showing this separation is depicted in Fig. 4. It consists of five
components described in the following.

1) Worker: The worker is the Hyphuzz core component
running on the base radio. It initializes a Pseudo-Random
Number Generator (PRNG) using the seed parameter and
based on this generates mutated packets injected into the
target handler. We implement several test cases that randomize
different parts of the packet, which can be specified using the
testCase parameter. The skip parameter can be used to
produce packets with the same seed again but discard N
packets, which is useful for crash reproduction. Once started,
Hyphuzz runs autonomously until it is stopped or the base radio
reboots. It regularly reports its state to the controller using a
UDP connection.

2) Command Server: The worker receives commands from
the command server, which also runs on the base radio.
The command server listens on UDP and waits for fuzzing
parameters or the instruction to stop the fuzzer. Moreover, the
command server can be used to determine if the base radio is
still alive or crashed.

Raspberry Pi

Controller
Coordination, Logging

Station Monitor

Report
BR
State

UDPDump
Time

Base Radio

Serial Handler

Worker
PRNG, Payload Injection

Command Server

startFuzzer(seed,

testCase, skip)

Echo

Echo Response

startFuzzer(seed, testCase, skip)

Feedback

Serial OSE Output

startFuzzer(seed, testCase, skip)

1
0

Program Flow

Serial Interface

UDP 1337 (Commands)

UDP 1338 (UDPDump)

Telnet (Redundant for
Debugging)

Fig. 4: Overview of the Hyphuzz components.
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3) Controller: The controller runs on the Raspberry Pi and
coordinates the overall fuzzing process. It sends fuzz cases to
the worker and logs the worker’s fuzzing feedback into a file.
Once the base radio hangs up or reboots, the controller logs
the latest statistics and serial debug output before starting the
next fuzzing round.

4) Station Monitor: The station monitor oversees the base
radio’s current status. If the base radio stopped sending feed-
back for a specific amount of time, it has likely crashed or
hang up. Typically, the base radio restarts itself automatically
and becomes responsive again. However, sometimes, it just
freezes. In this case a hard reset is automatically enforced
via the power switch. Interestingly, we also have some cold
boot side effects when the base radio restarts itself. Thus, we
additionally enforce a hard reset even after automatic reboots
and after each fuzzing round to enforce a clean state.

5) Serial Handler: The serial handler is not contained in
the base radio’s firmware ELF file. Instead, it seems to be a
separate component integrated into the ROM similar to the
bootloader. As such, we cannot modify it. However, we use
it for feedback. Some crashes produce OSE error messages
printed to the serial interface prior to a base radio reboot when
the remaining system is already stuck.

B. Target Handler Selection and Harnessing

In the following, we select a suitable protocol parser for
fuzzing and harness it to accept randomized inputs.

1) Security Considerations: The scomm stack can only be
reached using a wired Ethernet connection.

First of all, an attacker would need physical access to the
base station to attach cables—and with this capability, it is
already possible to inject arbitrary firmware. Thus, research
on this interface cannot uncover any critical findings on this
sensitive target. The scomm stack is exclusively used for
trusted backbone services. While this is the opposite of what
a security researcher would aim at under normal conditions,
keep in mind that the target is critical infrastructure and we do
not want to uncover anything dangerous in the scope of this
paper. Note that this is no technical limitation of Hyphuzz, it
could be adjusted to also fuzz the TETRA air interface.

Second, the fuzzer’s findings can be confirmed using an
Ethernet connection. An scomm Proof of Concept (PoC) is as
simple as sending Ethernet frames, which ensures reproducibil-
ity. In contrast, over-the-air PoCs could have severe impact if
accidentally launched without EMF shielding.

iplite_udp_input

Socket Callback
(scomm_snmp_recv_callback)

scomm_recv_callback

Receive Callback
(udr_rx_snmp)

UDP Packet

Fig. 5: UDP packet reception process.

2) Harnessing: In order to harness the scomm UDP proto-
col stack, we target the function scomm_recv_callback
that handles incoming packets. All UDP traffic on the Eth-
ernet interface gets processed by this function. Every time a
packet is received, scomm_recv_callback looks up the
corresponding service by using the port number defined in the
packet. Each service has a callback function, which continues
parsing the packet for this service. The full call graph for han-
dling a UDP packet is shown in Fig. 5. Note that the functions
calling scomm_recv_callback are simply wrappers that
take care of calling it with the correct parameters. While this
seems unnecessary from a reverse-engineering perspective, this
might have looked slightly different before being optimized by
a compiler. For example, the wrapper for the Simple Network
Management Protocol (SNMP) callback looks as follows:

void scomm_snmp_recv_callback(uint32_t *rxSocketHandlePtr,
struct NetPacketInfo *netPacketInfo, int
packetStatus) {

scomm_recv_callback(netPacketInfo, packetStatus,
161, *rxSocketHandlePtr);

return;
}

The target function scomm_recv_callback takes four
parameters. netPacketInfo is the most relevant for
fuzzing. It contains a data structure with the full UDP packet
and additional metadata. Our fuzzer randomly replaces bytes
in this structure to generate new inputs. The packetStatus
flag is always 1 for incoming packets. Successful packet
processing is indicated by changing it to 2. An unexpectedly
closed socket leads to a status of 4. While there are also other
values for the status, these are not relevant for the purpose
of our fuzzer. 161 is the port number for SNMP, passed as
fixed value. rxSocketHandlePtr is slightly redundant and
contains a pointer to an integer used as handle to reference the
receive socket.

C. Crashes and Error Handlers

In the following, we describe the OSE kernel crash report
format and provide insights into crash statistics during fuzzing.

1) OSE Kernel Error Messages: Depending on the crash
caused by the fuzzer, the serial interface sometimes reports
an OSE error message. These messages are generated by
the function krn_err_hndlr. They were already useful
during development of the fuzzer itself. Listing 4 shows
an example for a stack overflow triggered due to our own
programming error during fuzzer development. The general
crash information contain the thread’s name and the registers
hint to the location of the issue.

2) Crash Statistics: Out of 453 crashes produced and
logged during our fuzzing campaign, 206 (45 %) contain a
kernel error message. These error messages can be used for
initial triage and root cause analysis. Since an error message
means that the kernel successfully detected a failure state and
the base radio reboots afterward, such errors are potentially
safe except from the base radio’s availability. Note that silent
crashes and hangs are more interesting but even harder to
debug.

On this fuzzing campaign, the execution time until the
fuzzer caused a crash was between 17 s and 31 min:14 s. 12 %
of the test cases crashed within the first 27 s. Interestingly,
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[ERROR HANDLER INVOKED] fatal:YES error:
OSE_ESUPERV_STACK_OVERFLOW(0x0102)
caller:<UNKNOWN>(0x00)

[ERROR DETAILS] user:NO code:0x080000102
subcode:0x0aebd60

[PROCESS CONTROL BLOCK] name:fuzzer_thread type:OS_BG_PROC
(64) status:<UNKNOWN>(0) priority:0

[STACK] top:0x0aec55f limit:0x0aebd60
[CALLING CODE] n/a:0

[REGISTERS] R0=3718B74E R1=00AEBD38 R2=002877CC
...

[ACTION] Writing post mortem debuger info
[ACTION] Resetting BR

Listing 4: Stack overflow triggered during fuzzer development.

TABLE III: Crash types and their frequency.

# Error Type Caller
158 OSE_EILLEGAL_PROCESS_ID OSE_SEND_W_S

33 OSE_ENOT_SIG_OWNER OSE_SEND

8 OSE_ENOT_SIG_OWNER OSE_SIGSIZE

4 OSE_EPROCESS_ENDED <UNKNOWN>

3 OSE_EILLEGAL_SYSTEMCALL OSE_WAIT_SEM

22 % of the crashes happen in the upper time range, between
30 min and 31 min:14 s. While we do not know the precise
root cause of the crashes in the upper time range, they might
be associated to a special base radio or OSE property that
triggers after half an hour or memory buffer being exceeded
after that time span. The remaining 66 % of the crashes are
equally distributed over time.

3) Crash Types: In the following, we briefly describe
the most common error messages. Tab. III summarizes these
crashes and their frequency. The comparably outdated kernel
reference manual still contains useful information about the
error types [4], which allows further insights.

OSE_EILLEGAL_PROCESS_ID: If the kernel observes
an illegal block or process identifier, it raises this error. The
subcode is the corresponding invalid identifier. The caller,
which causes this error, always happened to be the function
send_w_s. Its purpose is to send a signal from one process to
another. However, this function is also used within the fuzzer’s
UDP dumper. Thus, we modify the fuzzer to send the debug
information via the serial interface. Since this crash persists,
we can exclude that it is a false positive due to the fuzzer’s
UDP-based design.

OSE_ENOT_SIG_OWNER: This error is triggered when
a process invokes a system call requesting a signal buffer
that it does not own. The subcode is the address of the
corresponding signal buffer. During our fuzzing campaign, we
observe two different values for the signal buffer. One is owned
by the process DLA1, and the other is owned by iplited.

OSE_EPROCESS_ENDED: When a prioritized or back-
ground process ended, this error occurs. The subcode con-
tains the process identifier. In our case, the terminated process
is ose_shell, which serves the CLI.

OSE_EILLEGAL_SYSTEMCALL: This error is provoked
when an interrupt process executes a system call that is
only allowed for non-interrupt processes. We observe this in
the two interrupt processes named VEC03 and VEC62. The
illegal system call in both cases is wait_sem. As the name
suggests, this system call waits until the specified semaphore
is acquired—however, interrupt processes should terminate as
quick as possible. We were not able to reproduce this specific
type of issue by replaying packets, even though it occurred a
few times during the fuzzing campaign. Thus, it seems to be
very timing and state dependent.

D. Performance

The Hyphuzz controller spends most of the time waiting
for the worker. Its main optimization is to timely detect hangs
and reboots and respond with a hard reset.

The worker’s overhead is quantified by additional mea-
surement code reported to the controller, which calculates the
corresponding average and writes it to the log file. We use CPU
cycles for runtime comparison. We measure four components:

1) the generation of the call target’s input parameters,
2) the process of sending feedback to the controller via

UDP,
3) the actual time spent in the target function, and
4) the cleanup performed after this call.

We execute the worker five times with different fuzz cases
that call the target function 20 000 times per case. The average
times of this experiment are listed in Tab. IV. The fuzz case
generation requires the largest overhead with 9.5 % of the time.
Overall, the worker introduces 11.7 % overhead.

TABLE IV: Average overhead introduced by the individual
parts of the worker compared to the actual target call.

Activity CPU Cycles Overhead
Target Call 117 207 —

Input Generation 11 084 9.5 %
Feedback 1318 1.1 %
Cleanup 1278 1.1 %

Total Overhead 13 680 11.7 %

VII. CONCLUSION

In this paper, we developed a powerful PowerPC binary
patching and dynamic instrumentation framework. Using a
TETRA base station, we demonstrated that our implementation
works in practice. The patched binaries run stable on this
complex system even during fuzzing, and the framework
assisted us in internal follow-up security analysis.

Features like the ELF patcher and function tracer are
very generic and can be useful for similar projects, such as
other outdated but still in use critical infrastructure or retro
computing projects. Moreover, the insights gained into OSE
and its possible error states can be helpful for other security
researchers that encounter this closed-source operating system.

10



ACKNOWLEDGMENT

We thank Jannik Jürgens and Sven Neubauer for the initial
setup of the base station environment as well as Patrick
Dworski for the analysis of existing functionality and protocols
like the AirTracer. Moreover, we thank Dominik Maier and A.
Birkl for proofreading this paper.

This work has been funded by the LOEWE initiative
(Hessen State Ministry for Higher Education, Research and
the Arts, Germany) within the emergenCITY centre.

DISCLAIMER

No dinosaurs were harmed and no new dinosaurs were bred
during our experiments.

AVAILABILITY

The PowerPC binary patcher and generic tools are publicly
available on GitHub [33]. Due to its security and public safety
critical nature, we will neither release the TETRA firmware
extracted from the base station nor the fuzzer.

REFERENCES

[1] Sebastian Aland, Markus Happe, Nico Loose, and Florian Schoppmann.
Seminarausarbeitung OSE. http://homepages.uni-paderborn.de/fschopp/
hauptstudium/docs/rtos.pdf, June 2005.

[2] Embedded Staff. Enea Embedded Technology announces new version of
OSE RTOS. https://www.embedded.com/enea-embedded-technology-
announces-new-version-of-ose-rtos/, April 2004.

[3] Enea OSE Sysems AB. Real-time Operating System Enea OSE. https://
www.enea.com/products-services/operating-systems/enea-ose, January
2021.

[4] Enea OSE Systems AB. OSE Kernel Reference Manual, 420e/OSE93-1
R1.0.4. https://docplayer.net/55608737-Ose-kernel-reference-manual-
kernel-enea-ose-systems-ab.html, 1998.

[5] ETSI. ETSI EN 300 392-1 V1.6.1 (2020-04): Terrestrial Trunked
Radio (TETRA); Voice plus Data (V+D); Part 1: General network
design. https://www.etsi.org/deliver/etsi en/300300 300399/30039201/
01.06.01 60/en 30039201v010601p.pdf.

[6] ETSI. ETSI EN 300 392-7 V3.5.1 (2019-07): Terrestrial
Trunked Radio (TETRA); Voice plus Data (V+D); Part 7: Secu-
rity. https://www.etsi.org/deliver/etsi en/300300 300399/30039207/03.
05.01 60/en 30039207v030501p.pdf.
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